
~xperiences with the PSG - Proqr~r_~_____~System Generator

G. Snelting

~nstitut fdr Systemarchitektur

Technische Hochschule Darmstadt

Magdalenenstr. ii

D-61 Darmstadt

Abstract The programming system generator developed at the Technical
University of Darmstadt generates sophisticated interactive programming
envirorm~nts from formal language definitions. From a formal, entirely
nonprocedural definition of the language's syntax, context conditions and
denotational semantics, it produces a hybrid editor, an interpreter and a
library syst~n. The editor allows both structure editingandtextediting,
guaranteeing immediate recognition of syntax and semantic errors. The
generator has been used to generate environments for PASCAL, MODULA-2 and
the formal language definition language itself. A brief description of the
generated environments and the definition language is given, and our
experiences with formal language definitions are discussed from the language
definer's point of view as well as from the programmer's point of view using
the generated environments.

1. Introduction

The Programming System Generator PSG developed at the Technical University

of Darmstadt generates language-dependent interactive progranmdng environ-

ments from formal language definitions. From a formal definition of a

language's syntax, context conditions and denotational s~mantics it produces

an integrated software development enviror~ent. One of the major ~nents

of a PSG environment is a powerful hybrid editor which allows structure

oriented editing as well as text editing. In structure mode, the editor

guarantees prevention of both, syntactic and semantic errors, whereas in

textual mode it guarantees their immediate recognition. The editor is

generated from the language's syntax and context conditions. Furthermore, a

PSG environment includes an interpreter which is generated from the langu-

age's denotational se~nantics. A language-independent library system is part

* Work of this author was supported by the "Deutsche Forschungsgemein-

schaft", grant He I17~/2-2

149

of a PSG environment.

The basic units for editing and interpreting are called fragments. A

fragment is an arbitrary part of a program, for example a statanent, a

procedure declaration or a whole program. Fragments are internally stored as

abstract syntax trees. Fragments may be incuL~lete, that is, subccnloonents

may be missing. Missing su~nents are called templates. Bottcm-up system

development is provided by c(m~ining fragments, while the fragments them-

selves are constructed top-down.

The editor supports two input modes, which may be mixed freely by the user.

In textual mode, the editor behaves like a normal screen-oriented text

editor with the uslm~l capabilities to enter, modify, delete, search etc.

text. By keystroke, incr~nental syntactic and semantic analysis are invoked.

If the input was error-free, the text will be pretty-printed and editing may

proceed. If any syntactic or semantic errors are detected, an error message

will be displayed by a menu-driven error recovery routine. Earliest possible

detection of both syntactic and semantic errors is guaranteed: As soon as a

fragment cannot be embedded into a syntactically and semantically correct

program, it will be classified as erroneous. For s~mantic errors, this works

even if declarations of e.g. variable types are still missing or incomplete.

In structured mode, programs are developed in menu-driven refinement or

modification steps. The menus are generated according to the abstract syntax

of the language. The usual structure oriented cc~mands are offered to the

user, such as refinement of a structure, selection from alternatives of a

syntactic class, modification, insertion, and deletion of substructures,

zooming of substructures, copying of substructures etc. However, the menus

are filtered dynamically by the context analysis, such that only those

menu-items producing syntactically and semantically correct refine~nents

after selection will be offered to the user. Thus, in structural input mode,

neither syntactic nor semantic errors can occur. In addition the user may

retreive the context information which has been derived so far. For example,

he might ask the system which variables are already declared, which varia-

bles are still undeclared, what possible types the undeclared variables may
w

possess etc •

Like the other system ccmlx)nents , the interpreter is able to handle arbitra-

ry in~lete fragments. As long as control flow in the interpreted fragment

* According to our philosophy, declaration before use is not required.

An undeclared variable is considered a semantic error as soon as the

last template offering the possibility of declaring that variable

has been deleted

150

does not bDuch any sy/n%~ctically inca~plete structure~ the fragment can be

hnterpreted without difficulties. If flow of control encounters a temYplate,

the editor will be. invoked asking the user t~ enter the missing parts of the

hr!hment. Alterr~tively, the language definer may force the interpreter

to ask the user for e.g. values of uninitialized variables or missing

expressions.

