
Multidimensional

Tree-Structured File Spaces

Douglas N° Kimelman

Department of Computer Science

University of Manitoba

Winnipeg Manitoba Canada

ABSTRACT

Development projects are often based on large collections of infor-

mation. This information is typically maintained in a set of files.

Current file system and database structures are inadequate for storing

and manipulating this information°

This paper defines a new class of high-level data structures called

"m-dimensional n-ary tree-structured spaces" (also called "md-nt spac-

es"), and discusses their use in the organization of the files of de-

velopment project file systems.

The md-nt space organization allows the primary file system struc-

ture to represent relationships between files which are difficult or

impossible to represent with conventional structures. A fundamental

aspect of this organization is that arbitrary semantics, such as im-

plications in terms of a software module's nesting, or in terms of its

position within a sequence of revisions, may dynamically be associated

with this structures This enables the primary file system structure

to become the basis for automatic system functions such as the recom-

pilation of source code, the propagation of sets of changes to all ap-

propriate files, or the storage and regeneration of revisions of a

file. With conventional systems, such operations are accomplished in

a manual, ad-hoc, and error-prone fashion, or via mechanisms which are

external to the primary file system structure, and hence contrary to

the goal of an integrated environment.

195

This paper also discusses some of the considerations in the design

and implementation of such a file system. A prototype implementation

is described, and an evaluation of the effectiveness of md-nt spaces

in a software development environment is presented.

INTRODUCTION

Computer systems are often the primary facilities underlying devel-

opment projects in a number of different areas. Such areas include

software development, document preparation, image processing, graphics

generation, circuit board layout, VLSI chip design, and many other

areas of design and manufacturing.

These projects are often based on large collections of information.
L

This information is typically maintained in a set of files.

For software development, the information which is to be managed

for the programming and maintenance stages ranges from very high-level

definitions, to high-level textual "source code" from which the "end

product" is automatically generated, to intermediate representations,

to the target machine code.

Document preparation may require source text containing formatting

control words, displayable formatted output which may be marked up by

reviewers, and phototypesetter data streams.

VLSI design may require that logic diagrams, circuit schematics,

and geometry layouts all coexist, along with block diagrams, high lev-

el specifications, and the results of various analyses of a circuit.

In addition, for projects in any of these areas, this variety of

information is often accompanied by information relating to project

planning and scheduling, directions and procedures for processing

files, characteristics and attributes of various files, relationships

between files, and logs and histories of activities related to various

files.

196

Further~ there are typically numerous evolutionary versions of the

various files° Some are archived and maintained only for the sake of

posterity. Others are still active. For software systems, there

might be three or four different releases and sub-releases in produc-

tion, others being tested, and yet others in early development. Of-

ten, a progression of revisions for a given file exists within a given

release of a system. For documents, a number of drafts may exist for

each edition of a document.

As well as evolutionary versions of a file, numerous alternative

variations of a file may exist. For a software development system,

these may depend on which machine and system will eventually act as

host to the resulting code. Variations may also exist according to

which set of selectable features have been chosen.

Throughout this paper, software development projects will be used

as an example of projects which have relatively demanding and reason-

ably well formalized information organization requirements.

INADEQUACIES OF CURRENT STRUCTURES

Current file system structures are inadequate for storing and ma-

nipulating development project information.

The UNIX file system [Ritchie and Thompson 1974] (UNIX is a Trade-

mark of Be~ILaboratories) exhibits a number of the inadequacies which

are common to contemporary file systems. UNIX attempts to represent

many different properties of a collection of files with a single hier-

archical structure~ Pathnames such as '/ u / smith / mydbms / cmds /

source / 68k / newversion / util.c' are not uncommon. With systems

such as UNIX, the file hierarchy becomes extremely cluttered, the ma-

nipulation of files becomes quite cumbersome, and the maintenance of

large programs becomes quite complex and error-prone. In some cases,

UNIX utilities such as RCS [Tichy 1982] or SCCS [Rochkind 1975] are

used to maintain all of the versions of a particular source file in a

single space-efficient archive (incorporating a differential

base+delta storage scheme). In these cases, maintenance procedures

197

are further complicated by the fact that these versions must be

accessed via special-purpose commands. The versions can not be manip-

ulated by the standard UNIX utilities. UNIX also makes use of "make-

files" [Feldman 1975] which describe dependencies between files, and

procedures for processing and updating files. Such dependency infor-

mation is external to the primary file system structure, and thus is

potentially redundant. As well, the standard utilities are not aware

of such information. Thus this information is not applied in many

situations where it might be of further use.

