Graph Grammar Engineering: A Method Used for the
Development of an Integrated Programming Support Environment

G. Engels, W. Schéfer
Angewandte Informatik, FB 6, Universitdt Osnabriick
Postfach 4449, D-4500 Osnabriick

Abstract

We introduce a method to specify the functional behaviour of software tools in an
incremental and integrated software development environment. This specification method
is based on graph grammars. It is an adequate method to specify the behaviour of all
software systems using graphs as internal data structures. We show that a specification
can be developed systematically by which the adaptability of the environment is
increased towards modification of tools or extension by new tools. Furthermore,
guidelines for the implementation can directly be derived from this specification.

Key Words: integrated tools, graph grammars, programming support environments,
programming-in-the-small, software engineering, specification

1. Introduction

The systematic development of large software systems requires a precise description
of its desired behaviour. Depending on the used method such a specification of the
behaviour is a more or less formal description on a conceptual level (cf. /SF 76/}, In
this paper we introduce a specification method based on graph grammars. This method is
shown to be adequate if graphs are the underlying data structures on the conceptual
level. This means that the behaviour of the software system can be described by graph
transformations.

The method is applied to the specification of the tools of an Incremental Programming
Support Environment (IPSEN) {cf. /Na 84/). The task of such an environment is to
facilitate the develepment and maintenance of software documents. Software documents
are for example (a piece of) a description of the modularization of a software system,
the source code of a module, a technical documentation, etc.

Furthermore, we show that such an operational specification on a conceptual level also
leads to a specification in a second sense denoting the result of the design phase in a
software life cycle model. This specification determines the decomposition of the
software system into modules and serves as the guideline for the implementation phase.
So, the reader may be aware that we talk about two levels of the term 'specification'.

IPSEN in particular has some external characteristics which influence the design of
the user interface.

180

(1) Input and output of software documents is always syntax-directed and incremental,
i.e. it is done in logical portions of an underlying syntax definition of a class of
software documents. Incrementality means that syntax-analysis, evaluation, or execution is
even possible for partial programs, specifications, etc.

{2) The toois in IPSEN are integrated in different senses: {a) Most of the technical
activities of the software life cycle are supported, {b} the tools are combining activities
which nowadays are regarded to belong to different activities in life cycle models, (c)
all tools have a uniform user interface, iL.e. the user is not aware of an internal change
between different tfools.

This incrementa! and integrated mode implies that the sequential organisation of
activities in usual life cycle models can no longer be sustained. For example, whenever
an increment of the specification is put in {design phase), checks for the intermodular
connections may immediately start (integration phase). Furthermore, this part of the
specification may now be changed (usually in maintenance phase). Therefore, we have
grouped the activities in the following task areas: programming in the large (any
activities directed to the level above single modules), programming in the small (any
activities directed to the level of single meodules), and, finally, project organisation and
project management.

The incremental and integrated mode yields the following main characteristic of
IPSEN. All information contained in an external representation of a module, specification,
etc. is represented in and can be accessed from a high-level intermediate data structure.
As the conceptual model for this data structure we use graphs. The reason is that
graphs are a uniform model which can be applied to any task area. In particular, we
have a systemn graph as intermediate representation of a module decomposition, a module
graph for a single module, a documentation graph for technical documentation, etc.
Structural information is expressed by labeled nodes and labeled edges whereas only
nonstructural information is expressed by additional attributes. Aspects of editing,
evaluating and execution of software documents can be treated by this model as further
information for any purpose can be expressed by graphs without leaving the class of
graphs. The uniform model heavily facilitates the development of integrated tools. Any
kind of modification of these graphs by any tool can be specified by graph grammars.

By listing the internal characterisdc we have also mentioned the main difference
between IPSEN and other programming environments. These environments rather
independently developed similar integrated concepts (cf. Gandalf /Ha 82/, Mentor
/DG 80/, Cornell Program Synthesizer /TR 81/, Pecan /RE 84/). However, using graphs
and not trees as intermediate data structures and graph grammars as specification
instrument is specific to IPSEN. In all other approaches trees are regarded as the main
conceptual mode! for the intermediate data structure which yields a lot of problems. A
big part of the structural information has to be expressed in attributes as it cannot be
expressed in trees. This vyields partially complex attribute evaluation algorithms (cf.
/RT 83/). FEurthermore, additional and quite different complex internal data structures
are introduced, when extending the environment to new tools (e.g. Pecan /Re 84/).