A language-independent

abstract syntax trees

fragment library sytem where fragments are stored as

is also part of a generated envir~t. Reading,

writing and rewriting of fragments is automatically performed by the editor

if required. Deletion of fragments requires an explicit user ccmnand. PSG

environments offer the facility of redirecting in,at to external text files.

Furthermore, fragn~nts may be written in pretty-printed style onto external

files.

PSG is implemented in PASCAL and runs on SI~4ENS BS20~ machines. The editor

part of the system has recently been transported onto a PERQ personal

workstation. As this machine offers a high-resolution bit map display and a

pointing device (a rsDuse), we have been able to implement an improved user

interface.

2. What the language definer has to do

One of the most important goals during the development of PSG has been the

definition of a formal language definition language covering the whole

spectru~ of a language's syntax, context conditions and dynamic semantics as

well as all of the additional information required by an i~rteractive

environment e.g. menu texts or pretty-printing information. Thus, the

language definer ~Drking with PSG is offered a formal, nonprocedural

definition language~ This is in striking contrast to most existing environ-

ment generators, which frequently support only the formal definition of the

syntactic aspects of a language. For example, the language definer %~rking

with GANDALF [Hab82] " has to write so-called action routines in an ordinary

progranlming language; these action routines will perform tasks such as type

checking, code generation etc. Using the Cornell Program Synthesizer (CPS)

[Tei81], which is based on attributed grarsaars, the language definer has to

code certain attribute functions in the language C (recently, a more formal

specification lar~uage has been developed [Rep84]).

A PSG language definition consists of three major parts: the definition of

the syntax, the context conditions, and the denotational s~mantics of the

language. The first part is mandatory, the others are optional. Syntax and

se~aantics definition rely on well-known concepts. However, new concepts

151

based on AI technology had to be developed for defining and checking context

conditions, due to the specific requirements of interactive enviror~ents

where programs are usually incomplete containing e.g. pending variable

declarations.

Definition of the syntax

The syntax definition part starts with the definition of the lexical

structure of the language, which is used to generate a scanner. The language

definer has to specify all reserved ~K)rds and all delimiters (special

symbols). Each lexical entity is given a name. For PASCAL, this looks as

fol ices :

if-> 'IF';

then -> 'TH~q' ;

else -> ' ELSE' ;

becomes ->' := ';

equal->' = ';

sem ->';';

etc.

The abstract syntax, which forms the second part of the syntax definition,

is the core of any language definition. All other parts of a language

definition refer to the abstract syntax. Abstract syntax rules look like

this:

CLASS statement = assigr~ent, forstatement, compound, ifstatement, call ;

NODE assignment : : variable expression;

NODE forstatement : : Id expression to_or_downto expression statement;

NODE oompound :: state~entlist;

LIST statementlist = statement+;

NODE ifstatement :: expression statement [statement];

NODE call : : Id [parameterlist];

LIST parameterlist = expression+;

CLASS variable = Id, record_ref, array_ref, pointer_ref;

CLASS expression = variable, constant, addition, subtraction, ... ;

~K)DE addition : : expression expression;

etc.

CLASS rules describe syntactic alternatives. NODE rules define substructures

of a syntactic entity. Substructures which are optional are enclosed in

* In the following, all examples refer to PASCAL

'~52

square brackets. The number of a node's substructures is fixed, although

they may be of different syntactic type. LIST rules define syntactic

entities with a variable ntmlber of substructures of the same syntactic type.

In a PSG environment, fragments are internally represented by abstract

syntax trees. Missing substructures of a node are represented by tree

templates; e_bey serve as p!aceholders for pending refinements. Missing

sublists of a list are called list templates, they may be n~ved, deleted and

inserted freely within a list.

The structure oriented commands and menus offered to the user are generated

according to the abstract syntax. For example, each template is associated

with a menu of refineraent possibilities. However, this menu is dynamically

filtered with respect to context conditions (see below).

The concrete syntax, which is the third part of the syntax definition, is

used to generate an incremental parser. The concrete syntax is restricted to

full LL(1) grammars. It includes transfo_rmation rules which specify how to

build abstract trees from textual input. Thus the concrete syntax is

actually a string-to-tree transformation grammar. Concrete syntax rules look

like this:

statement ::= oo.