Current database systems are better able to represent various rela-

tionships between a number of files in a uniform fashion, but are too

cumbersome to be effective in a development project environment.

A number of authors have addressed the inadequacies of current file

and database systems. Thall's KAPSE for the Ada Language System

[Thall 1982] (Ada is a trademark of the Department of Defense, Ada

Joint Program Office) formalizes a UNIX-like hierarchy by explicitly

specifying directories as being either groupings of subordinate files,

or groupings of revisions of a file, or groupings of variations of a

file due to such factors as additional features or different target

machines. As well, Thall formalizes the notions of file attributes

and secondary associations between files. He provides automatic se-

lection of file variations based on a desired set of attribute values.

The TRW "Software Productivity System" [Boehm et al. 1982] incorpo-

rates a hybrid "master database" which consists of a relational data-

base coupled with a hierarchical file system and a version control

system.

Cheatham's "Program Development System" [Cheatham 1981] for the ECL

Programming System uses a relational database with a fixed set of at-

tributes to store the modules of a software development project.

Goldstein and Bobrow's "Personal Information Environment"

[Goldstein and Bobrow 1980] for the SMALLTALK system is based on "lay-

ered networks", in which each element of an unordered set of contexts

is a linear array of partial module networks.

!98

In general~ none of these systems fully combines a powerful gener-

ally applicable structure, with high level operations, and with formal

semantics for automating various file oriented procedures.

Many language-directed systems such as CADES [McGuffin et ale

1979], Mentor [Donzeau et alo 1980], and "The GANDALF Software Devel-

opment Environment" [Habermann and Notkin 1982] concentrate on the use

of a hierarchy, possibly with labelled edges, to represent (with very

fine granularity) the abstract structure and some of the semantics of

a particular item such as a program, or a module, or a document.

These systems devote little attention to the more global organization

of these trees within a development project environment.

This paper provides a brief overview of a file system structure

which is currently being developed by the author. The major contribu-

tions of this research are: a formal high-level organization for pre-

viously ad-hoc collections of files, a powerful means of viewing and

manipulating these files, the formal association of semantics and con-

sequences with file system structures, and the integration of tradi-

tionally distinct areas such as the primary file system structure,

version control, and configuration management. These advances will

also be applicable in areas outside of software development, such as

document preparation, VLSI design, graphics, and others.

PROPOSED FILE SYSTEM STRUCTURE

The structure developed as a result of this research is one in

which each file of a file system is regarded as a point in a "multi-

dimensional n-ary tree-structured space" (also called an "m-dimension-

al n-ary tree-structured space", or an "md-nt space").

Each point in an md-nt space has m coordinates, one for each dimen-

siono Where the axes of a conventional space are linear, each axis of

a tree-structured space is a tree (or, in fact, a singly-rooted net-

work). Each coordinate of a point, then, is a pathname derived from

the axis tree for the corresponding dimension. As an example, a point

in a four dimensional space, with the pathname 'compiler parser o

199

treemgr addnode' as its coordinate in the 'function' dimension, and

with the pathname 'vax 11_750' as its coordinate in the 'host' di-

mension might be identified by

[function : compiler . parser . treemgr . addnode ;

version : releasel . subrelease2 ;

host : vax . ii 750 ;

phase : source . definitions].

Such a space may be regarded as a cartesian product of the m n-ary

trees which are its axes.

For a particular software development project, a space could be de-

fined to have a dimension in which a point's coordinate reflects the

function of the corresponding file, and a dimension in which a point's

coordinate reflects the version of the file. The axis for the func-

tion dimension might be

/

scanner

, o ,

/

compiler

I \
parser

/ \
c o d e r

pda treemgr

/ I \
create adopt remove

and the axis for the version dimension might be

0

/ \

1 2

/ \

i.i 1.2

(Note that the values of the version axis which are below the second

level of the tree, e.g. 1.2, are automatically qualified relative to

the second level of the tree, e.g. I, when they are displayed). A

point (or file) in such a space would be

200

[function : compiler o parser

version : 1.2]

treemgr , create

Although the space considered in this section has a single axis for

each dimension, this need not always be the case. It is possible, in

general, for one subspace to have a different axis in a given dimen-

sion than another subspace. Thus it is possible, for example, for

different functions to have different versions. The issues of varying

axes and orthogonality are discussed in another paper currently being

prepared by the author.