181

Please note that this is not an argument for avoiding attributes at all. Attributes are
necessary for expressing values. We pledge for using the same graph model for all

structural information.

In this paper we mainly deal with the specification of the integrated tool set for
programming in the small by graph grammars. Such a tool set {cf. /Na 84/) consists of
e.g. a syntax-aided editor, a tool for static analysis of the data flow in a module, and
a tool for static instrumentation by e.g. the insertion of breakpoints. A module is
executed by interpreting the corresponding module graph. This execution is supported by
e.g. tools for runtime data inspection resp. for establishing specific environments for the
test of procedures.

Since all tools use the module graph as internal data structure, such a graph has to

represent a lot of different tool-specific information. Thus, it yields a complex problem
to specify the behaviour of all tools by one graph grammar. We show that this
complexity can be decreased by developing an independent graph grammar specification
for each tool in a first step, and by combining these graph grammars in a second step.
Thereby, this also serves as a guideline for the efficient implementation of the different
tools. Such a specification engineering using graph grammars is the crucial point of this
paper. It was applied to all tools for the task area programming in the small. So, the
composition of these specifications is our main concern here, whereas the systematic
development of a single graph grammar specification, namely the syntax-aided editor,
was described in /EG 83/.
The proceeding presented here can be analogously transferred to other tools and task
areas in IPSEN. For a specification editor this is documented in /LN 84/. The
specification engineering is one result of the IPSEN project: It is more the development
of new concepts for the specification and implementation of a programming support
environment which is our main goal than an industrial implementation.

The organisation of the paper is as follows: The next section describes the
systematic development of the module graph based on the syntax of the programming
language Modula-2. (Modula-2 is chosen as the programming language to be supported as
well as implementation language, because it offers adequate concepts for programming
in the small and programming in the large.) In section 3 the modification of this module
graph by different tools is specified using graph grammars. Section 4 gives an idea, how
this specification has to be changed to get more efficient module graph modifications. In
section 5 it is shown how this formal specification of the functional behaviour directly
leads to different implementation techniques of the tools. Section 6 summarizes the main
ideas of this paper.

2. The Module Graph

As mentioned in the introduction the module graph serves as the common, high-level
data structure for all tools of the area programming in the small. It is an abstract
representation which contains all tool-specific informations. In a module graph all
structural information is expressed by different labeled nodes and edges, while all

182

non-structural information is expressed by additiona! tool-specific attributes.

Because of the incremental mode in IPSEN the module graph itself is a composition
of graph increments. Since module graphs have fo represent modules written in Modula-2,
the graph increments heavily depend on the underlying programming language grammar.
Such a grammar is lsually designed with respect to certain properties, e.g. an efficient
deterministic context free syntax analysis. This causes the grammar to contain a lot of
technical nonterminals, which do not reflect logical portions of the language. In order to
get reasonable graph increments these technical nonterminals have to be eliminated. We
introduce a normal form for such a string grammar respecting the logical portions of
the syntax corresponding to the increments.

2.1 Normalized Backus-Naur Form (BNF)

Such a string grammar normal form is characterized by a disjoint decomposition of
the set of nonterminal symbols intc three groups. (We use the BNF-notation to describe
the productions of a context free string grammar.)

The first group contains the so-called alternative nonterminals and optional nonterminals.
The right-hand side of all productions with an alternative nonterminal as left-hand side
consists of a series of alternatives all of which are nonterminal or terminal symbols {cf.
fig. 2.1). The right-hand side of the productions corresponding to optional nonterminals
consists of two alternatives, the empty word and a nonterminal describing the optional
part.

