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Abstract 

We introduce a method to specify the functional behaviour of software tools in an 
incremental and integrated software development environment. This specif ication method 
is based on graph grammars. I t  is an adequate method to specify the behaviour of al l  
software systems using graphs as internal data structures. We show that a specif ication 
can be developed systematical ly by which the adaptabi l i ty of the environment is 
increased towards modif icat ion of tools or extension by new tools. Furthermore, 
guidelines for the implementat ion can direct ly be derived from this specification. 

Key Wolds: integrated tools, graph grammars, programming support environments, 
programming-in-the-small ,  software engineering, specification 

I .  Introduction 

The systematic development of large software systems requires a precise description 

of its desired behaviour. Depending on the used method such a specif icat ion of the 

behaviour is a more or less formal description on a conceptual level (cf. /SE 76/). In 

this paper we introduce a specif ication method based on graph grammars. This method is 

shown to be adequate i f  graphs are the underlying data structures on the conceptual 

level. This means that the behaviour of the software system can be described by graph 

transformations. 

The method is applied to the specif ication of the tools of an Incremental Programming 

Support Hnvironment (IPSHN) (cf. /Na 84/). The task of such an environment is to 

fac i l i ta te the development and maintenance of software documents. Software documents 

are for example (a piece of) a description of the modularization of a software system, 

the source code of a module, a technical documentation, etc. 

Furthermore, we show that such an operational specif ication on a conceptual level also 

leads to a specif ication in a second sense denoting the result of the design phase in a 

software l i fe cycle model. This specif ication determines the decomposition of the 

software system into modules and serves as the guideline for the implementat ion phase. 

So, the reader may be aware that we talk about two levels of the term 'specif ication'.  

IPSEN in part icular has some external characteristics which influence the design of 

the user interface. 
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(i) Input and output of software documents is always syntax-directed and incremental ,  

i.e. it is done in togicai portions of an underlying syntax definition of a class of 

sof tware documents.  [ncremental i ty  means that  syntax-anatysis~ evaluation, or execution is 

even possible for part ial  programs~ specifications~ etc .  

(2) The tools in IPSEN are in tegrated in different  senses: Ca) Most of the technical  

ac t iv i t ies  of the sof tware life cycle  are  supported, (b) the tools are  combining act iv i t ies  

which nowadays are regarded to belong to different  act ivi t ies  in life cycle models, (c) 

all tools have a uniform user in terface ,  i.e. the user is not aware of an internal change 

between di f ferent  tools. 

This incremental  and integrated mode implies that  the sequential  organisation of 

ac t iv i t ies  in usual l ife cycle models can no longer be sustained. For exampte~ whenever 

an increment  of the specif icat ion is put in (design phase), checks for the intermodular 

connections may immediate ly  s tar t  (integration phase). Furthermore,  this part of the 

specif icat ion may now be changed (usually in maintenance phase). Therefore,  we have 

grouped the act iv i t ies  in the following task areas: programming in the  large (any 

act iv i t ies  directed to the level above single modules)~ programming in the  small  (any 

act iv i t ies  directed to the level of single modules)~ and~ finally~ projec t  organisation and 

project  m a n a g e m e n t  

The incremental  and integrated mode yields the following main charac ter i s t ic  of 

IPSEN. AIt information contained in an external  representat ion of a module, specification~ 

etc .  is represented in and can be accessed from a high-level in termedia te  data s tructure.  

As the conceptual  model for this data s t ructure  we use graphs. The reason is that  

graphs are  a uniform model which can be applied to any task area. In particular~ we 

have a system graph as in termedia te  representat ion of a module decomposition, a module 

graph for a single module~ a documentat ion graph for technical  documentat ion,  e tc .  

Structural  information is expressed by labeled nodes and labeled edges whereas only 

nonstructural information is expressed by additional at tr ibutes.  Aspects of editing, 

evaluat ing and execut ion of sof tware documents can be t rea ted  by this model as further 

information for any purpose can be expressed by graphs without leaving the class of 

graphs. The uniform model heavily faci l i ta tes  the development  of integrated tools. Any 

kind of modification of these graphs by any tool can be specified by graph grammars.  

By listing the internal charac te r i s t ic  we have also mentioned the main di f ference 

between IPSEN and other  programming environments.  These environments rather 

independently developed similar in tegrated concepts  (cf. Gandalf /Ha g2/, Mentor 

/DG g0/, Cornell  Program Synthesizer /TR 81/7 Pecan /RE g#/). However, using graphs 

and not t rees  as in termedia te  data s tructures and graph grammars as specif icat ion 

instrument is specif ic  to IPSEN. tn all other approaches t rees  are  regarded as the main 

conceptual  model for the in termedia te  data s t ructure which yields a lot of problems. A 

big part of the s tructural  information has to be expressed in at t r ibutes  as it cannot be 

expressed in trees.  This yields partially complex a t t r ibute  evaluation algori thms (cf. 

