
Graph Grammar Engineering: A Method Used for the

Development of an Integrated Programming Support Environment

G. Engels, W. Sch~fer

Angewandte Informatik, FB 6, Universit~t OsnabrCick

Postfach 4~69, D-4500 Osnabrlick

Abstract

We introduce a method to specify the functional behaviour of software tools in an
incremental and integrated software development environment. This specif ication method
is based on graph grammars. I t is an adequate method to specify the behaviour of al l
software systems using graphs as internal data structures. We show that a specif ication
can be developed systematical ly by which the adaptabi l i ty of the environment is
increased towards modif icat ion of tools or extension by new tools. Furthermore,
guidelines for the implementat ion can direct ly be derived from this specification.

Key Wolds: integrated tools, graph grammars, programming support environments,
programming-in-the-small , software engineering, specification

I . Introduction

The systematic development of large software systems requires a precise description

of its desired behaviour. Depending on the used method such a specif icat ion of the

behaviour is a more or less formal description on a conceptual level (cf. /SE 76/). In

this paper we introduce a specif ication method based on graph grammars. This method is

shown to be adequate i f graphs are the underlying data structures on the conceptual

level. This means that the behaviour of the software system can be described by graph

transformations.

The method is applied to the specif ication of the tools of an Incremental Programming

Support Hnvironment (IPSHN) (cf. /Na 84/). The task of such an environment is to

fac i l i ta te the development and maintenance of software documents. Software documents

are for example (a piece of) a description of the modularization of a software system,

the source code of a module, a technical documentation, etc.

Furthermore, we show that such an operational specif ication on a conceptual level also

leads to a specif ication in a second sense denoting the result of the design phase in a

software l i fe cycle model. This specif ication determines the decomposition of the

software system into modules and serves as the guideline for the implementat ion phase.

So, the reader may be aware that we talk about two levels of the term 'specif ication'.

IPSEN in part icular has some external characteristics which influence the design of

the user interface.

180

(i) Input and output of software documents is always syntax-directed and incremental ,

i.e. it is done in togicai portions of an underlying syntax definition of a class of

sof tware documents. [ncremental i ty means that syntax-anatysis~ evaluation, or execution is

even possible for part ial programs~ specifications~ etc .

(2) The tools in IPSEN are in tegrated in different senses: Ca) Most of the technical

ac t iv i t ies of the sof tware life cycle are supported, (b) the tools are combining act iv i t ies

which nowadays are regarded to belong to different act ivi t ies in life cycle models, (c)

all tools have a uniform user in terface , i.e. the user is not aware of an internal change

between di f ferent tools.

This incremental and integrated mode implies that the sequential organisation of

ac t iv i t ies in usual l ife cycle models can no longer be sustained. For exampte~ whenever

an increment of the specif icat ion is put in (design phase), checks for the intermodular

connections may immediate ly s tar t (integration phase). Furthermore, this part of the

specif icat ion may now be changed (usually in maintenance phase). Therefore, we have

grouped the act iv i t ies in the following task areas: programming in the large (any

act iv i t ies directed to the level above single modules)~ programming in the small (any

act iv i t ies directed to the level of single modules)~ and~ finally~ projec t organisation and

project m a n a g e m e n t

The incremental and integrated mode yields the following main charac ter i s t ic of

IPSEN. AIt information contained in an external representat ion of a module, specification~

etc . is represented in and can be accessed from a high-level in termedia te data s tructure.

As the conceptual model for this data s t ructure we use graphs. The reason is that

graphs are a uniform model which can be applied to any task area. In particular~ we

have a system graph as in termedia te representat ion of a module decomposition, a module

graph for a single module~ a documentat ion graph for technical documentat ion, e tc .

Structural information is expressed by labeled nodes and labeled edges whereas only

nonstructural information is expressed by additional at tr ibutes. Aspects of editing,

evaluat ing and execut ion of sof tware documents can be t rea ted by this model as further

information for any purpose can be expressed by graphs without leaving the class of

graphs. The uniform model heavily faci l i ta tes the development of integrated tools. Any

kind of modification of these graphs by any tool can be specified by graph grammars.

By listing the internal charac te r i s t ic we have also mentioned the main di f ference

between IPSEN and other programming environments. These environments rather

independently developed similar in tegrated concepts (cf. Gandalf /Ha g2/, Mentor

/DG g0/, Cornell Program Synthesizer /TR 81/7 Pecan /RE g#/). However, using graphs

and not t rees as in termedia te data s tructures and graph grammars as specif icat ion

instrument is specif ic to IPSEN. tn all other approaches t rees are regarded as the main

conceptual model for the in termedia te data s t ructure which yields a lot of problems. A

big part of the s tructural information has to be expressed in at t r ibutes as it cannot be

expressed in trees. This yields partially complex a t t r ibute evaluation algori thms (cf.