The second group is built by so-called compound nonterminals describing a part of the
‘structure’ of a module. The right-hand side of the corresponding productions is one
sequence of nonterminal and terminal symbols {cf. fig. 2.1). The third group contains list
nonterminals describing non-empty lists of elements of a certain kind (e.g. sta-
tement_list).

alternative nonterminmal:
<statement> ::= <assignment_statement> | <while_statement> | <for_statement>| ...

structure nonterminal:
<while_statement> ::= while <expression> do <opt_statement list> end

Fig. 2.1: Nonterminals and productions of a normalized Modula-2 BNF

It is the task of the IPSEN designer to transform a given programming language
grammar into such a normal form. Since the resulting grammar is not uniquely
determined, the grammar designer indirectly also determines the form of a module
graph. It is to be seen in the next section, how this grammar influences the module

graph increments.

2.2 Graph Increment Classification

Graph increments are associated with each compound or list nonterminal and Its
corresponding production, respectively. These compound and list graph increments consist
of a root node {labeled by an indication for the corresponding increment) and as many

sons, as nonterminals on the right-hand side of the production or list elements exist. In

183

compound graph increments the edges between the root node and its sons are labeled
additionally according to their semantics {cf. fig. 2.2). In list graph increments the order
of the list elements is expressed by additional edges labeled by '‘ord' (cf. fig. 2.3).

while Ic |
statement expression
b opt_state- lc : loop condition
ment_list b : body

Fig. 2.2: compound graph increment

Since the lexical structure of identifiers or literals is not interesting for any IPSEN
tool it will not be represented in a module graph. Therefore, identifiers and literals are
represented by so-called simple graph increments. These increments consist only of a
single node attributed with a string representing a concrete identifier or literal (cf. fig.

2.3).
procedure EXAMPLE;
var X : INTEGER;
begin

while X < 0 do

end
name = EXAMPLE ﬂg EXAMPLE ;

procedure | pi

[declaratiﬁn identifier
dl
declaration variable variable il identifier : CEi -
‘{ list | ldecl. list declaration}__ ’[list }"“—“”me"““e"l nane = X

td -
identifier | TAMe =
b cf INTBGER
statement Ve
list

ordj J,CE
while | Ic] 1 use det
statement expression identifier
name = X
rh -
o " value = Q
cft cf
statement
list
b

name = X

identifier

le —— v

end edge labels:
:——:1;@ dl : declaration list

off il ¢ ijdentifier list
pe cf le : loop end
1k : left-hand side

end
1 - pe : procedure end
procedure nane = EXAMPLE pi : procedure identifier
rh : right-hand side
td : type definition

Fig. 2.3: module graph example

184

Neglecting the ord-edges between list elements the composition of this graph
increments yields a tree which is well-known as the abstract syntax tree in literature
(cf. e.g. /DG 80/). It forms the spanning tree of the module graph and reflects the
structural information of a module given by the context free syntax. Concrete syntax is
not represented in the graph as it expresses no structural information. It will be the
task of an unparser to generate source text including the concrete syntax from this
abstract representation. Figure 2.3 presents the module graph representation of an
incomplete Modula~2 procedure.

2.3. Module Graph Supplements

Besides the relations expressed by the spanning tree further relations between the

graph increments are expressed by additional edges. For example, to ease and speed up
context sensitive checks after an incremental modification of a module we introduce
edges between the declaration of a variable and its defining (the variable is getting a
new value) and using occurrencies (the value is read) in the statement part. The defining
occurrencies are connected by a ‘'def'-edge with the declaration, whereas the using
occurrencies are connected by a 'use'-edge with the declaration (cf. fig. 2.3).
By the composition of graph increments all allowed control fiows in a module are
determined. This information is expressed in a module graph by three different labeled
edges, the cf-edge for unconditional control flow, and the cft- (control flow true} or
cff- {controi flow false) edge if the control flow depends on a condition {cf. fig. 2.3).

Of course, these additional edges in a module graph can be read by all tools
working on the module graph. Besides that, all tools may introduce further edges and
nodes to express their tool-specific structural informations. Examples are edges to
express the data flow in a module (set-use edges), or the textual order of a
corresponding source text {unparsing edges).