The points of an md-nt space may be connected. Each point would

have a set of links in each dimension, which would connect it to its

children in that dimension. For the space being considered here,

children of the point

[compiler ; I]

in the 'function' dimension would be

[compiler . scanner ~ I]

[compiler . parser ; I]

compiler . coder ; i]

In the 'version' dimension, children would be

[compiler ; I~i]

[compiler ; 1.2]

Such a structure may be traversed in the conventional fashion, by

moving from one point to the next, along one of the links from a pa-

rent to a child. Each such move can be taken along any one of the di-

mensions of the space, For example, in order to get from the point

[compiler ~ !]

to the point

[compiler ~ parser . treemgr ; 1o2]

201

one could move, in the 'function' dimension, from

[compiler ; 1]

to

to

[compiler . parser ; I]

[compiler . parser . treemgr ; 1]

and then, in the 'version' dimension, to

[compiler . parser . treemgr ; 1.2]

Alternatively, one could move, in the 'function' dimension, from

[compiler ; 1]

to

[compiler , parser ; 1]

and then, in the 'version' dimension, to

[compiler . parser ; 1.2]

and then, in the 'function' dimension, to

[compiler . parser . treemgr ; 1.2] .

Thus, an md-nt space may also be regarded as a colored directed

graph, in which an edge is colored according to the dimension in which

it links its initial and terminal vertices.

The points of an md-nt space can be projected in various ways, in

order to provide a number of different views of the entire space.

When performed in the context of a suitable view, tasks such as ex-

202

tracting all of the source files for a particular release of a

software system, or extracting all of the releases for a particular

source file, which can be quite complicated with conventional file

systems, become straightforward.

For the space being considered here, the projection of the points

onto a single hierarchy, by version within function, could be dis-

played textually as

compiler

; 0

scasner

parser

1

i°I

1.2

2

; 0

; 1

; 2

; 0

I.I

1.2

An alternative projection~ by function within version~ could be dis-

played textually as

; compiler

; scanner

; parser

; pda

; treemgr

; compiler
® • .

203

An md-nt space can be sliced across various dimensions, along vari-

ous coordinates in other dimensions, in order to yield a multidimen-

sional subset of its points. Projections and slices allow the sup-

pression of file system detail which is extraneous in a given

situation• Thus, tasks such as the manipulation of the source files

for one release of a software system in isolation from the source for

all of the other releases, or the manipulation of all of the releases

of a particular source file as a group, are greatly simplified•

For the space being considered, a slice across the version dimen-

sion, along the function coordinate 'parser', would be

parser;O

/ \

parser;l parser;2

/ \

parser;l.l parser;l.2

The projection of this slice onto the version axis would appear

simply as

/
!

/ \

I.I 1,2

0

\

204

A particular meaning, or "semantic", which a user intuitively asso-

ciates with a certain kind of link between the files of an md-nt

space, may be made known to the system. For the example being consid-

ered here, the "revision-of" semantic could be associated with the

version axis by a command such as

C: attach rev-of to version

in order to inform the system that the kind of link which exists be-

tween

[parser ; I ~ (call it 'P')

and

[parser ~ 1.1 ~ (call it 'CV')

means that "~CV ~ is a revision of 'P'"

As a result, certain kinds of actions, or "consequences", could be

performed automatically by the system on files connected by such

links, For example, any changes made to 'P' could automatically be

applied by the system to 'CV' as well. As another example, for econo-

my of storage space, the system might elect to store only the differ-

ences between the contents of 'P' and the contents of 'CV', rather

than storing the entire contents of 'CV' as a separate file.

205

PROTOTYPE

A preliminary prototype for the structural aspects of the md-nt

file space organization has been implemented as a user-mode layer

above the UNIX file system. Each point of an md-nt file space is

stored as a single UNIX file. All information concerning the struc-

ture of the space is stored in another UNIX file. The "structure

file" and the "point files" are kept in a single UNIX directory.

A formalized extension of the UNIX command language is provided by

an interpreter which has been implemented as a layer above the UNIX

shell, using LEX and YACC [Johnson and Lesk 1978]. The language in-

cludes commands for manipulating the points of an md-nt space, and

will include a powerful regular-expression sub-language for identify-

ing the points of a space. Commands concerning the structure of the

space are processed directly by the interpreter, and their actions are

reflected in the underlying UNIX files. Ordinary UNIX commands, in-

cluding those which deal with files of the multidimensional space, are

simply passed on to the shell, after any point references are expanded

and translated into UNIX file names.