/RT 83/). Furthermor% additional and quite different complex internal data s t ructures

are introduced, when extending the environment to new tools (e.g. Pecan /Re g#/).

181

Please note that this is not an argument for avoiding at t r ibutes at all. At t r ibutes are

necessary for expressing values. We pledge for using the same graph model for al l

structural information,

In this paper we mainly deal with the specification of the integrated tool set for

programming in t h e smal l by graph g rammars . Such a tool se t (of. / N a g # /) consis ts o5

e.g. a syntax-a ided edi tor , a tool for s t a t i c analysis of the da ta flow in a module, and

a tool for s t a t i c in s t rumen ta t ion by e.g. the inser t ion of breakpoints . A module is

executed by in te rpre t ing the corresponding module graph. This execut ion is supported by

e.g. tools for run t ime da ta inspect ion resp. for es tabl ishing specif ic env i ronments for the

t e s t of procedures.

Since all tools use the module graph as in ternal da ta s t ruc ture , such a graph has to

represen t a lot of d i f fe ren t tool-specif ic informat ion. Thus, i t yields a complex problem

to specify the behaviour of all tools by one graph g rammar . We show t h a t this

complex i ty can be dec reased by developing an independent graph g r ammar spec i f ica t ion

for each tool in a f i r s t s tep, and by combining these graph g rammars in a second step.

Thereby, this also serves as a guideline for the e f f i c i en t implementa t ion of the d i f fe ren t

tools. Such a spec i f ica t ion engineer ing using graph g rammars is the crucia l point of this

paper. It was applied to all tools for the task a rea programming in t he small . So, the

composi t ion of these spec i f ica t ions is our main concern here~ whereas the sys t ema t i c

deve lopment of a single graph g rammar specif icat ion, namely the syntax-a ided edi tor ,

was descr ibed in /EG 83/.

The proceeding presen ted here can be analogously t r ans fe r r ed to o ther tools and task

a reas in IPSEN. For a speci f ica t ion edi tor this is documented in /LN g#/. The

speci f ica t ion engineer ing is one resul t of the IPSEN project : It is more the deve lopment

of new concepts for the speci f ica t ion and implementa t ion of a programming support

env i ronment which is our main goal than an industrial implementa t ion .

The organisation of the paper is as follows: The next sec t ion descr ibes the

sys temat i c deve lopment oI the module graph based on the syntax of the programming

language Modula-2. (Modula-2 is chosen as the programming language to be supported as

well as imp lemen ta t ion language, because it of fers adequa te concepts for programming

in the small and programming in the large.) In sect ion 3 the modif ica t ion of this module

graph by d i f f e ren t tools is specif ied using graph g rammars . Sect ion # gives an idea, how

this speci f ica t ion has to be changed to get more e f I i c i en t module graph modiI icat ions. In

sect ion 5 i t is shown how this formal speci f ica t ion of the funct ional behaviour d i rec t ly

leads to d i f f e ren t imp lemen ta t ion techniques of the tools. Sect ion 6 summar izes the main

ideas of this paper .

2. The Module Graph

As ment ioned in the in t roduct ion the module graph serves as the common, high- level

da ta s t ruc tu re for all tools of the a rea programming in the small . It is an a b s t r a c t

r ep resen ta t ion which conta ins all tool -speci f ic informat ions . In a module graph all

s t ruc tura l in format ion is expressed by d i f fe ren t labeled nodes and edges, while all

182

non-s t ruc tu ra l in format ion is expressed by addi t ional tool -speci f ic a t t r ibu tes ,

Because of the inc remen ta l mode in IPSEN the module graph i tsel f is a composi t ion

of g raph inc rements . Since module graphs have to r ep resen t modules wr i t t en in Modula-2,

the graph inc remen t s heavi ly depend on the underlying programming language grammar .

Such a g rammar is [~sually designed with respec t to ce r t a in proper t ies , e.g. an e f f i c ien t

de t e rmin i s t i c con t ex t f ree syntax analysis. This causes the g r ammar to conta in a lot of

t echn ica l nonterminals) which do not r e f l e c t logical port ions of the language, tn order to

ge t reasonable graph inc remen t s these t echn ica l nonte rmina ls have to be e l imina ted . We

in t roduce a normal form for such a s t r ing g rammar respect ing the logical port ions of

the syntax corresponding to the increments .

2.f Normal ized Backus-Naur Form (BNF)

Such a s t r ing g r am m ar normal fo rm is c h a r a c t e r i z e d by a disjoint decomposi t ion of

the se t of non te rmina i symbols into t h r ee groups. (We use the BNF-nota t ion to descr ibe

the product ions of a con tex t f ree s t r ing grammar .)