NODE for, !d~ becomes, expression, to or downto, expression~

do, statement => forstatement

! NODE begin, state[aentlist, end => ~und

! NODE Id, optparameterlist => call;

statementlist : := LIST statement+-sem;

optparameterlist : := [ip,parameterlist, rp];

to or downto : := TERMINAL to ! TERMINAL downto;

etc.

The NODE~ LIST ~nd TERMINAL keywords and the °[', ']', and '=>' delimiters

specify how to build the abstract tree during the parsing process. However,

the situation is not always that simple. Frequently, a concrete syntax does

not merely reflect the rules of the abstract syntax, due to operator

precedences or left-factorization used to avoid LL(1)-conflicts. For

exampl e,

expression : := simpleexpression, s~lexpr_tail;

siraple expression : := factor ;

simpleexpr tail ::= UPDATENODE ecfaal, simple_expression => equal_expr

I m~TY;

Here, the UPD2%TI~qODE and ~MPTY rules will construct a correct equal expr

153

node, although the rules reflect operator precedence and are left-factori-

zed.

The parser will parse any input entered in textual mode. It accepts arbitra-

ry valid prefixes of any input conforming to the syntactical category of a

given template. If any syntax errors are detected, a recovery routine will

ccmpute a menu comprising all local correction possibilities, which is

presented to the user. The user may then correct his input either in textual

mode or by selection among the menu items.

Being the fourth part of the syntax definition, the format definition is a

tree-to-string transformation grammar which is used to construct the

external textual representation of an abstract tree. Prettyprinting infor-

mation is part of the format definition:

forstatement => ! for Id becomes expression to expression do statement [2];

ifstatement => ! if expression then statement[2] (statement[2] -> I else,);

In the example, '!' means start of a new line, and indentation factors may

be specified inside square brackets. Parentheses are used to specify

conditional formatting: the keyword 'ELSE' will be displayed only if the

optional else-part of an ' ifstatement' is indeed present. Conditional

formatting is used also to re-insert parentheses into expressions if

neccessary due to operator precedence (note that parentheses are discarded

during parsing and that operator precedences are reflected by the abstract

tree' s structure). A string-to-tree-to-string transformation which is

performed by parsing textual input, building the abstract tree and pretty-

-printing the abstract tree must yield the original input text exactly

except for spaces, newlines and redundant parentheses.

In the last part of the syntax definition, headers and menu texts have to be

specified which are used to generate the textual representation of templates

and menus. For each name occuring in the abstract syntax an external name

has to be specified:

statement -> 'Anweisung' ;

ifstatement -> 'Bedingte Anweisung' ;

For each syntactic class, menu texts have to be specified:

statement -> 'Zuweisung', 'FOR-Anweisung', 'Verbundanweisung', ... ;

For purposes of generality, syntactic entities may posses different external

names, depending on their occurence in templates or in menus.

~54

The definition of context conditions

The context analysis of P~ has been of special interest~ since the classi-

cal methods like attributed grammars [Knu68] turned out to be inadequate

even if attribute evaluation is performed incrementally [Rep83]. Consider

the following situation: In a PASCAL program-fragment, the variables 'a' and

'i' have not yet been declared or used, ~nd a declaration-template is still

present. Now the user enters an incc~plete assignment:

a[a[i+l]] :=

Although 'a s and 'i ~ are still undeclared, the context analysis must derive

immediately that 'i ~ has type integer (or a subrange thereof), that Ca' is a

one-dimensional array with index and ~ e n t type integer, and that the

still missing right-hand side of the assignment must also be cc~patible with

integer. If a user types 'TRUE ~ as the right side, a semantic error must

immediately be reported. In addition, the menu for the right-hand side

template should be filtered in such a way that the menu item for the

constant 'TRUE' will not be displayed, as well as all other non-integer

expression items.

The classical methods follow the scheme: first inspect the declarations and

collect information abou~t e.g. types of variables, then use this information

to check type in~tibilities in expressions etce This scheme does not

~rk in the above example.

The concept of context relations [Hen84] has been developed to overcome

these difficulties %~th the classical methods. The basic idea is to compute

a set of still ~ossible attributes for each node of an incc~nplete fragment.