/RT 83/). Furthermor% additional and quite different  complex internal data  s t ructures  

are introduced, when extending the environment to new tools (e.g. Pecan /Re  g#/). 
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Please note that this is not an argument for avoiding at t r ibutes at  all. At t r ibutes are 

necessary for expressing values. We pledge for using the same graph model for al l  

structural information, 

In this paper we mainly deal with the specification of the integrated tool  set for 

programming in t h e  smal l  by graph g rammars .  Such a tool se t  (of. / N a g # / )  consis ts  o5 

e.g. a syntax-a ided edi tor ,  a tool for s t a t i c  analysis of the  da ta  flow in a module,  and 

a tool for s t a t i c  in s t rumen ta t ion  by e.g. the  inser t ion of breakpoints .  A module is 

executed  by in te rpre t ing  the  corresponding module graph. This execut ion is supported by 

e.g. tools for run t ime  da ta  inspect ion resp. for es tabl ishing specif ic  env i ronments  for the  

t e s t  of procedures.  

Since all tools use the  module graph as in ternal  da ta  s t ruc ture ,  such a graph has to 

represen t  a lot of d i f fe ren t  tool-specif ic  informat ion.  Thus, i t  yields a complex problem 

to specify the  behaviour  of all  tools by one graph g rammar .  We show t h a t  this 

complex i ty  can be dec reased  by developing an independent  graph g r ammar  spec i f ica t ion  

for each  tool in a f i r s t  s tep,  and by combining these  graph g rammars  in a second step.  

Thereby,  this  also serves  as a guideline for the  e f f i c i en t  implementa t ion  of the  d i f fe ren t  

tools. Such a spec i f ica t ion  engineer ing using graph g rammars  is the  crucia l  point  of this  

paper.  It was applied to all tools for the task a rea  programming in t he  small .  So, the  

composi t ion of these  spec i f ica t ions  is our main concern  here~ whereas  the  sys t ema t i c  

deve lopment  of a single graph g rammar  specif icat ion,  namely the  syntax-a ided edi tor ,  

was descr ibed in /EG 83/. 

The proceeding presen ted  here  can be analogously t r ans fe r r ed  to o ther  tools and task 

a reas  in IPSEN. For a speci f ica t ion  edi tor  this  is documented  in /LN g#/.  The 

speci f ica t ion  engineer ing is one resul t  of the  IPSEN project :  It is more  the  deve lopment  

of new concepts  for the  speci f ica t ion  and implementa t ion  of a programming support  

env i ronment  which is our main goal than an industrial  implementa t ion .  

The organisation of the  paper  is as follows: The next  sec t ion  descr ibes  the  

sys temat i c  deve lopment  oI the  module graph based on the  syntax of the  programming 

language Modula-2. (Modula-2 is chosen as the programming language to be supported as 

well as imp lemen ta t ion  language, because it  of fers  adequa te  concepts  for programming 

in the  small  and programming in the  large.) In sect ion 3 the  modif ica t ion of this  module 

graph by d i f f e ren t  tools is specif ied using graph g rammars .  Sect ion # gives an idea, how 

this  speci f ica t ion has to  be changed to get  more e f I i c i en t  module graph modiI icat ions.  In 

sect ion 5 i t  is shown how this  formal  speci f ica t ion of the  funct ional  behaviour  d i rec t ly  

leads to d i f f e ren t  imp lemen ta t ion  techniques  of the  tools. Sect ion 6 summar izes  the  main 

ideas of this  paper .  

2. The Module Graph 

As ment ioned  in the  in t roduct ion  the  module graph serves  as the  common,  high- level  

da ta  s t ruc tu re  for all tools of the  a rea  programming in the  small .  It is an a b s t r a c t  

r ep resen ta t ion  which conta ins  all tool -speci f ic  informat ions .  In a module graph all 

s t ruc tura l  in format ion  is expressed by d i f fe ren t  labeled nodes and edges,  while all 
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non-s t ruc tu ra l  in format ion  is expressed by addi t ional  tool -speci f ic  a t t r ibu tes ,  

Because of the  inc remen ta l  mode in IPSEN the  module graph i tsel f  is a composi t ion 

of g raph  inc rements .  Since module graphs have  to r ep resen t  modules wr i t t en  in Modula-2, 

the  graph inc remen t s  heavi ly depend on the  underlying programming language grammar .  

Such a g rammar  is [~sually designed with respec t  to ce r t a in  proper t ies ,  e.g. an e f f i c ien t  

de t e rmin i s t i c  con t ex t  f ree  syntax analysis.  This causes  the  g r ammar  to conta in  a lot of 

t echn ica l  nonterminals )  which do not  r e f l e c t  logical port ions of the  language,  tn order  to  

ge t  reasonable  graph inc remen t s  these  t echn ica l  nonte rmina ls  have to be e l imina ted .  We 

in t roduce a normal  form for such a s t r ing g rammar  respect ing  the  logical port ions of 

the  syntax corresponding to the  increments .  