In the other projects mentioned in the introduction the internal data structure is a
tree so that all these relations have to be expressed by additional attributes. The lack
of those approaches is that the inherent structure of a software document is described
in different notions, namely trees and attributes. In IPSEN only one formal notion,
namely graphs, is used to denote structure. Only non-structural information is expressed
by attributes. Examples are values of literals, unparsing information as concrete syntax,
storage addresses of data objects, efc..

3, Specification of Programiming Support Tools

The commands of the area programming in the small allow a user to edit a module,
to analyze it, to execute it, fo instrument it by different test facilities, etc. These
commands are part of an integrated tool set, i.e. the user is not aware of an internal
change e.g. between the editor and the interpreter.

The execution of such a user command internally implies the activation of one tool
action or for more comfortable user commands a sequence of tool actions. Since all
tools work on the same internal data structure, the module graph, each tool action

185

implies a sequence of module graph modifications. These modifications are done
incrementally. This means that after a modification of a graph increment in the module
graph by one tool, all other tool-specific informations of this graph increment are
immediately updated, too. So, the term ‘'incremental' occurs in two senses: the
incremental behaviour of all tools at the user interface on one side and the incremental

updating of the module graph -on the other side.

In this section we show that an operational specification of such an integrated and
incrementally working tool set can be developed by graph grammars in several steps. At
first, the modification of graph increments and the incremental updating of other
tool-specific informations has to be specified. Afterwards each tool can be specified
independently by combining these modifications of the common internal data structure.
At the end, the specification of all tools can be combined in one common graph
grammar. This graph grammar is the operational specification of the integrated tool set.

Such a systematic proceeding reduces the complexity of specifying a large integrated
tool set and, furthermore, increases the adaptability towards the modification of a tool
or the extension by new tools.

Each execution of a tool action may be considered as a module graph transformation
together with a corresponding evaluation of tool-specific attributes. Therefore, attributed
graph grammars are a formal method to specify the behaviour of tools. Such attributed
graph grammars consist of a set of attributed graph rewriting rules, called productions,
containing an embedding rule and attribute evaluation instructions. The application of
productions is defined by replacing one occurrence of the left-hand side in the host
graph by the right-hand side. The embedding rule defines how the replacing graph has to
be connected to the host graph. Attribute evaluation instructions are short Modula-2
code pieces, here usually simple assignments. They have to be executed as part of the
application of an attributed graph grammar production. For a more formal introduction
of graph grammars the reader is referred to /Na 79/ and /Bu 81/.

The position in a module actually handled by the user is marked by a special cursor
node in the module graph. This implies that each production contains this cursor node on
both sides, and that the occurrence of the left-hand side in the host graph is
determined uniquely and can be found efficiently.

The combination of tools resp. the execution of one tool action often implies a
determined order of different tool actions resp. of different graph modifications. Such a
determined order of graph grammar production applications can be specified by so-called
control procedures written like Modula-2 procedures the bodies of which contain the
activation of other control procedures or productions. Therefore, we are using
programmed sequential and attributed graph grammars.

Let us show now that these graph grammars are an adequate method for specifying
the internal behaviour of programming support tools and their integration in a
programming support environment.

186

The specification consists of three layers, a data structure oriented lowest layer and
two functional layers upon that.
The lowest layer provides ali control procedures and productions specifying all elementary
modifications of the module graph. This includes the insertion and deletion of graph
increments, and the modification of additional, tool-specific edges, nodes, and attributes.
The control procedures and productions are gathered up in different graph grammars, for
example Graph_Increment Productions, Control _Structure_Supplements, Source_Text_Supple-
ments. Examples of such productions are given in the following figures. The embedding
rule will be omitted because it is the identity.

production insert while statement _graph increment;

1 1 3
statement while le expression
statement
//2\ / 4
cursor cursor b opt_state-
ment _list

Fig. 3.1: production of graph grammar Graph_Increment_Productions

We add an 'end'-node to each graph increment representing a control structure, where
the control flow of that control structure flows together:

production insert while statement control Tiow;

e
W
[
[
b

while_ 5 opt_state- while opt_state-
statement ment_list statement ment_list

;/‘ cft
/i cf
cf
i b1
/ .
/ e / 4 ie 5

cursor cursor end
while

cff
4 4 cf

[’EnJy any

Fig. 3.2: production of graph grammar Conirol_Structure Supplements

As an example for the graph grammar Source Text Supplements we consider the
information needed by an unparser to generate source text from the module graph.
Therefore, the graph increments have to be connected by further edges labeled by ‘u'
reflecting the textual order, and node attributes have to be added containing unparsing
schemes describing the missing concrete syntax and the layout of the corresponding

source text.