The f i r s t group conta ins the so-cal led a l t e r n a t i v e non te rmina l s and optional nonterminals.
The r igh t -hand side of all product ions with an a l t e rna t ive non te rmina l as l e f t -hand side

consis ts of a ser ies of a l t e r na t i ve s all of which are non te rmina l or t e rmina l symbols (cf.

fig. 2.1), The r igh t -hand side of the product ions corresponding to opt ional non te rmina l s

consis ts of two a l t e rna t ives , the empty word and a nqn te rmina l describing the opt ional

par t .

The second group is bui l t by so-cal!ed compound non te rmina l s descr ibing a pa r t of the

' s t r uc tu re ~ of a module. The r igh t -hand side of the corresponding product ions is one

sequence of non te rmina l and t e rmina l symbols (cf. fig. 2.1). The th i rd group conta ins l is t

r ~ t e r m i n a l s descr ibing non-empty lists of e l emen t s of a c e r t a i n kind (e,g. s t a -

t e m e n t list).

alternative nonterminal :
<statement> ::= <assignment_statement> I <while_statement> I <f°r-statement>I "'"

structure nonterminal :
<whilestatement> ::= whil___ee <expression> d_oo <opt_statement list> en___dd

Fig. 2.1: Nontermina ls and product ions of a normal ized Modula-2 BNF

i t is the task of the IPSEN designer to t r ans form a given programming language

g r ammar into such a normal form. Since the resul t ing g rammar is not uniquely

de te rmined , the g r a m m a r designer indi rec t ly also de t e rmines the form of a module

graph. It is to be seen in the next sect ion, how this g rammar inf luences the module

graph inc rements .

2.__22 Graph i n c r e m e n t Class i f ica t ion

Graph inc remen t s are associa ted with each compound or list non te rmina l and its

corresponding production, respect ively . These compound and l is t graph i n c r e m e n t s consis t

of a root node (labeled by an indicat ion for the corresponding inc remen t) and as many

sons, as non te rmina l s on the r ight -hand side of the product ion or l ist e l emen t s exist . In

183

compound graph increments the edges between the root node and its sons are labeled

additionally according to their semantics (cf. fig. 2.2). In list graph increments the order

of the list elements is expressed by additional edges labeled by 'ord' (cf. fig. 2.3).

T , b > opt state-I ic : loop condition
ment l i s t I b : body

Fig. 2.2: compound graph increment

Since the iexica] s t ructure of ident i f iers or i i tera ls is not interest ing for any IPSEN

too l i t w i l l not be represented in a module graph. Therefore, ident i f ie rs and I i tera ls are

represented by so-cal led s imple graph increments. These increments consist only of a

single node a t t r i bu ted w i th a str ing represent ing a concrete iden t i f i e r or l i t e ra l (cf . f ig.

2.3).

procedure EXAMPLE;

va_._! X : INTEGER;
begin

while X < 0 do

X -= . . .

~ . ~ . e _ ~ L ~ end
decleration identifier i ~ = EXAMPLE end EXAMPLE;

declaration ~variable ~_~variable ~ i d e n t i f i e r ~
list -I "Idecl. listl "lOeclaratTonl 1 l~s~ • - ~ I name = x

b cf

cf

cft cf

ord i

cf

name =
INT~

name = X

value = 0

cf

def

name = x

t • ~ i rh

edge labels:
dl : declaration list

cff il : identifier list
pe le : loop end

lh : left-hand side
: procedure end nan~ EXA~LE

px : procedt%re identifier
rb : right-hand side
td : type definitio~

Fig. 2.3: module graph example

184

Neglec t ing the ord-edges be tween list e l emen t s the composi t ion oi this graph

inc remen t s yields a t r e e which is well-known as the a b s t r a c t syntax t r e e in l i t e r a tu re

(cf. e.g. /DG 80/). It forms the spanning t r ee of the module graph and re f l ec t s the

s t ruc tu ra l in lo rmat ion of a module given by the con tex t f ree syntax, Conc re t e syntax is

not r ep resen ted in the graph as i t expresses no s t ruc tu ra l informat ion . It will be the

task of an unparser to gene ra t e source t ex t including the conc re t e syntax from this

a b s t r a c t r ep resen ta t ion . Figure 2.3 presen ts the module graph r ep re sen t a t i on of an

incomple te Modula-2 procedure .

2.3. Module Graph Suppiements

Besides the re la t ions expressed by the spanning t r ee fu r the r re la t ions be tween the

graph i n c r e m e n t s a re expressed by addi t ional edges. For example , to ease and speed up

c o n t e x t sens i t ive checks a f t e r an i nc remen ta l modi f ica t ion o£ a module we in t roduce

edges be tween the dec la ra t ion of a var iable and its defining (the var iab le is ge t t ing a

new value) and using occur renc ies (the value is read) in the s t a t e m e n t par t . The defining

occur renc ies a re connec ted by a ' de f ' - edge with the declara t ion , whereas the using

occur renc ies a re connec ted by a ' u se ' - edge with the dec la ra t ion (cf. fig. 2.3).