2.f Normal ized Backus-Naur  Form (BNF) 

Such a s t r ing  g r am m ar  normal  fo rm is c h a r a c t e r i z e d  by a disjoint  decomposi t ion of 

the  se t  of non te rmina i  symbols into  t h r ee  groups. (We use the  BNF-nota t ion  to descr ibe  

the  product ions  of a con tex t  f ree  s t r ing grammar . )  

The f i r s t  group conta ins  the  so-cal led a l t e r n a t i v e  non te rmina l s  and optional nonterminals. 
The r igh t -hand  side of all  product ions  with an a l t e rna t ive  non te rmina l  as l e f t -hand  side 

consis ts  of a ser ies  of a l t e r na t i ve s  all  of which are  non te rmina l  or t e rmina l  symbols (cf. 

fig. 2.1), The r igh t -hand  side of the  product ions corresponding to opt ional  non te rmina l s  

consis ts  of two a l t e rna t ives ,  the  empty  word and a nqn te rmina l  describing the  opt ional  

par t .  

The second group is bui l t  by so-cal!ed compound non te rmina l s  descr ibing a pa r t  of the  

' s t r uc tu re  ~ of a module.  The r igh t -hand  side of the  corresponding product ions is one 

sequence of non te rmina l  and t e rmina l  symbols (cf. fig. 2.1). The th i rd  group conta ins  l is t  

r ~ t e r m i n a l s  descr ibing non-empty  lists of e l emen t s  of a c e r t a i n  kind (e,g. s t a -  

t e m e n t  list). 

alternative nonterminal : 
<statement> ::= <assignment_statement> I <while_statement> I <f°r-statement>I "'" 

structure nonterminal : 
<whilestatement> ::= whil___ee <expression> d_oo <opt_statement list> en___dd 

Fig. 2.1: Nontermina ls  and product ions  of a normal ized  Modula-2 BNF 

i t  is the  task of the  IPSEN designer to t r ans form a given programming language 

g r ammar  into such a normal  form. Since the  resul t ing g rammar  is not  uniquely 

de te rmined ,  the  g r a m m a r  designer  indi rec t ly  also de t e rmines  the  form of a module 

graph. It is to  be seen in the  next  sect ion,  how this  g rammar  inf luences  the  module 

graph inc rements .  

2.__22 Graph i n c r e m e n t  Class i f ica t ion  

Graph inc remen t s  are  associa ted  with each compound or list non te rmina l  and its 

corresponding production,  respect ively .  These compound and l is t  graph i n c r e m e n t s  consis t  

of a root  node ( labeled by an indicat ion for the  corresponding inc remen t )  and as many 

sons, as non te rmina l s  on the  r ight -hand side of the  product ion or l ist  e l emen t s  exist .  In 
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compound graph increments the edges between the root node and its sons are labeled 

additionally according to their semantics (cf. fig. 2.2). In list graph increments the order 

of the list elements is expressed by additional edges labeled by 'ord' (cf. fig. 2.3). 

T , b > opt state-I ic : loop condition 
ment l i s t  I b : body 

Fig. 2.2: compound graph increment  

Since the iexica]  s t ructure of  ident i f iers  or i i tera ls  is not interest ing for  any IPSEN 

too l  i t  w i l l  not be represented in a module graph. Therefore, ident i f ie rs  and I i tera ls are 

represented by so-cal led s imple graph increments.  These increments consist only of a 

single node a t t r i bu ted  w i th  a str ing represent ing a concrete iden t i f i e r  or l i t e ra l  (cf .  f ig.  

2.3). 

procedure EXAMPLE; 

va_._! X : INTEGER; 
begin 

while X < 0 do 

X -= . . .  

~ . ~ . e _  ~ L ~  end 
decleration identifier i ~  = EXAMPLE end EXAMPLE; 

declaration ~variable ~_~variable ~ i d e n t i f i e r ~  
list -I "Idecl. listl "lOeclaratTonl 1 l~s~ • - ~ ......... I name = x 

b cf 

cf 

cft cf 

ord i 

cf 

name = 
INT~ 

name = X 

value = 0 

cf 

def 

name = x 

t • ~ i rh 

edge labels: 
dl : declaration list 

cff il : identifier list 
pe le : loop end 

lh : left-hand side 
: procedure end nan~ EXA~LE 

px : procedt%re identifier 
rb : right-hand side 
td : type definitio~ 

Fig. 2.3: module graph example 
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Neglec t ing  the  ord-edges  be tween  list e l emen t s  the  composi t ion oi this  graph 

inc remen t s  yields a t r e e  which is well-known as the  a b s t r a c t  syntax t r e e  in l i t e r a tu re  

(cf. e.g. /DG 80/). It forms the  spanning t r ee  of the  module graph and re f l ec t s  the  

s t ruc tu ra l  in lo rmat ion  of a module given by the  con tex t  f ree  syntax,  Conc re t e  syntax is 

not  r ep resen ted  in the  graph as i t  expresses  no s t ruc tu ra l  informat ion .  It will be the  

task of an unparser  to  gene ra t e  source t ex t  including the  conc re t e  syntax  from this  

a b s t r a c t  r ep resen ta t ion .  Figure 2.3 presen ts  the  module graph r ep re sen t a t i on  of an 

incomple te  Modula-2 procedure .  