187

production insert_while statement_unparsing supplements;

1 3 1 1c 3
while le expression while expression
statem;nt statement, u
iz 7‘ i
[2 4 [2 4
cursor b opt_state- cursor by opt_state-
ment_list ment_list
u
u ie 5 le 5
end_ end_
while while
l.unparser := 'while’
é 6 u 3.unparser := blank(8)
any any 4,unparser := blank 'do' nl
5.unparser := nl 'end'

Fig. 3.3: production of the graph grammar Source Text Supplements

In the second layer all tools will be specified by independent graph grammars. These
graph grammars consist of control procedures determining the order of applications of
control procedures and productions of graph grammars of the lowest layer.

As an example we specify the insertion of a while-statement and the actualisations of
other tool-specific informations by a control procedure of the tool Syntax_Alded Editor.

procedure insert_while statement_and_actualize;
begin
insert_while statement graph increment;
insert_while statement control_flow_supplements;
insert_while statement unparsing supplements;
end insert_while_statement_and actualize;

Fig. 3.4: control procedure of graph grammar Syntax_Aided_Editor

Such control procedures may also contain checks like identifier_allowed to test whether
a specific graph is contained in the module graph. This enables testing the context
sensitive syntax. For a detailed and systematic description of the development of the
graph grammar Syntax_Aided Editor we refer to /EG 83/.

The behaviour of all other tools can be specified analogously in separate graph
grammars. Some tools like the Interpreter or Unparser additionally walk through the
module graph. Therefore, such tools use productions of the graph grammar Cursor_
Movements to move the cursor node in the module graph.

Since each tool was specified in a separate graph grammar a third layer is needed
for specifying their combination. This means to specify functional dependencies which can
be done by control procedures adequately. As an example we indicate the control
procedure that specifies the execution of a while-statement using a loop-counter. In
control procedures a simple user interface behaviour can be specified, too.

188

procedure execute while loop with loop _counter;

var rumber: integer;

begin
insert_loop_counter; (* control procedure of static instrumentation *)
interprete loop with_loop counter{ number };
user_message(‘number of loop executions:', number };

end execute while loop with loop_counter;

Fig. 3.3: control procedure of the graph grammar Tool Handler

The whole functional composition / decomposition of graph grammars and the distinction
between these three layers is illustrated in figure 3.6.

layers
Yool _ control
Handler graph
grammar
Syntax_ Static_ tn- Inter-
Alded Instru-~ eae parser preter ves tools
Editor mentation
Graph_ Data Seource Control Cursor_ module
Increment Structure_ Text Structure Move- graph
Productions Suppl. Suppl. Suppl. ments manipum-
lations

Fig. 3.6: the composition of the control graph grammar Tool Handler

Such a layered approach of a graph grammar specification enforces a slightly
modification of the usual definition of applicability of graph productions (cf. /Na 79/).
That definition requires that a production or test is only applicable to a host graph iff
the left-hand side is a subgraph of the host graph. But, to enable the sequential
application of the productions of fig. 3.1 - 3.3 in the control procedure of fig. 3.4, we
require that the left-hand side is contained as a partial graph in the host graph. Such a
modification allows each tool a restricted, tool-specific view of the graph increments
and the independent construction of the control procedures in the two functional layers.

Summarizing the approach we can say that the graph grammar Tool Handler contains
all control procedures and productions of the first and second layer and combines the
control procedures of the second layer such that each command given by a user
corresponds to a control procedure.

This formal composition / decomposition of graph grammars reflects the composition /
decomposition of tools of an integrated tool set. Each command given by a user
corresponds to a control procedure of this graph grammar Tool Handler.