By the composi t ion of graph inc remen t s all al lowed cont ro l flows in a module are

de te rmined . This in fo rmat ion is expressed in a module graph by th r ee d i f f e ren t labeled

edges, the c f -edge for uncondi t ional cont ro l flow, and the c f t - (control flow true) or

c f f - (control flow false) edge if the control flow depends on a condi t ion (cI. fig. 2.3).

O* course, these addi t ional edges in a module graph can be read by all tools

working on the module graph. Besides tha t , all tools may in t roduce fu r the r edges and

nodes to express the i r too l - spec i f i c s t ruc tu ra l informat ions . Examples a re edges to

express the da ta Ilow in a module (se t -use edges), or the t ex tua l order of a

corresponding source t e x t (unparsing edges).

In the o ther p ro jec t s ment ioned in the in t roduct ion the in terna l da ta s t r uc tu r e is a

t r e e so t ha t all these re la t ions have to be expressed by addi t ional a t t r i bu te s . The lack

oi those approaches is t ha t the inheren t s t ruc tu re of a so f tware document is descr ibed

in d i f f e ren t notions, namely t r ee s and a t t r i bu t e s . In IPSEN only one formal notion,

namely graphs, is used to deno te s t ruc tu re . Only non- s t ruc tu ra l in fo rmat ion is expressed

by a t t r i bu te s . Examples are values of l i terals , unparsing informat ion as conc re t e syntax,

s torage addresses of da ta objects , e tc . .

3. Speci f ica t ion of Programming Support Tools

The commands of the a rea p rogramming in the smal l allow a user to edi t a module,

to ana lyze it , to execu t e i t , to ins t rument i t by d i f f e ren t t e s t fac i l i t ies , e tc . These

commands are pa r t of an in t eg ra t ed tool set , i.e. the user is not aware of an in te rna l

change e.g. be tween the edi tor and the i n t e rp re t e r .

The execut ion of such a user command in ternal ly implies the ac t iva t ion oi one tool

ac t ion or for more comfor t ab l e user commands a sequence of tool ac t ions . Since all

tools work on t he same in te rna l da ta s t ruc tu re , t he module graph, each tool ac t ion

185

implies a sequence of module graph modif ications. These modif ications are done

incremental ly. This means that after a modif icat ion of a graph increment in the module

graph by one tool, al l other tool-specif ic informations of this graph increment are

immediately updated, too. So, the term ' incremental ' occurs in two senses: the

incremental behaviour of al l tools at the user interface on one side and the incremental

updating of the module graph on the other side.

In this section we show that an operational specif ication of such an integrated and

incremental ly working tool set can be developed by graph grammars in several steps. A t

f i rst, the modif icat ion of graph increments and the incremental updating of other

tool-specif ic informations has to be specified. Afterwards each tool can be specified

independently by combining these modif ications of the common internal data structure.

A t the end, the specif ication of al l tools can be combined in one common graph

grammar. This graph grammar is the operational specif ication of the integrated tool set.

Such a systematic proceeding reduces the complexity of specifying a large integrated

tool set and, furthermore, increases the adaptabi l i ty towards the modif icat ion of a tool

or the extension by new tools.

Each execution of a tool action may be considered as a module graph transformation

together wi th a corresponding evaluation of tool-specif ic attr ibutes. Therefore, at t r ibuted

graph grammars are a formal method to specify the behaviour of tools. Such at t r ibuted

graph grammars consist of a set of at t r ibuted graph rewr i t ing rules, called productions)

containing an embedding rule and at t r ibute evaluation instructions. The application of

productions is defined by replacing one occurrence of the left-hand side in the host

graph by the right-hand side. The embedding rule defines how the replacing graph has to

be connected to the host graph. At t r ibute evaluation instructions are short Modula-2

code pieces, here usually simple assignments. They have to be executed as part of the

application of an at t r ibuted graph grammar production. For a more formal introduction

of graph grammars the reader is referred to /Na 79/ and /Bu 81/.

The position in a module actually handled by the user is marked by a special cursor

node in the module graph. This implies that each production contains this cursor node on

both sides) and that the occurrence of the left=hand side in the host graph is

determined uniquely and can be found ef f ic ient ly.

The combination of tools resp. the execution of one tool action often implies a

determined order of d i f ferent tool actions resp. of d i f ferent graph modif ications. Such a

determined order of graph grammar production applications can be specified by so-called

control procedures wri t ten l ike Modula-2 procedures the bodies of which contain the

act ivat ion of other control procedures or productions. Therefore, we are using

programmed sequential and at t r ibuted graph grammars.

Let us show now that these graph grammars are an adequate method for specifying

the internal behaviour of programming support tools and their integrat ion in a

programming support environment.