2.3. Module Graph Suppiements  

Besides the  re la t ions  expressed by the  spanning t r ee  fu r the r  re la t ions  be tween  the  

graph i n c r e m e n t s  a re  expressed by addi t ional  edges.  For example ,  to  ease  and speed up 

c o n t e x t  sens i t ive  checks  a f t e r  an i nc remen ta l  modi f ica t ion  o£ a module we in t roduce 

edges be tween  the  dec la ra t ion  of a var iable  and its defining ( the var iab le  is ge t t ing  a 

new value) and using occur renc ies  ( the value is read) in the  s t a t e m e n t  par t .  The defining 

occur renc ies  a re  connec ted  by a ' de f ' - edge  with the  declara t ion ,  whereas  the  using 

occur renc ies  a re  connec ted  by a ' u se ' - edge  with the  dec la ra t ion  (cf. fig. 2.3). 

By the  composi t ion  of graph inc remen t s  all al lowed cont ro l  flows in a module are  

de te rmined .  This in fo rmat ion  is expressed in a module graph by th r ee  d i f f e ren t  labeled 

edges,  the  c f -edge  for  uncondi t ional  cont ro l  flow, and the  c f t -  (control  flow true)  or 

c f f -  (control  flow false) edge if the  control  flow depends on a condi t ion (cI. fig. 2.3). 

O* course,  these  addi t ional  edges in a module graph can  be read by all tools 

working on the  module graph. Besides tha t ,  all tools may in t roduce fu r the r  edges and 

nodes to  express  the i r  too l - spec i f i c  s t ruc tu ra l  informat ions .  Examples  a re  edges to 

express  the  da ta  Ilow in a module (se t -use  edges), or the  t ex tua l  order of a 

corresponding source  t e x t  (unparsing edges). 

In the  o ther  p ro jec t s  ment ioned  in the  in t roduct ion  the  in terna l  da ta  s t r uc tu r e  is a 

t r e e  so t ha t  all these  re la t ions  have to be expressed by addi t ional  a t t r i bu te s .  The lack 

oi those  approaches  is t ha t  the  inheren t  s t ruc tu re  of a so f tware  document  is descr ibed 

in d i f f e ren t  notions,  namely  t r ee s  and a t t r i bu t e s .  In IPSEN only one formal  notion,  

namely  graphs,  is used to deno te  s t ruc tu re .  Only non- s t ruc tu ra l  in fo rmat ion  is expressed 

by a t t r i bu te s .  Examples are  values of l i terals ,  unparsing informat ion  as conc re t e  syntax,  

s torage  addresses  of da ta  objects ,  e tc . .  

3. Speci f ica t ion  of Programming  Support Tools 

The commands  of the  a rea  p rogramming  in the  smal l  allow a user to  edi t  a module,  

to ana lyze  it ,  to  execu t e  i t ,  to  ins t rument  i t  by d i f f e ren t  t e s t  fac i l i t ies ,  e tc .  These 

commands  are  pa r t  of an in t eg ra t ed  tool set ,  i.e. the  user is not  aware  of an in te rna l  

change  e.g. be tween  the  edi tor  and the  i n t e rp re t e r .  

The execut ion  of such a user command  in ternal ly  implies the  ac t iva t ion  oi one tool 

ac t ion  or for more  comfor t ab l e  user commands  a sequence of tool  ac t ions .  Since all  

tools work on t he  same in te rna l  da ta  s t ruc tu re ,  t he  module graph, each  tool  ac t ion  
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implies a sequence of module graph modif ications. These modif ications are done 

incremental ly. This means that after a modif icat ion of a graph increment in the module 

graph by one tool, al l  other tool-specif ic informations of this graph increment are 

immediately updated, too. So, the term ' incremental '  occurs in two senses: the 

incremental behaviour of al l  tools at the user interface on one side and the incremental 

updating of the module graph on the other side. 

In this section we show that an operational specif ication of such an integrated and 

incremental ly working tool set can be developed by graph grammars in several steps. A t  

f i rst,  the modif icat ion of graph increments and the incremental updating of other 

tool-specif ic informations has to be specified. Afterwards each tool can be specified 

independently by combining these modif ications of the common internal data structure. 

A t  the end, the specif ication of al l  tools can be combined in one common graph 

grammar. This graph grammar is the operational specif ication of the integrated tool set. 

Such a systematic proceeding reduces the complexity of specifying a large integrated 

tool set and, furthermore, increases the adaptabi l i ty towards the modif icat ion of a tool 

or the extension by new tools. 