Currently, the representation for the structure of the space, which

is stored in the structure file, is a simple set of multi-linked

nodes. Each point of the space is represented by a single node. Each

node has a set of links which identify its parent, its first child,

and its next sibling, in each dimension. Other representations being

considered include: a simple hashed table of nodes, which contains no

structural information, but which is augmented by a set of linked

nodes representing the various axes; or, a representation which is

based on an extended relational database.

In order to allow more effective experimentation with the semantic

aspects of md-nt spaces, a more complete integration with the UNIX en-

vironment must be undertaken. This integration could be achieved by

an interface implemented as a layer above the standard file access li-

brary. This would present md-nt spaces at a more fundamental level

within the system.

206

CONCLUSION

Initial experience suggests that the md-nt file space organization

can be a powerful and effective component of an integrated development

project environment° This organization capitalizes on the considera-

ble degree of orthogonality which is present in the file spaces of

most large development projects. However, most such file spaces also

include some dependencies. More work is required on handling these

dependencies in a uniform fashion within the framework of md-nt spac-

es.

REFERENCES

[Boehm et al. 1982]

Boehm, B.W.~ Elwell, J.F., Pyster, A.B., Stuckle, E.D., and Wil-

liams, RoD. "The TRW Software Productivity System," Proc. 6th In-

ternational Conf. on Software Engineering, September 1982.

[Cheatham 1981]

Cheatham, T.E. "An Overview of the Harvard Program Development

System," in [Hunke 1981].

[Donzeau et a l . 1980]
Donzeau-Gouge, V,, Huet, G., Kahn, G., and Lang, B. "Programming

environment based on structured editors: The Mentor Experience,"

INRIA Research Report No. 26, July 1980.

[Feldman 1979]

Feldman, S.!. "Make - A Program for Maintaining Computer Pro-

grams," Software Practice and Experience 9(3), March 1979.

[Ferch et al° 1978]

Ferch, H.J., Neufeld, G.W., and Zarnke,

al," University of Manitoba, August 1982.

C.R. "MANTES User Manu-

207

[Goldstein and Bobrow 1980]

Goldstein, I.P., and Bobrow, D.G. "A Layered Approach to Software

Design," Xerox Palo Alto Research Center CSL-80-5, December 1980.

[Habermann and Notkin 1982]

Habermann, A.N., and Notkin, D.S. "The GANDALF Software Develop-

ment Environment," Carnegie-Mellon University, January 1982.

[Hunke 1981]

Hunke, H., ed.

land, 1981.

"Software Engineering Environments," North Hol-

[Johnson and Lesk 1978]

Johnson, S.C., and Lesk, M.E. "UNIX Time-Sharing System: Language

Development Tools," The Bell System Technical Journal 57(6), July

1978.

[McGnffin et al. 1979]

McGuffin, R.W., Elliston, A.E., Tranter, B.R., and Westmacott,

P.N. "CADES - Software Engineering in Practice," Proc. 4th Inter-

national Conf. on Software Engineering, 1979.

[Ritchie and Thompson 1974]

Ritchie, D.M., and Thompson, K. "The UNIX Time-Sharing System,"

Communications of the ACM 17(7), July 1974.

[Rochkind 1975]

Rochkind, M.J. "The Source Code Control System," IEEE Trans-

actions on Software Engineering SE-I(4), December 1975.

[Thall 1982]

Thall, R.M. "The KAPSE for the Ada Language System," Proc. of the

AdaTEC Conference on Ada, October 1982.

[Tichy 1982]

Tichy, W.F. "Design, Implementation, and Evaluation of a Revision

Control System," Proc. 6th International Conf. on Software Engi-

neering, September 1982.

208

APPENDIX: A SAMPLE FILE MANIPULATION SESSION

This appendix briefly illustrates a way in which the points of an md-nt space
might be manipulated in a MANTES-like [Fetch et al. 1982] environment.

Note: '*~ is used as a "wildcard" pattern rather than as a symbolic reference to
the current file or record, ';' is used as a delimiter of coordinates in point iden-
tifiers rather than as a command separator, '--' is used to introduce comments, and
' . . ~ ' is used to mean "et cetera". Text entered by the user is in lowercase.