186

The specification consists of three layers, a data structure oriented lowest layer and

two functional layers upon that.

The lowest layer provides all control procedures and productions specifying all elementary

modifications of the module graph. This includes the insertion and deletion of graph

increments, and the modification of additional, tool-specific edges, nodes, and attributes.

The control procedures and productions are gathered up in different graph grammars, for

example Graph_Increment_Productions, Control Structure_Supplements, Source_Text Supple-

ments. Examples of such productions are given in the following figures. The embedding

rule wilt be omitted because i t is the identity.

production inser t_while_s tat~ent_graph increment;

I i 3

~ 2 ~ - - :::] 4
! b t opt_state/

merit_list

Fig. 3.!: production of graph grammar Graph_Increment_Productions

We add an 'end'-node to each graph increment representing a control structure, where

the control flow of that control structure flows together:

productio n insert_while_statement_control flow;

/

/
f /

! 3

ment _listt_~

cf

b 3
~ opt_state-

ment list I

' '-- cf

ie 5

cff

I n

Fig. 3.2: production of graph grammar Control Structure_Supplements

As an example for the graph grammar Source_Text_Supplements we consider the

information needed by an unparser to generate source text from the module graph.

Therefore, the graph increments have to be connected by further edges labeled by 'u'

reflecting the textual order~ and node attributes have to be added containing unparsing

schemes describing the missing concrete syntax and the layout of the corresponding

source text,

187

production insert_while_statementunparsing_supplements;

3

I
::=

-- "tstate
meJ_nst ,I,

u le 5

~[6 end
l.unparser := 'while' 6 3.unparser := blank(8)

lan-~y 4.unparser := blank 'd_o' nl
I -I 5.unparser := nl 'end'

i ic 3
o Pre s on 1

nt I u-4

opt state-]
• eJjist /

l e 5

Fig. 3.3: production of the graph grammar Source Text_Supplements

In the second layer aH tools will be specified by independent graph grammars. These

graph grammars consist of control procedures determining the order of applications of

control procedures and productions of graph grammars of the lowest layer.

As an example we specify the insertion of a while-statement and the actualisations of

other tool-specific informations by a control procedure of the tool Syntax_Aided_Editor.

procedure insert_whilestatement and actualize;
begin,

insert while_statementgraphincrement;
insert_whilestatementcontro]_flow~upplements;
insert_while_statementunparsingsupplements;

end insertjhilestatement and actualize;

Fig. 3.#: control procedure of graph grammar Syntax_Aided_Editor

Such control procedures may also contain checks like identifier_allowed to test whether

a specific graph is contained in the module graph. This enables testing the context

sensitive syntax. For a detailed and systematic description of the development of the

graph grammar Syntax_Aided_Editor we refer to /EG $3/.

The behaviour of all other tools can be specified analogously in separate graph

grammars. Some tools like the Interpreter or Unparser additionally walk through the

module graph. Therefore, such tools use productions of the graph grammar Cursor

Movements to move the cursor node in the module graph.

Since each tool was specified in a separate graph grammar a third layer is needed

for specifying their combination. This means to specify functional dependencies which can

be done by control procedures adequately. As an example we indicate the control

procedure that specifies the execution of a while-statement using a loop-counter. In

control procedures a simple user interface behaviour can be specified, too.

188

proc~Oure execute_while_1oopjithloop_counter;
va___~rnumber: integer;

insert_1oopcounter; (* control procedure of static instrumentation *)
interprete_loop_with~o~eounter(number);
user_message('number of loop executions:', number);

eno exeeute whi!eloopwithloep_counter;

Fig. 3.5: control procedure o5 the graph grammar Tool_Handler

The whole functional composition / decomposition of graph grammars and the distinction

between these three layers is illustrated in figure 3.6.

layers

Tool control
Handler graph

grammar

Syntax_ Static_ Un- Inter-
Aided Instru- :.. parser preter
Edito~ mentation

... tools

Graph_ Data Source Control_ Cursor_ module
Increment Structure-- Text_. Structure_ Move- graph
Productions Suppl. Suppl. Suppl. ments manipu-

lations

Fig. 3.6: the composition of the control graph grammar TooI_Handler

Such a layered approach of a graph grammar specification enforces a siighdy

modification of the usual definition of applicability of graph productions (cf. /Na 79]).
That definition requires that a production or test is only applicable to a host graph iff

the left-hand side is a subgraph el the host graph. But, to enable the sequential

application of the productions of fig. 3.1 - 3.3 in the control procedure of fig. 3.4, we

require that the left-hand side is contained as a partial graph in the host graph. Such a

modification allows each tool a restricted, tool-specific view of the graph increments

and the independent construction of the control procedures in the two functional layers.