Each execution of a tool action may be considered as a module graph transformation 

together wi th a corresponding evaluation of tool-specif ic attr ibutes. Therefore, at t r ibuted 

graph grammars are a formal method to specify the behaviour of tools. Such at t r ibuted 

graph grammars consist of a set of at t r ibuted graph rewr i t ing rules, called productions) 

containing an embedding rule and at t r ibute evaluation instructions. The application of 

productions is defined by replacing one occurrence of the left-hand side in the host 

graph by the right-hand side. The embedding rule defines how the replacing graph has to 

be connected to the host graph. At t r ibute evaluation instructions are short Modula-2 

code pieces, here usually simple assignments. They have to be executed as part of the 

application of an at t r ibuted graph grammar production. For a more formal introduction 

of graph grammars the reader is referred to /Na 79/ and /Bu 81/. 

The position in a module actually handled by the user is marked by a special cursor 

node in the module graph. This implies that each production contains this cursor node on 

both sides) and that the occurrence of the left=hand side in the host graph is 

determined uniquely and can be found ef f ic ient ly.  

The combination of tools resp. the execution of one tool action often implies a 

determined order of d i f ferent tool actions resp. of d i f ferent graph modif ications. Such a 

determined order of graph grammar production applications can be specified by so-called 

control procedures wri t ten l ike Modula-2 procedures the bodies of which contain the 

act ivat ion of other control procedures or productions. Therefore, we are using 

programmed sequential and at t r ibuted graph grammars. 

Let  us show now that these graph grammars are an adequate method for specifying 

the internal behaviour of programming support tools and their integrat ion in a 

programming support environment. 
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The specification consists of three layers, a data structure oriented lowest layer and 

two functional layers upon that. 

The lowest layer provides all control procedures and productions specifying all elementary 

modifications of the module graph. This includes the insertion and deletion of graph 

increments, and the modification of additional, tool-specific edges, nodes, and attributes. 

The control procedures and productions are gathered up in different graph grammars, for 

example Graph_Increment_Productions, Control Structure_Supplements, Source_Text Supple- 

ments. Examples of such productions are given in the following figures. The embedding 

rule wilt be omitted because i t  is the identity. 

production inser t_while_s tat~ent_graph increment; 

I i 3 

~ 2  ~ - -  ::: ] 4 
! b t opt_state/ 

merit_list 

Fig. 3.!: production of graph grammar Graph_Increment_Productions 

We add an 'end'-node to each graph increment representing a control structure, where 

the control flow of that control structure flows together: 

productio n insert_while_statement_control flow; 

/ 

/ 
f / 

! 3 

ment _listt_~ 

cf 

b 3 
~ opt_state- 

ment list I 

' '-- cf 

ie 5 

cff 

I n 

Fig. 3.2: production of graph grammar Control Structure_Supplements 

As an example for the graph grammar Source_Text_Supplements we consider the 

information needed by an unparser to generate source text from the module graph. 

Therefore, the graph increments have to be connected by further edges labeled by 'u' 

reflecting the textual order~ and node attributes have to be added containing unparsing 

schemes describing the missing concrete syntax and the layout of the corresponding 

source text, 
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production insert_while_statementunparsing_supplements; 

3 

I 
::= 

-- "tstate 
meJ_nst ,I, 

u le 5 

~[6 end 
l.unparser := 'while' 6 3.unparser := blank(8) 

lan-~y 4.unparser := blank 'd_o' nl 
I -I 5.unparser := nl 'end' 

i ic 3 
o Pre s on 1 

nt I u-4 

opt state- ] 
• eJjist / 

l e  5 

Fig. 3.3: production of the graph grammar Source Text_Supplements 

In the second layer aH tools will be specified by independent graph grammars. These 

graph grammars consist of control procedures determining the order of applications of 

control procedures and productions of graph grammars of the lowest layer. 

As an example we specify the insertion of a while-statement and the actualisations of 

other tool-specific informations by a control procedure of the tool Syntax_Aided_Editor. 

procedure insert_whilestatement and actualize; 
begin, 

insert while_statementgraphincrement; 
insert_whilestatementcontro]_flow~upplements; 
insert_while_statementunparsingsupplements; 

end insertjhilestatement and actualize; 

Fig. 3.#: control procedure of graph grammar Syntax_Aided_Editor 

Such control procedures may also contain checks like identifier_allowed to test whether 

a specific graph is contained in the module graph. This enables testing the context 

sensitive syntax. For a detailed and systematic description of the development of the 

graph grammar Syntax_Aided_Editor we refer to /EG $3/. 

The behaviour of all other tools can be specified analogously in separate graph 

grammars. Some tools like the Interpreter or Unparser additionally walk through the 

module graph. Therefore, such tools use productions of the graph grammar Cursor 

Movements to move the cursor node in the module graph. 