A collection of still possible attribute assignments to the nodes of a

fragment is called a context relation. If such a relation consists of

exactly one tuple, the context information is unambiguous. If a relation is

empty, a semantic error has been detected. It can be shown that the context

relation of a ~site fragment is just the natural join of the relations

of its subfragments~ Therefore context conditions may be computed incr~nen-

tally during editing. As context relations are in general of infinite size,

they are represented in a finite way using so-called term form relations

with variables. The basic idea is to describe the set of possible attributes

by a grammar, the so-called data attribute gran~r. Infinite sets of

attributes are then represented by inc<m~lete derivation trees according to

e/%e data attribute g r ~ in addition these derivation trees may contain

arbitrary ~nctio~%l dependencies between (sub)trees.

To specify context conditions, the language definer ~irst has to define the

scope and visibility rules of the language. This information is used to

155

determine whether all the different occurences of an identifier in a

fragment actually denote the same "abstract" identifier. If so, their

corresponding sets of still possible attribute values may be intersected.

The second part of the context conditions definition is the specification of

the data attribute grammar. Here, the structure of the attributes of the

language is defined. Typical rules look like this:

NODE attribute : : type class;

CLASS type = simple_type, arraytype, set_type ;

CLASS simpletype = arithmetic, ordinal;

CLASS arit~netic = integer, real;

CLASS ordinal = integer, boolean, subrange, entm~ration, ... ;

NODE settype :: ordinal;

NODE arraytype :: index_types type;

LIST index_types = ordinal+;

CLASS class = variable, ctype, constant, procedure, function ;

etc.

The attribute format definition forms the third part of the context condi-

tions definition, similar to the format definition of the context-free part

of the language definition, it specifies how attributes shall be displayed

to the user if he looks at the symbol table.

The last and most i~ortant part of the context condition definition is the

specification of the so-called basic relations, which must be specified for

all terminals and each node rule of the abstract syntax. As the context

relation of a fra~nent is the join of the relations of its components,

specification of the basic relations provides enough information to analyse

each fragment incrementally. A basic relation consists of a set of tuples

which define a (possibly infinite) set of attribute assignments to the

ccmponents of a node rule resp. a terminal. For instance, the basic relation

of a syntactic integer ntm~r consisting of a single tuple might be:

Int: MK-attrib~te(integer, constant) ;

which specifies that an integer nt~ber has type integer and is a constant.

More sophisticated specifications can be obtained by using variables, which

specify that certain subattributes must be identical. The basic relation for

an assigr~ent

assignment :- variable expression

contains three tupels, which use the variable TYPE:

'f56

assigr~ent: NIL M/~-aztribute(TYPE, variable) MK-attribute(TYPE, e0mputational)

I NIL MK-attribute(real, Variable) m-attribute(integer, cc~putational)

I NIL Mk-attribute(TYPE, function) MK-attribute(TYPE, ccmputatiorml);

which says that in an assist either

- the left-hand side is a variable of a certain TYPE, and the tight'hand

side is an expression of the same TYPE, or

- the left-hand side is a real variable, and the right-hand side is an

integer expression, or

- the left-hand side is a function identifier with a certain result TYPE,

and the right-hand side is an expression of the same TYPE.

During editing, an inference engine isusedto derive context information

frcm the basic relations as demonstrated in the above example. Note the

similarity to theAI-paradigmaof inference-rule-based deduction systems.

The definition of semantics

Within the PSG syst~n, the dynamic semantics of a language is defined in

denotational style IGor79]. The denotationa! semantics is used to generate

an interpreter. The semantic functions are defined in a META-IV-Iike [Bjo78]

extension of type-free lambda calculus. This metalanguage supports high-

-level eonceps like lists and maps and allows the definition of higher-

-order-functionals of arbitrary rank. The terms of the metalanguageare used

as an universal intermediate language. If a fragment is to be executed, it

will be translated into a term of the metalanguage, using the definitions of

the semantic functions, This term willbe interpreted, that is, reduced to

normal form. The resulting termis the result of program execution.

In contrast to systems like SIS [Mos79] our interpreter allows interaction

with the user during program execution in order to supply input data, to

enter values of uninitialisedvariables etc.