Summarizing the approach we can say that the graph grammar Tool_Handler contains

all control procedures and productions el the first and second layer and combines the

control procedures of the second layer such that each command given by a user

corresponds to a control procedure.

This formal composition / decomposition of graph grammars reflects the composition /

decomposition of tools of an integrated tool set. Each command given by a user

corresponds to a control procedure of this graph grammar Tool_Handler.

189

Besides this functional composition / decomposition we a l so have a data-structure

oriented composition / decomposition, namely the composition / decomposition of a

module graph of / into graph increments and tool-specific informations. The reader

should be aware that this composition /decomposition is described by the graph grammar

Tool Handier, too.

4, Condensation of Graph Grammar Productions

The concept of an independent graph grammar specif icat ion for each tool, as

explained in section 3, sometimes yields some ineff iciences in the following sense.

Each control procedure of the graph grammar Tool_Handler was formed by combining the

control procedures of the di f ferent tools. This combination was done by sequentially

calling control procedures of the different tools one af ter the other (cf. fig. 3.5.).

Because of this sequential calling mechanism it often happens that a lot of control

procedures resp. productions and tests to be called in one combining control procedure

change the underlying module graph in the same locality in several, consecutive steps.

Same locality means that a certain graph increment (or a partial graph of this) is

contained in the left-hand side of nearly all productions.

As the implementat ion is strongly related to the operational graph grammar

specif icat ion (cf. section 5), the above mentioned situation causes some ineff ic iences

which unneccessarily increase runtime, i.e. an implementat ion has to find a (partial)

graph increment at any t ime a further tool specific control procedure resp. a further

production is called. Obviously, i t is much more eJ[ficient to search the common part ial

graph only once in the module graph, and then carry out all the modifications described

by the according control procedure.

To real ize this idea, we change our graph grammar specification. This modification is

to ' summarize ' as many productions as possible of one control procedure. It is done in

two systemat ic steps which will be shown now.

In the f i rs t step we summarize a sequence of partial graph replacements into one

part ial graph replacement . This implies that the independent specif icat ion of each tool

can no longer be sustained.

As an example we summarize the two productions ' insert while s ta tement control

flow' (cf. fig.3.2) and ' insert_while_statement_unparsing supplements' (cf. fig.3.3) called by

the control procedure ' inser t_while_statement and actual ize ' (cf. fig.3./~).

The embedding rule informally says that all incoming edges of node l are identically

transferred to node 1 on the right-hand side. All outgoing edges labeled with)u) or ' c f '

of node 1 become outgoing edges of node 5 of the right-hand side. The ~ormalism for

the notation of the embedding rules is borrowed from /NA 79/.

190

I 3

U______J ~~Jmen~ list
2

Fig, Z~.l: example for the f i r s t s tep

l

1 ic 5 Ei~(l;l)
~expression] E : u

u I J r u = (5; RU(1))

~ 4 rcf Rcf(1)) (5;

°ft i I
of I !

I u 5 l.unparser := 'while'
end l 3.unparser 1= biank(8)

.... while 4.unparser := blank 'do' nl
cff 5.unparser := nl 'en.__dd'

The second step is based on the observation that the right-hand side of one

production is identical to the left-hand side of other productions. In this case, the

consecutive application of two productions can again be summarized. This situation often

appears, when an increment is inserted in the module graph. As an example we regard

the production ' insert_white_statement_graph_increment' (cf. f ig. 3.1) and the above

mentioned production (cf. f ig. #.1). By this step here, the right-hand side of the

production in f ig. 3.1 is replaced by the right-hand side of the production in f ig. #. l .

The embedding rule and at t r ibute transformation st i l l hold.

Af ter these two steps, the control procedure inser t_whi les ta tement and actualize now

consists of only one production. The same steps can be done analogously for each such

control procedure.

Unfortunately, the approach has two disadvantages. I f you want to change the

actions of one tool, or extend the programming environment by a new tool you wi l l

have to repeat these steps. (Af ter a single graph grammar for the modif ied or new tool

was developed.)

Furthermore, i t has to be done by hand. The reason is that the condensation of

productions heavily depends on their special shape, ;.e. i t is d i f f icu l t to determine which

edges are inserted by an embedding rule (cf. f ig. #.1), or which edges or nodes have to

be added or omi t ted when mixing two productions (cf. f ig. #. l the nodes marked wi th

'end-while' and 'expression').

Nevertheless, i t is not useless to do these steps, as the advantage of this approach

is that one can derive d i rect ly a more ef f ic ient implementat ion by using the same

formalism as when specifying the di f ferent tools (cf. section 5).