Since each tool was specified in a separate graph grammar a third layer is needed 

for specifying their combination. This means to specify functional dependencies which can 

be done by control procedures adequately. As an example we indicate the control 

procedure that specifies the execution of a while-statement using a loop-counter. In 

control procedures a simple user interface behaviour can be specified, too. 
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proc~Oure execute_while_1oopjithloop_counter; 
va___~rnumber: integer; 

insert_1oopcounter; (* control procedure of static instrumentation *) 
interprete_loop_with~o~eounter( number ); 
user_message( 'number of loop executions:', number ); 

eno exeeute whi!eloopwithloep_counter; 

Fig. 3.5: control procedure o5 the graph grammar Tool_Handler 

The whole functional composition / decomposition of graph grammars and the distinction 

between these three layers is illustrated in figure 3.6. 

layers 

Tool control 
Handler graph 

grammar 

Syntax_ Static_ Un- Inter- 
Aided Instru- :.. parser preter 
Edito~ mentation 

... tools 

Graph_ Data Source Control_ Cursor_ module 
Increment Structure-- Text_. Structure_ Move- graph 
Productions Suppl. Suppl. Suppl. ments manipu- 

lations 

Fig. 3.6: the composition of the control graph grammar TooI_Handler 

Such a layered approach of a graph grammar specification enforces a siighdy 

modification of the usual definition of applicability of graph productions (cf. /Na 79]). 
That definition requires that a production or test is only applicable to a host graph iff 

the left-hand side is a subgraph el the host graph. But, to enable the sequential 

application of the productions of fig. 3.1 - 3.3 in the control procedure of fig. 3.4, we 

require that the left-hand side is contained as a partial graph in the host graph. Such a 

modification allows each tool a restricted, tool-specific view of the graph increments 

and the independent construction of the control procedures in the two functional layers. 

Summarizing the approach we can say that the graph grammar Tool_Handler contains 

all control procedures and productions el the first and second layer and combines the 

control procedures of the second layer such that each command given by a user 

corresponds to a control procedure. 

This formal composition / decomposition of graph grammars reflects the composition / 

decomposition of tools of an integrated tool set. Each command given by a user 

corresponds to a control procedure of this graph grammar Tool_Handler. 
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Besides this functional composition / decomposition we a l so  have a data-structure 

oriented composition / decomposition, namely the composition / decomposition of a 

module graph of / into graph increments and tool-specific informations. The reader 

should be aware that this composition /decomposition is described by the graph grammar 

Tool Handier, too. 

4, Condensation of Graph Grammar Productions 

The concept  of an independent graph grammar specif icat ion for each tool, as 

explained in section 3, sometimes yields some ineff iciences in the following sense. 

Each control procedure of the graph grammar Tool_Handler was formed by combining the 

control procedures of the di f ferent  tools. This combination was done by sequentially 

calling control procedures of the different  tools one af ter  the other (cf. fig. 3.5.). 

Because of this sequential calling mechanism it often happens that  a lot of control 

procedures resp. productions and tests  to be called in one combining control procedure 

change the underlying module graph in the same locality in several,  consecutive steps. 

Same locality means that  a certain graph increment  (or a partial graph of this) is 

contained in the left-hand side of nearly all productions. 

As the implementat ion is strongly related to the operational graph grammar 

specif icat ion (cf. section 5), the above mentioned situation causes some ineff ic iences  

which unneccessarily increase runtime, i.e. an implementat ion has to find a (partial) 

graph increment  at any t ime a further  tool specific control procedure resp. a further  

production is called. Obviously, i t  is much more eJ[ficient to search the common part ial  

graph only once in the module graph, and then carry out all the modifications described 

by the according control procedure. 

To real ize  this idea, we change our graph grammar specification.  This modification is 

to ' summarize '  as many productions as possible of one control procedure. It is done in 

two systemat ic  steps which will be shown now. 

In the f i rs t  step we summarize a sequence of partial  graph replacements  into one 

part ial  graph replacement .  This implies that  the independent specif icat ion of each tool 

can no longer be sustained. 

As an example we summarize the two productions ' insert while s ta tement  control 

flow' (cf. fig.3.2) and ' insert_while_statement_unparsing supplements'  (cf. fig.3.3) called by 

the control procedure ' inser t_while_statement  and actual ize '  (cf. fig.3./~). 

The embedding rule informally says that  all incoming edges of node l are identically 

transferred to node 1 on the right-hand side. All outgoing edges labeled with )u ) or ' c f '  

of node 1 become outgoing edges of node 5 of the right-hand side. The ~ormalism for 

the notation of the embedding rules is borrowed from /NA 79/. 
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I 3 

U______J ~~Jmen~ list 
2 

Fig, Z~.l: example  for the  f i r s t  s tep 

l 

1 ic 5 Ei~(l;l) 
~expression] E : u 

u I J r u = (5; RU(1)) 

~ 4  rcf Rcf(1)) (5; 

°ft i I 
of I ! 