The definition of the semantics consists of three parts. First of all, a

set of auxiliary functionstobeused elsewhere inthe semantics definition

may bedefined. For example, the definition of a "distributed concatenation"

function for a list of lists (which is supposed to be used in several

distinct semantic functions for different types of lists) looks as follows:

disconc =IAM list of lists. IF NULL list of lists TH~W <>

ELSE CONCHEAD list of lists, (disconcTAIL list of lists);

Here, LAM denotes functional abstraction, parentheses denote functional

* For the sake of readability, this specification does not exactly

reflect the ISO-standard "assigr~ent compatibility"

157

application. NULL is a test for the e~oty list, CONC, HEAD and TAIL have

their usual meanings, and '<>' denotes the empty list.

The main part of the semantics definition crmprises the semantic functions

for each syntactic entity. In a PASCAL-subset without GOlDs and side effects

of functions, the meaning of a statement may be defined as a functional

which maps enviror~ents onto functions which map states to states. The

meaning of an expression is a functional which maps environments onto

functions from states to values. An environment is a map which maps identi-

fiers to <location, descriptor~ pairs. A state is a map which maps locations

to values. Thus, the s~nantic function for a conditional statement might

look as follows:

ifstatement: IAM env. IAM state. IF ((I[expression]I env) state)

THEN ((I[statement 1]I env) state)

ELSE ((Istat~nent 2:IAM env.iAM state.statel env) state);

The ' I [' and '] I ' brackets are the "meta-brackets" which denote the meaning

functions of the subcomponents of a node. The special form ' I' ... ° I ' is

used for s~nents which are optional (as the EI~E-part in our example).

If the optional su~ent is missing, the function following the colon

will be used.

The third part of the semantics definition describes the meanings of the

executable fragments. Typical examples are

procedure_declaration: ", ERROR 'Procedure declaration is not executable';

statement: 'Result of statement execution with no variables declared

or initialized:', ((I[statement]I []) []);

where '[]' denotes the empty map. Note the difference between the result

of a 'statement' execution specified here and the semantic function for the

syntactic class 'statement', to which the above definition refers.

3. Experiences with the generator and the generated environments

Until now, environments have been generated for Algol6Z, PASCAL, MODULA-2,

the language definition language itself, and scrae experimental specification

languages. The language definition environment has been used intensively

not only by the m~mbers of the project team, but also by lots of students,

as PSG has been used along with other systems (GAG [Kas8Z] and GANDALF) in

student projects for the i~plementation of a PASCAL-subset. The PASCAL-

-environment was used to ~plement other parts of the PSG system. Since

sLmm~_r 1984, we use it also in programming courses for beginners. Thus, we

feel that by nc~ we have gathered enough experience to compare our approach

to others o

The benefits of a formal lang~e definition !aq~guage

We think that by now state of the art has reached a point where all of the

language specific parts of an envirorm~nt can be formally described and

automatically gene~rated, at least for languages of a complexity not greater

than that of e. g. PASCAL.

The use of a formal language definition language has many advantages:

- In view of the power and complexity of the generated enviro~nents, PSG

language definitions are very short. Typically, they vary in size

between 240 lines for an AlgoI6Z enviro~t without context conditions

~nd s~antics ~nd 36Z0 lines for a ~ - 2 envirorm~nt including full

specification of context conditions and denotational semantics.

- The expressive power of the language definition language allows concen-

tration on the relevant aspects of a language definition. The language

definer does not have to concern himself with minor details such as the

organization of symbol tables etc.

PSG language definitions are safe, since all inconsistencies in a

definition are detected at generation time.

- The modular design of the language definition language improves read-

ability and reliability. It allc~s the independent definition of the

syntactic, context dependent, and semantic aspects of a language, once

the abstract syntax has been defined.

- a formal language definition language is an ideal tool during the

development of new languages. In a "language design lab" , language

definitions are easily modified and tested.

As a consecg]ences the amount of manpower to generate an environment is

small: A moderately awake graduate student with some background in program-

ruing languages and some initial knowledge of the PSG user interface will

specify and debug an Algol60 definition without context conditions and

semantics within ten days. The MODULA-2 environment including full specifi-

cation of context conditions and denotational semantics was defined as part

of a diplc~a thesis within eight rsDnths [Klu84].

* At the moment, this is not true for the semantics definitiont as it is

based on type free lambda calculus. However, the implementation of a

type inference algorithm allowing handling of polymorphism, overloading

and coercions is about to be ccrapleted (see [Let84]).