5. Implementa t ion Issues

The graph g r amm ar Tool_Handler is an opera t ional spec i f ica t ion of all tools for

programming in the small . In this chap te r we show how such a spec i f ica t ion directJy

leads to a guideline for the implementa t ion of the tools. This guideline, i.e. a

speci f ica t ion in the second sense, yields a fu r the r decomposi t ion of the programming

191

environment. But now, this is a decomposition into modules to be used by the

programmers writ ing the code of the implementation. We demonstrate that two dif ferent

modularizations can be derived resulting in a more or less ef f ic ient implementation.

5.l The Interpretative Approach

A f irst approach is to interprete the graph grammar by a universal graph grammar

interpreter. However, the control procedures already have the shape of Modula-2

procedures. $o) only the application of graph productions as well as the part ial graph

tests in boolean conditions of control structures must be handled by an interpreter,

whereas the other part of the graph grammar can directly be translated by a Modula=2

compiler. (This) o~ course) was one of the reasons to choose the special notion of

control procedures for programming in graph grammars.)

A rough overview on this pa r t of the IPSEN-specif icat ion is given now in t e r m s of a

module concep t developed in the IPSEN-project , too. Other par ts , as e.g. t he auxil iary

components to rea l ize the sophis t ica ted and hardware independent I/O=handling) are

descr ibed in /ES 8~] in more detai l .

In this module concep t we dist inguish d i f f e ren t types of modules. Da t a type modules

encapsu la te a da ta s t r uc tu r e toge the r wi th i ts operat ions , whereas r u c t i o n modules

summar ize a class of complex algori thms. These a lgor i thms are based on operat ions of

one or more da ta type modules as well as o ther funct ion modules. We say) module A is

usable in module B, if module B imports explici t ly resources of the expor t i n t e r f ace of

A. For fu r the r deta i ls of this concep t we re fe r to /LN gS/.

The da ta s t ruc tu r e Ygraph' toge the r with i ts operat ions is encapsu la ted in the da ta

type module Graph. It expor ts resources like)Insert node with label x and a t t r i b u t e y))

)Replace edge a by edge b), e tc . . In rea l i ty this module is a r a t h e r big subsystem

conta ining a graph storage) i.e. a system to store) r e t r i eve and modify a rb i t r a ry graphs

(cf. /BL g~l).

A second da ta type module GraGra_Product ions provides a s to rage for a rb i t r a ry graph

g r ammar product ions and par t ia l graph tes ts , in our case) all product ions and t e s t s of

the lowest layer of the graph g rammar Tool Handler are s tored.
u

A funct ion module GraGra_Produc t ion_In te rp re te r exports resources to apply graph

g r ammar product ions and tes ts . To implement these resources this funct ion module uses

the two da ta types modules to read a ce r t a in product ion or t e s t and to f ind the

occur rence of a pa r t i a l graph as well as to replace it.

The cont ro l procedures a re implemented by a fu r the r funct ion module Graph_Modi-

f icat ion, Its imp lemen ta t ion is given by the Modula-2 par t of the cont ro l procedures.

In t e rp re t a t i on of graph g rammar product ions and t e s t s is done by use of resources of

the module GraGra Produc t ion_In te rpre te r .

According to the division in d i f f e ren t graph g rammars for each tool and a corresponding

graph g r a m m a r in t he highest layer this funct ion modt!le can be subdivided in d i f f e ren t

funct ion modules for each tool and a coordinat ing funct ion module upon them.

192

Analogously to the decreased cornpiexity in the graph g rammar spec i f ica t ion th is division

yields a more elucid modular iza t ion.

Furthermore~ all these _function modules use a subsystem called User In te r face to

rea l i ze the I /O-opera t ions con ta ined in the cont ro l procedures.

By this model of a graph g r am m ar i n t e rp re t e r we get two main advantages : Af te r

having specif ied the d i f f e ren t tools, one has the possibili ty of quickly t es t ing these tools

by using the i n t e rp r e t e r (rapid prototyping). Fu r the rmor% this spec i f ica t ion can easily be

changed by only changing one graph g rammar , So, in this rea l iza t ion s t r a t egy the s t ress

is layed upon adaptab i l i ty and not on e f f ic iency on a ce r t a in machine.

5.2 The Compi la t ive Approach

Now we renounce the concep t of in te rp re t ing the product ions in order to ge t a more

e f f i c i en t implemen ta t ion , Of course~ i t is a s tep towards inflexibil i ty. So this s tep should

only be done when the t e s t phase is f inished and the env i ronmen t has to be tuned up,

What we do now is to implement any application of a production or graph test

d i rect ly as a (Modula-2) program. Here, we do not search the left-hand side in the host

graph by a part ia l graph test and then replace i t by a right-hand side (both done by

the interpreter). Instead, we di rect ly ' implement ' a graph rewr i t ing step by inserting

/delet ing the nodes and edges which are the result of the application of a rule. Here~

we also introduce the knowledge of the underlying class of graphs (in our case the

module graph). Please note that the actual position of modif icat ion is internal ly indicated

by the cursor node.