189

Besides this functional composition / decomposition we also have a data-structure
oriented composition / decomposition, namely the composition / decomposition of a
module graph of / into graph increments and tool-specific informations. The reader
should be aware that this co-mposition /decomposition is described by the graph grammar
Tool_Handler, too.

4, Condensation of Graph Grammar Productions

The concept of an independent graph grammar specification for each tool, as
explained in section 3, sometimes yields some inefficiences in the following sense.
Each control procedure of the graph grammar Tool Handler was formed by combining the
control procedures of the different tools. This combination was done by sequentially
calling control procedures of the different tools one after the other (cf. fig. 3.5.).
Because of this sequential calling mechanism it often happens that a lot of control
procedures resp. productions and tests to be called in one combining control procedure
change the underlying module graph in the same locality in several, consecutive steps.
Same locality means that a certain graph increment (or a partial graph of this) is
contained in the left-hand side of nearly all productions.

As the implementation 1is strongly related to the operational graph grammar
specification (cf. section 5), the above mentioned situation causes some inefficiences
which unneccessarily increase runtime, i.e. an implementation has to find a (partial)
graph increment at any time a further tool specific control procedure resp. a further
production is called. Obviously, it is much more efficient to search the common partial
graph only once in the module graph, and then carry out all the modifications described
by the according control procedure.

To realize this idea, we change our graph grammar specification. This modification is
to ‘summarize’ as many productions as possible of one conirol procedure. It is done in
two systermnatic steps which will be shown now.

In the first step we summarize a sequence of partial graph replacements into one
partial graph replacement. This implies that the independent specification of each tool
can no longer be sustained.

As an example we summarize the two productions 'insert_while_statement_control _
flow' (cf. fig.3.2) and 'insert_while_statement_unparsing_supplements’ (cf. fig.3.3) called by
the control procedure 'insert_while statement_and actualize' (cf. fig.3.4).

The embedding rule informally says that all incoming edges of node 1 are identically
transferred to nede 1 on the right-hand side. All outgoing edges labeled with 'u' or 'cf
of node 1 become outgoing edges of node 5 of the right-hand side. The formalism for
the notation of the embedding rules is borrowed from /NA 79/.

180

i 3 1 ic 3 . -
while Ic expression while expression E: Eid(l;l) o
statement statement U I, = (55 Ru(l)) v
= u
z 4 b 4 rop = (55 Ryp(1))
cursor b [opt state- CUrsor Gpt_state-
ment_list ———;l ment list
2 cft
ef
u
5 l.unparser := ‘whilef
le end 3.unparser := blank(8)
L___."_.__,' while 4,unparser := blank 'do’ nl
eff 5.unparser := nl 'end’

Fig. 4.1: example for the f{irst step

The second step is based on the observation that the right-hand side of one
production is identical to the left-hand side of other productions. In this case, the
consecutive application of two productions can again be summarized. This situation often
appears, when an increment is inserted in the module graph. As an example we regard
the production ‘insert while statement graph increment' (cf. fig. 3.1) and the above
mentioned production {cf. fig. 4.1). By this step here, the right-hand side of the
production in fig. 3.1 is replaced by the right-hand side of the production in fig. &4.1.
The embedding rule and attribute transformation still hold.

After these two steps, the control procedure insert _while statement_and_actualize now
consists of only one production. The same steps can be done analogously for each such

control procedure.

Unfortunately, the approach has two disadvantages. If you want to change the
actions of one tool, or extend the programming environment by a new tool you will
have to repeat these steps. (After a single graph grammar for the modified or new tool
was developed.)

Furthermore, it has to be done by hand. The reason is that the condensation of
productions heavily depends on their special shape, i.e. it is difficult to determine which
edges are inserted by an embedding rule (cf. fig. 4.1), or which edges or nodes have to
be added or omitted when mixing two productions (cf. fig. 4.1 the nodes marked with

‘end-while' and ‘expression').