159

The benefits of the hybrid editor approac h

In [Fei84], Kaiser and Feiler state for structure oriented editors that

"in order to modify an expression the user must understand the under-

lying tree representation and enter a tedious serious of tree oriented clip,

delete and insert ~ s . Unfortunately, complete parsing of all expres-

sions is also nonoptimal". This is true not only for expressions, but also

for arbitrary structured statements as well as for any syntactic entity

including complete programs. In [Rep81], Teitelba~ and Reps state that

"(the change of a while loop into a repeat loop) must be accc~lished by

moving the constituents of the existing ~.E-tesplate into a newly inserted

UNTIL-template. Although such modifications can be made rapidly . .., they

are admittedly awkward". Within a PSG envirorm%ent, problems of this kind

do not exist, since users may switch freely between textual mode and

structure mode. Furthermore, our experience indicates that experienced

programmers prefer textual mode not only for modifications, but also to

enter e.g. a sequence of statements or even a whole procedure. Since the

parser accepts arbitrary incomplete input and, in case of syntax errors,

generates a menu of all possible local recovery actions, textual input mode

seems to be quite attractive for users who know the concrete syntax of their

language. Furthermore, arbitrary parts of a fragment may be read in from an

external textfile. On the other hand, unexperienced users tend to prefer

structured mode. By simply selecting menu items, they need not bother about

syntactic details which they do not know. Thus, the possibility to mix

textual mode and structure mode freely see~s to be the most flexible,

general, and user friendly solution to the dichotomy of viewing programs

either as text or as structure°

benefits of dynamic context sensitive menu filtering

We believe that preventing mistakes is far superior to making the user fix

them. Within a PSG environment, structured mode prevents syntactical

semantical errors due to the dynamic context-sensitive menu filtering. This

feature is not provided by any other environment known to us. In textual

mode, the user may always type arbitrary nonsense, but syntactical and

semantical errors will be detected immediately. This guarantees that

programs are correct at every stage of their development.

There is, however, one problem in connection with certain modifications: if

a user modifies e.g. a procedure declaration by adding an extra parameter,

context incompatibilities will occur at each place where the procedure is

called. If the calls are modified first, they will become incc~patible with

the procedure declaration. At the mc~nt, the user can circ~ravent such

160

situations by temporarily deactivating the context analysis. It is planned

to modify the context analysis in a way that enables it to tolerate faulty

subtrees temporare!y.

Drawbacks in generality and performance

PSG is not the ultimate system, as there remain several unsatisfying points.

The current implementation of the definition language imposes some restric-

tions on the class of languages which may be defined with PSG.

First of all, if the concrete syntax of a language cannot be made LL(1),

the language cannot be defined within PSG. It should be possible, however,

to incorporate a more powerful parsing technique such as LALR(1) (which is

used also in M~TOR [KabB3]). Note that any parser must fullfil the require-

ment that arbitrary valid prefixes of arbitrary sentential forms must be

parseable, and that syntax recovery menus must be oDmputable.

Certain languages have context conditions which are not definable withJ~

the current definition language. The scope and visibility analysis cannot

handle features like elliptical record references in PL/I or FO~NARD

procedure declarations in PASCAL (which will lead to a 'double declaration'

error). Within our framework - no declarations required before use - FORWARD

declarations do not make sense anyway. The context analysis phase is unable

to handle user-defined polymorphic or overloaded objects such as overloaded

functions in ADA. We are currently working on a more powerful specification

language for context conditions which will overcome these shortcomings.

Finally, the semantics definition language is unable to handle any form of

parallelism.

The performance of PSG environments has not yet reached production quality,

as far as context analysis and program execution are concerned. For the

context analysis, this is primarily a problem of the current implementation,

which is merely a prototype. However, the intrinsic complexity of the method

is greater than that of e.g. attributed grammars: For an abstract bq~ntax

tree containing n nodes the Reps/Teitelbau~n algorithm will perform with

O(n), wheras our method requires O(n in(n)).

The performance difficulties concerning program execution are of a slightly

different nature, as we have difficulties to see how to speed up the

interpreter simply by improving its implementation. The interpreter is much

faster than that of SIS. However, it is not fast enough for production

programs, as is also noted by Pleban for PSP ([Ple84]). We hope that these

shortcomings may be overcome by compilation of the metalanguage terms

[Bah84b], utilizing techniques like data flow analysis , elimination of

unneccesary call-by-name and delayed evaluation, and elimination of tail

161

recursion and linear recursion.