Such a procedure implementing the application of a special production or test uses

the resources of the module Graph. Furthermore, the one to one correspondence between

a production and a procedure need not to be sustained. Graph algorithms~ namely special

par t ia l graph t e s t s or r ep l acem en t s which are used for the appl ica t ion of many rules of

the given graph g r am m ar can be wr i t t en as procedures and can be cal led in any

appl ica t ion of the d i f f e ren t rules.

Of course, th is approach changes the design of IPSEN. The two modules

GraGra Product ions and GraGra_Produc t ion In t e rp re t e r are replaced by a func t ion module,

Its resources are procedure cal ls for the d i f f e ren t product ions of the given graph

g r ammar which is again in our case the lowest layer of Tool_Handler. The appl ica t ion of

d i f f e ren t product ions is imp lemen ted di rect ly using the e l emen ta ry graph opera t ions of

the module Graph,

6. Conclusions

We have indica ted t h a t graphs g rammars are a wel l -sui ted speci f ica t ion method to

descr ibe the in te rna l behaviour of an in t eg ra t ed se t of programming support tools

working on graphs as h igh- level da ta s t ruc tures . As the resul t ing graph g r ammar is an

opera t ional spec i f ica t ion which means programming on an ' a b s t r a c t level 's we can use

sof tware engineer ing methods like modular iza t ion and in tegra t ion to decrease the

193

complexity of such an 'abstract) program. So) the specification of the tools can be done

rather independently which makes the specification elucid and flexible both needed for

modifying or adding tools. The complex problem of specifying a lot of tools on a quite

complicated graph structure is decreased by a layered approach to the definition of such

a graph grammar. The specification is also a guideline for the implementation of such

an environment) i.e. it directly leads to a main part of the result of the design phase

(also called specification).

The main topics of IPSEN are the development of such conceptual ideas as well as

the implementation of a programming support environment on a minicomputer. Up to

now, the graph storage (/BL g$/) and parts o~ the user interface (especially a window

manager) are implemented. The graph grammar specification for the syntax=aided editor

and most parts of the other tools for programming in the small (Interpreter)

Static_Instrumentation, Unparser) are under elaboration and will be implemented soon in

a prototype version of IPSEN.

Acknowledgements.

The authors are very indebted to M. Nagt and C . Lewerentz for many f ru i t fu l

discussions.

References

/BL $#/ Brandes, Th./Lewerentz, C.: GRAS: A Non-standard Data Base System within a
Software Development Environment) Tech. Rep. OSM - llg, Univ. of Osnabrueck

/Bu gl] Bunke) H.: Attributed Programmed Graph Grammars as a Tool for Image
Interpretation) Purdue University) Techn. Report TR-EE=81-22

/DG 80/ Donzeau-Gouge, M. et.al.: Programming Environments Based on Structured
Editors - The MENTOR Experience, Techn. Report 26, INRIA, France

lEG g3/ Engels, G./GalI, R./Nagl) M./Sch~ifer, W. : Software Specification using Graph
Grammars) Computing 31) 317-3/~6

lEg gO/ Engels, G./ Schgfer, W.: The Design of an Adaptive and Portable Programming
Support Environment) submitted for publication

]Ha g2] Habermann, N. et.al.: The Second Compendium of GANDALF Documentation)
Techn. Report) May 1982) Dept. of Computer Science) Carnegie-Mellon
University, Pittsburgh

]LN gO] Lewerentz, C.] Nagt, M.: A Formal Specification Language for Software Systems
Defined by Graph Grammars) in U. Pape (Ed.): Proceedings WG'84 on
'Graphtheoretic Concepts in Computer Science', Linz: Trauner Verlag

]LN 85] Lewerentz, C./Nagl, M.: Incremental Programming in the Large: Syntax-aided
Specification Editing, Integration and Maintenance) to appear Proc. 18th Hawaii
International Conference on System Sciences

]Na 79] Nagl, M.: Graph-Grammatiken - Theori% Anwendungen) Implementierung, Wiesba-
den: Vieweg=Verlag

/Na 8t~/ Nagl, M.: An Incremental Programming Support Environment, to appear in
Computer Physics Communications) North-Holland

/Re 84/ Reiss, St.: PECAN: Program Development Systems That Support Multiple Views)
in Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh

/RT 83/ Reps, T./ Teitelbaum, T.: Incremental Context-Dependent Analysis for Language-
Based Editors) ACM TOPLAS, Vol. 5, No. 3) 4~9-477

ISF 76/ Schnupp, P./ Floyd) Ch.: Software Programmentwicklung und Projektor-
ganisation, Berlin: Walter de Gruyter

]TR gl] Teitelbaum) T./Reps) T.: The Cornell Prograrnm Synthesizer - A syntax-directed
Programming Environment) CACM 24 , 9 , 563-573