Nevertheless, it is not useless to do these steps, as the advantage of this approach
is that one can derive directly a more efficient implementation by using the same

formalism as when specifying the different tools (cf. section 5)

5. Implementation Issues

The graph grammar Tool Handler is an operational specification of all tools for
programming in the smali. In this chapter we show how such a specification directly
leads to a guideline for the implementation of the tools. This guideline, i.e. a
specification in the second sense, yields a further decomposition of the programming

191

environment. But now, this is a decomposition into modules to be used by the
programmers writing the code of the implementation. We demonstrate that two different
modularizations can be derived resulting in a more or less efficient implementation.

5.1 The Interpretative Approach

A {first approach is to interprete the graph grammar by a universal graph grammar
interpreter. However, the control procedures already have the shape of Modula-2
procedures. So, only the application of graph productions as well as the partial graph
tests in boolean conditions of control structures must be handled by an interpreter,
whereas the other part of the graph grammar can directly be translated by a Modula-2
compiler. (This, of course, was one of the reasons to choose the special notion of

control procedures for programming in graph grammars.)

A rough overview on this part of the IPSEN-specification is given now in terms of a
module concept developed in the IPSEN-project, too. Other parts, as e.g. the auxiliary
components to realize the sophisticated and hardware independent I1/O-handling, are
described in /ES 84/ in more detail.

In this module concept we distinguish different types of modules. Data type modules
encapsulate a data structure together with its operations, whereas function modules
summarize a class of complex algorithms. These algorithms are based on operations of
one or more data type modules as well as other function modules. We say, module A is
usable in module B, if module B imports explicitly resources of the export interface of
A. For further details of this concept we refer to /LN 85/.

The data structure ‘graph’ together with its operations is encapsulated in the data
type module Graph. It exports resources like 'Insert node with label x and atiribute y',
'‘Replace edge a by edge b', etc.. In reality this module is a rather big subsystem
containing a graph storage, i.e. a system to store, retrieve and modify arbitrary graphs
(cf. /BL 84/).

A second data type module GraGra Productions provides a storage for arbitrary graph
grammar productions and partial graph tests. In our case, all productions and tests of]
the lowest layer of the graph grammar Tool Handler are stored.

A function module GraGra_Production_Interpreter exports resources to apply graph
grammar productions and tests. To implement these resources this function module uses
the two data types modules to read a certain production or test and to find the
occurrence of a partial graph as well as to replace it.

The control procedures are implemented by a further function module Graph_Modi-
fication. Its implementation is given by the Modula-2 part of the control procedures.
Interpretation of graph grammar productions and tests is done by use of resources of
the module GraGra_ Production Interpreter.

According to the division in different graph grammars for each tool and a corresponding
graph grammar in the highest layer this function module can be subdivided in different

function modules for each tool and a coordinating function module upon them.

192

Analogously to the decreased complexity in the graph grammar specification this division
yields a more elucid modularization.

Furthermore, all these function modules use a subsystem cailed User_Interface to

realize the I/O-operations contained in the control procedures.

By this model of a graph grammar interpreter we get two main advaniages: After
having specified the different tools, one has the possibility of quickly testing these tools
by using the interpreter (rapid prototyping). Furthermore, this specification can easily be
changed by only changing one graph grammar. So, in this realization strategy the stress
is layed upon adaptability and not on efficiency on a certain machine.

5.2 The Compilative Approach

Now we renounce the concept of interpreting the productions in order to get a more
efficient implementation. Of course, it is a step towards inflexibility. So this step should
only be done when the test phase is finished and the environment has to be tuned up.

What we do now is to implement any application of a production or graph test
directly as a (Modula-2} program. Here, we do not search the left-hand side in the host
graph by a partial graph test and then replace it by a right-hand side {both done by
the interpreter). Instead, we directly 'implement' a graph rewriting step by inserting
/deleting the nodes and edges which are the result of the application of a ruie. Here,
we also introduce the knowledge of the underlying class of graphs (in our case the
meodule graph). Please note that the actual position of medification is internally indicated
by the cursor node.

Such a procedure implementing the application of a special production or test uses
the resources of the module Graph. Furthermore, the one to one correspondence between
a production and a procedure need not to be sustained. Graph algorithms, namely special
partial graph tests or replacements which are used for the application of many rules of
the given graph grammar can be written as procedures and can be called in any
application of the different rules.