I u 5 l.unparser := 'while' 
end l 3.unparser 1= biank(8) 

.... while 4.unparser := blank 'do' nl 
cff 5.unparser := nl 'en.__dd' 

The second step is based on the observation that the right-hand side of one 

production is identical to the left-hand side of other productions. In this case, the 

consecutive application of two productions can again be summarized. This situation often 

appears, when an increment is inserted in the module graph. As an example we regard 

the production ' insert_white_statement_graph_increment' (cf. f ig. 3.1) and the above 

mentioned production (cf. f ig. #.1). By this step here, the right-hand side of the 

production in f ig. 3.1 is replaced by the right-hand side of the production in f ig. #. l .  

The embedding rule and at t r ibute transformation st i l l  hold. 

Af ter  these two steps, the control procedure inser t_whi les ta tement  and actualize now 

consists of only one production. The same steps can be done analogously for each such 

control procedure. 

Unfortunately, the approach has two disadvantages. I f  you want to change the 

actions of one tool, or extend the programming environment by a new tool you wi l l  

have to repeat these steps. (Af ter  a single graph grammar for the modif ied or new tool 

was developed.) 

Furthermore, i t  has to be done by hand. The reason is that the condensation of 

productions heavily depends on their special shape, ;.e. i t  is d i f f icu l t  to determine which 

edges are inserted by an embedding rule (cf. f ig. #.1), or which edges or nodes have to 

be added or omi t ted when mixing two productions (cf. f ig. #. l  the nodes marked wi th 

'end-while' and 'expression'). 

Nevertheless, i t  is not useless to do these steps, as the advantage of this approach 

is that one can derive d i rect ly  a more ef f ic ient  implementat ion by using the same 

formalism as when specifying the di f ferent  tools (cf. section 5). 

5. Implementa t ion  Issues 

The graph g r amm ar  Tool_Handler  is an opera t ional  spec i f ica t ion  of all tools for 

programming in the  small .  In this  chap te r  we show how such a spec i f ica t ion  directJy 

leads to  a guideline for the  implementa t ion  of the  tools.  This guideline, i.e. a 

speci f ica t ion  in the  second sense, yields a fu r the r  decomposi t ion of the  programming 
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environment. But now, this is a decomposition into modules to be used by the 

programmers writ ing the code of the implementation. We demonstrate that two dif ferent 

modularizations can be derived resulting in a more or less ef f ic ient  implementation. 

5.l  The Interpretative Approach 

A f irst approach is to interprete the graph grammar by a universal graph grammar 

interpreter. However, the control procedures already have the shape of Modula-2 

procedures. $o) only the application of graph productions as well as the part ial graph 

tests in boolean conditions of control structures must be handled by an interpreter, 

whereas the other part of the graph grammar can directly be translated by a Modula=2 

compiler. (This) o~ course) was one of the reasons to choose the special notion of 

control procedures for programming in graph grammars.) 

A rough overview on this  pa r t  of the  IPSEN-specif icat ion is given now in t e r m s  of a 

module concep t  developed in the  IPSEN-project ,  too. Other  par ts ,  as e.g. t he  auxil iary 

components  to  rea l ize  the  sophis t ica ted  and hardware  independent  I/O=handling) are  

descr ibed in /ES 8~] in more detai l .  

In this  module concep t  we dist inguish d i f f e ren t  types of modules.  Da t a  type  modules 

encapsu la te  a da ta  s t r uc tu r e  toge the r  wi th  i ts  operat ions ,  whereas  r u c t i o n  modules 

summar ize  a class  of complex algori thms.  These a lgor i thms are  based on operat ions  of 

one or more da ta  type  modules as well as o ther  funct ion modules. We say) module A is 

usable in module B, if module B imports  explici t ly resources  of the  expor t  i n t e r f ace  of 

A. For fu r the r  deta i ls  of this  concep t  we re fe r  to /LN gS/. 

The da ta  s t ruc tu r e  Ygraph' toge the r  with i ts  operat ions  is encapsu la ted  in the  da ta  

type  module Graph. It expor ts  resources  like )Insert  node with label  x and a t t r i b u t e  y)) 

)Replace edge a by edge b ), e tc . .  In rea l i ty  this  module is a r a t h e r  big subsystem 

conta ining a graph storage)  i.e. a system to store) r e t r i eve  and modify a rb i t r a ry  graphs 

(cf. /BL g~l). 

A second da ta  type  module GraGra_Product ions  provides a s to rage  for  a rb i t r a ry  graph 

g r ammar  product ions  and par t ia l  graph tes ts ,  in our case) all product ions  and t e s t s  of 

the  lowest  layer  of the  graph g rammar  Tool Handler  are  s tored.  
u 

A funct ion  module GraGra_Produc t ion_In te rp re te r  exports  resources  to apply graph 

g r ammar  product ions and tes ts .  To implement  these  resources  this  funct ion  module uses 

the  two da ta  types modules to  read a ce r t a in  product ion or t e s t  and to f ind the  

occur rence  of a pa r t i a l  graph as well  as to  replace  it.  