4. Conclusion

We presented the PSG programming system generator, which generates inter-

active programming environments from formal language definitions. The pros

and cons of using a formal, entirely nonprocedural language definition

language have been discussed. It turned out that use of a formal definition

language allows very simple and rapid generation of reliable and powerful

environments. On the other hand, certain complicated features of certain

languages are not definable with the currently implenented definition

language, and the performance of the generated envir~ts has not yet

reached production quality. Nevertheless, we believe that the use of formal

language definitions is an appropriate tool, and that the shortccmings in

performance will be captured by more sophisticated knplementations, which

are still under way.

5. Acknowledgements

I thank the other members of the project team, namely R. Bahlke, W. Henhapl,

M. Hunkel, M. J~ger and T. Letschert for their valuable comments during

the devel~t of this paper.

I also wish to thank the referees for their pertinent remarks.

6. References

[Bah84a] Bahlke, R. and Snelting, G. : Programmiersyste~enerator. Arbeits-

bericht 1984. Bericht PU2R2/84, Fachgebiet Programmiersprachen

und ~bersetzer II, Technische Hochschule Darmstadt, Februar 1984.

[Bah84b] Bahlke, R. and Letschert, T. : Ausf/lhrbare denotationale Semantik.

Proc. 4. GI-Fachgespr~ch Implementierung von Programmiersprachen,

Z~rich, M~rz 1984.

[Bjo78] Bj~rner, D. and Jones, C.B. (eds.): The Vienna Development Method:

The metalanguage. IIqCS 61, Springer Verlag 1978.

[Fei84] Kaiser, G.E. and Feiler, P.: Generation of language-oriented editors.

Proc. Programmierungebungen und Ccq0iler, Berichte des German Chapter

of the ACM 18, Teubner 1984.

Gordon, M.J.C. : The denotational description of progranTaing languages,

an introduction. ~inger 1979.

IGor79]

162

[Hab82]

[HenS]

[Kah83]

[~u~]

[Mos79]

[Pau82]

[PZ~4]

[R~83]

[Tei81]

Haber~nnn N. et al~ ~ The second c~pendium% of GANDAI2 documentation.

Carnegie-Me!Ic~-University, May 1982.

Hen~pl, W. and Snelting, G.: Context relations - a concept for in-

cremental context analysis in program fragments. Proc. 8. GI-Fach-

tagung Programmiersprachen und Programmentwicklung, Informatik

Fachberichte 77, Springer Verlag 1984.

Kahn, G° et al: Metal: A Formalism to specify formalisms. Science of

Computer Progr~aming 3 (1983) 151-188.

Kastens, U. and Zin~ermann, E. : GAG - A generator based on attributed

Grammars. Universit~t Karlsruhen Institut f~r Informatik, Bericht

Nr]4/80, 198Z.

Klug, M. : Implementation of MODITLA-2 with the PSG-Systsm. Diploma

Thesis, TH Darmstadt, 1984 (In German).

Knu~ch, D.E. : Semantics of context-free languages~ Mathematical Systems

Theory 2, 127-145, June 1968.

Letschert,T.: Type inference in the presence of overloading, polymor-

phism, and type coercions. Proc 8. GI-Fachtagung Programmiersprachen

und Programmentwicklung, Informatik Fachberichte 77, Springer 1984.

Mosses, P. : SIS - Semantics implementation system, Reference Manual

and user guide, Report DAIMI DC-30, Aarhus University 1979.

Paulson~ L. : A semantics-directed compiler generator. Proc. 9th ACM

POPL conference, Albuquerque 1982, 224-239.

Pleban, U. : Formal Semantics and Compiler Generation. Proc. Program-

~_ersprachen und Compiler, Berichte des German Chapter of the ACM 18,

Teubner 1984.

Reps, T., Teitelbat~n, T. and Demers, A.: Incremental context-dependent

analysis for language-based editors. ACM TOPLAS 5, No. 3 (1983),

449-477 °

Reps: T. and Teitelba~n, T. : The Synthesizer Generator. SIGPLAN

Notices Vol. 19, No. 5, 1984.

Teitelbat~n, T. and Reps, T. : The Cornell Programm Synthesizer: a syn-

tax-directed programming envir~t. CACM 24, No. 9 (1981).