Of course, this approach changes the design of I[PSEN. The two modules
GraGra_Productions and GraGra_Production Interpreter are replaced by a function module.
Its resources are procedure calls for the different productions of the given graph
grammar which is again in our case the lowest layer of Tool Handler. The application of
different productions is implemented directly using the elementary graph operations of
the module Graph.

6. Conclusions

We have indicated that graphs grammars are a well-suited specification method to
describe the internal behaviour of an integrated set of programming support tools
working on graphs as high-level data structures. As the resulting graph grammar is an
operational specification which means programming on an ‘abstract level’, we can use

software engineering methods like modularization and integration to decrease the

193

complexity of such an 'abstract' program. So, the specification of the tools can be done
rather independently which makes the specification elucid and flexible both needed for
modifying or adding tools. The complex problem of specifying a lot of tools on a quite
complicated graph structure is decreased by a layered approach to the definition of such
a graph grammar. The specification is also a guideline for the implementation of such
an environment, i.e. it directly leads to a main part of the resuft of the design phase
(also called specification).

The main topics of IPSEN are the development of such conceptual ideas as well as
the implementation of a programming support environment on a minicomputer. Up to
now, the graph storage (/BL 84/) and parts of the user interface (especially a window
manager) are implemented. The graph grammar specification for the syntax-aided editor
and most parts of the other tools for programming in the small (Interpreter,
Static_Instrumentation, Unparser) are under elaboration and will be implemented soon in
a prototype version of IPSEN.

Acknowledgements.

The authors are very indebted to M. Nagl and C. Lewerentz for many fruitful

discussions.

References

/BL 84/ Brandes, Th./Lewerentz, C.: GRAS: A Non-standard Data Base System within a
Software Development Environment, Tech. Rep. OSM - 118, Univ. of Oshabrueck

/Bu 81/ Bunke, H.: Attributed Programmed Graph Grammars as a Tool for Image
Interpretation, Purdue University, Techn. Report TR-EE-81-22

/DG 80/ Donzeau-Gouge, M. et.al: Programming Environments Based on Structured
Editors - The MENTOR Experience, Techn. Report 26, INRIA, France

/EG 83/ Engels, G./Gall, R./Nagl, M./Schifer, W. : Software Specification using Graph
Grammars, Computing 31, 317-346

/ES 84/ Engels, G./ Schifer, W.: The Design of an Adaptive and Portable Programming
Support Environment, submitted for publication

/Ha 82/ Habermann, N. et.al.: The Second Compendium of GANDALF Documentation,
Techn. Report, May 1982, Dept. of Computer Science, Carnegie-Mellon
University, Pittsburgh

/LN 84/ Lewerentz, C./ Nagl, M.: A Formal Specification Language for Software Systems
Defined by Graph Grammars, in U, Pape (Ed.): Proceedings WG'S4 on
'Graphtheoretic Concepts in Computer Science', Linz: Trauner Verlag

JLN 85/ Lewerentz, C./Nagl, M.: Incremental Programming in the Large: Syntax-aided
Specification Editing, Integration and Maintenance, to appear Proc. 18th Hawaii
International Conference on System Sciences

/Na 79/ Nagl, M.: Graph-Grammatiken - Theorie, Anwendungen, Implementierung, Wiesba-~
den: Vieweg-Verlag

/Na 84/ Nagl, M.: An Incremental Programming Support Environment, to appear in
Computer Physics Communications, North-Holland

/Re 84/ Reiss, St.: PECAN: Program Development Systems That Support Multiple Views,
in Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Pittsburgh

/RT 83/ Reps, T./ Teitelbaum, T.: Incremental Context-Dependent Analysis for Language-
Based Editors, ACM TOPLAS, Vol. 5, No. 3, 449-477

ISF 76/ Schnupp, P./ Floyd, Ch.: Software - Programmentwicklung und Projektor-
ganisation, Berlin: Walter de Gruyter

[TR 81/ Teitelbaum, T./Reps, T.: The Cornell Programm Synthesizer - A syntax-directed
Programming Environment, CACM 24 , 9 , 563-573