C: ~ ~

C: display_axis dim=module

COMPILER
SCANNER
PARSER

SYMMGR
TREEMGR

CODER

C: displayaxis dim=version

TOP
i
2

2.!
2.2
2.3

3

C: use projection=module~version
-- causes version within module for display, and module before
-- coordinate before version coordinate for file identifiers

C: display f=[compiler;top]

COMPILER
; TOP

I
; 2
; 2.1

2.2
2.3

SCANNER

PARSER

3

; TOP
i
2

2oi
2.2

; 2.3
3

TOP
i
2

2.1
2.2
2.3

3

209

C: use projection=version,module
C: display top;compiler

TOP
; COMPILER

1

SCANNER
PARSER

SYMMGR
TREEMGR

CODER

; COMPILER
; SCANNER
; PARSER
; SYMMGR
; TREEMGR
; CODER

2

2.1

2.2

2.3
; • • •

3

C: use projection--Inodule
C: use f=[module:cnrrent; version:*]

-- note: each coordinate of a file
-- designator is defaulted or
-- overridden separately

C: display compiler

COMPILER
SCANNER
PARSER

SYMMGR
TREEMGR

CODER

C: transfer symmgr under scanner
-- moves the file for module symmgr
-- under the file for module scanner

(rather than the file for module
parser) FOR EACH version

u

C: use f=version:3

C: create optimizer

C: use f=version:*

restrict operations to the slice
with version coordinate '3'
(rather than all versions)
after coder
just for version 3
(see the display below)

back to dealing with all versions
-- by default

C: create parser;version:2.1.1 under parser;version:2.1

210

C: use projection=modu!e,version
C: display compiler;top

COMPILER
; TOP
; I
; 2
; 2 . 1

2 . 2
; 2 . 3
; 3

SCANNER
; TOP

1
; 2

3
SYMMGR

; TOP

PARSER
; TOP
; 1
; 2

3
TREEMGR

; TOP

CODER
; TOP
; I
; 2

; 3
OPTIMIZER

; 3

2.1
2.2
2.3

1
2

2.1
2.2
2.3

3

2.1
2.1.1

2.2
2.3

I
2

2.1
2.2
2.3

3

2.1
2.2
2.3

211

C: use f=[module:symmgr; version:current]
C: use projection=version
C: display top

--- i.e. the versions of symmgr

TOP
1
2

2.1
2.2
2.3

3

C: list version:3 first/2

i. *PROCESS;
2. SYMMGR: PROC OPTIONS(MAIN);

C: list version:l first/2

i. *PROCESS;
2. SY~fl~GR: PROC OPTIONS(MAIN);

C: after version:l first by=.Ol

I. *PROCESS;
1.01 /* symmgr - symbol table manager package
1.O2 *
1.O3 * routines exported:
1.04 * addsym(. . .
1.05 * delsym(. . .

I.~8" "~/
C: list version:l first/4

i. *PROCESS;
1.01 /* SYMMGR - SYMBOL TABLEMANAGER PACKAGE
1.02 *
1.O3 * ROUTINES EXPORTED:

C: list version:3 first/4

I. *PROCESS;
1.01 /* SYMMGR - SYMBOL TABLE MANAGER PACKAGE
1.02 *
1.O3 * ROUTINES EXPORTED:
-- (the changes which inserted 1.01:1.28
-- were propagated to all subsequent
-- versions as a result of the
-- "revlsion-of" semantic being
-- associated with axes of the
-- version dimension)

212

C: -- now, assuming a somewhat larger space
C: display_axis dim=phase

TOP
SPECS

DFD
SRC

DCLS
BODY

INTER.M
SYMTAB
OBJCODE

TARGET
LOAD

DOCN
PGM GUIDE
USER REF

C: display_axis dim=host

TOP
MOTOROLA

8
6800
6801
68O9

32
68000
68010
68020

INTEL
8

8080
8085

16
8088
8086

32
432

ZILOG
8

ZSO
32

Z8000

C: use projection=module,host,phase
C: display f=[module:symmgr;

host:(motorola,zilog).8.~;
phase:src. ~] depth=0

SYMMGR; MOTOROLA.8.6800; SRC.DCLS
BODY

6801; SRC.DCLS
BODY

6809; SRC.DCLS
BODY

ZILOG.8.Z80; SRC. DCLS
BODY

213

C: use f=[phase:src.*;host:68000]
C: use projection=module,phase
C: display f=[parser.*]

PARSER
; SRC
; DCLS
; BODY

TREEMGR
; SRC
; DCLS
; BODY

C: scan [parser;dcls] f:l 'fixed bin'

C: off