The cont ro l  procedures  a re  implemented  by a fu r the r  funct ion module Graph_Modi- 

f icat ion,  Its imp lemen ta t ion  is given by the  Modula-2 par t  of the  cont ro l  procedures.  

In t e rp re t a t i on  of graph g rammar  product ions and t e s t s  is done by use of resources  of 

the  module GraGra  Produc t ion_In te rpre te r .  

According to  the  division in d i f f e ren t  graph g rammars  for  each  tool  and a corresponding 

graph g r a m m a r  in t he  highest  layer this  funct ion  modt!le can  be  subdivided in d i f f e ren t  

funct ion modules for each tool and a coordinat ing funct ion  module upon them.  
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Analogously to the  decreased  cornpiexity in the  graph g rammar  spec i f ica t ion  th is  division 

yields a more elucid modular iza t ion.  

Furthermore~ all these  _function modules use a subsystem called User In te r face  to 

rea l i ze  the  I /O-opera t ions  con ta ined  in the  cont ro l  procedures.  

By this  model of a graph g r am m ar  i n t e rp re t e r  we get  two main advantages :  Af te r  

having specif ied the  d i f f e ren t  tools,  one has the  possibili ty of quickly t es t ing  these  tools 

by using the  i n t e rp r e t e r  (rapid prototyping).  Fu r the rmor% this  spec i f ica t ion  can  easily be 

changed by only changing one graph g rammar ,  So, in this  rea l iza t ion  s t r a t egy  the  s t ress  

is layed upon adaptab i l i ty  and not  on e f f ic iency  on a ce r t a in  machine.  

5.2 The Compi la t ive  Approach ...... 

Now we renounce  the  concep t  of in te rp re t ing  the  product ions in order  to  ge t  a more  

e f f i c i en t  implemen ta t ion ,  Of course~ i t  is a s tep towards  inflexibil i ty.  So this  s tep  should 

only be done when the  t e s t  phase is f inished and the  env i ronmen t  has to be tuned up, 

What we do now is to implement any application of a production or graph test 

d i rect ly  as a (Modula-2) program. Here, we do not search the left-hand side in the host 

graph by a part ia l  graph test and then replace i t  by a right-hand side (both done by 

the interpreter).  Instead, we di rect ly  ' implement '  a graph rewr i t ing step by inserting 

/delet ing the nodes and edges which are the result of the application of a rule. Here~ 

we also introduce the knowledge of the underlying class of graphs (in our case the 

module graph). Please note that the actual position of modif icat ion is internal ly indicated 

by the cursor node. 

Such a procedure implementing the application of a special production or test uses 

the resources of the module Graph. Furthermore, the one to one correspondence between 

a production and a procedure need not to be sustained. Graph algorithms~ namely special 

par t ia l  graph t e s t s  or r ep l acem en t s  which are  used for the  appl ica t ion of many rules  of 

the  given graph g r am m ar  can  be wr i t t en  as procedures  and can be cal led in any 

appl ica t ion of the  d i f f e ren t  rules. 

Of course,  th is  approach changes  the  design of IPSEN. The two modules 

GraGra  Product ions  and GraGra_Produc t ion  In t e rp re t e r  are  replaced by a func t ion  module, 

Its resources  are  procedure  cal ls  for the  d i f f e ren t  product ions of the  given graph 

g r ammar  which is again  in our case the  lowest  layer of Tool_Handler.  The appl ica t ion of 

d i f f e ren t  product ions  is imp lemen ted  di rect ly  using the  e l emen ta ry  graph opera t ions  of 

the  module Graph,  

6. Conclusions 

We have indica ted  t h a t  graphs g rammars  are  a wel l -sui ted speci f ica t ion  method to 

descr ibe  the  in te rna l  behaviour  of an in t eg ra t ed  se t  of programming support  tools  

working on graphs as h igh- level  da ta  s t ruc tures .  As the  resul t ing  graph g r ammar  is an 

opera t ional  spec i f ica t ion  which means programming on an ' a b s t r a c t  level 's we can  use 

sof tware  engineer ing methods  like modular iza t ion  and in tegra t ion  to decrease  the  



193 

complexity of such an 'abstract ) program. So) the specification of the tools can be done 

rather independently which makes the specification elucid and flexible both needed for 

modifying or adding tools. The complex problem of specifying a lot of tools on a quite 

complicated graph structure is decreased by a layered approach to the definition of such 

a graph grammar. The specification is also a guideline for the implementation of such 

an environment) i.e. it directly leads to a main part of the result of the design phase 

(also called specification). 

The main topics of IPSEN are the development of such conceptual ideas as well as 

the implementation of a programming support environment on a minicomputer. Up to 

now, the graph storage (/BL g$/) and parts o~ the user interface (especially a window 

manager) are implemented. The graph grammar specification for the syntax=aided editor 

and most parts of the other tools for programming in the small (Interpreter) 

Static_Instrumentation, Unparser) are under elaboration and will be implemented soon in 

a prototype version of IPSEN. 
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