
INTRODUCTION

ON THE RELEVANCE OF FORMAL METHODS TO SOFTWARE DEV~OPMENT

Christiane Floyd

TU Berlin

Sekr. FR 5-6
Franklinstr. 28/29

D-IOOO Berlin 10

Motivation

As hostess of the practice-oriented part of the TAPSOFT conference, I would like to

welcome you as participant in a discussion which we wish to promote both at the con-

ference itself and beyond it. This discussion should focus on a central theme: the

relevance of formal methods for practical software work. This leads to a series of

questions: Under what circumstances and for what purposes should these methods be

used? What gains may be expected? What resources and tools are needed? Which claims

are founded or unfounded? What issues are or are not addressed by formal methods?

What other kinds of techniques are required, and how can they be combined with for-

mal methods, if desired?

We feel that this discussion is urgent in view of the many still unresolved pro~olems

in software development and the widely recognized need for higher quality; and that

it needs to be encouraged because the general tendency is for authors developing for-

mal approaches to operate in fairly closed circles, thus reinforcing each other's

views, while many potential method users are left out. Some do not see the potential

benefit of such methods to their work, or they feel that they cannot articulate their

needs. Others are discouraged by the amount of learning involved, or, if they are in-

terested, they do not know how to select the method best suited to their production

situation. The technical contributions as well as the generous support given to our

conference by several industrial firms indicate clearly that the topic is considered

highly relevant by some institutions, while other practitioners flatly state that they

consider our topic too theoretical and not worth their time. Perhaps this is related

to the fact that the introduction of formal methods consumes considerable resources

and that the use of formal methods will inevitably create yet another kind of spe-

cialist within a given community of DP specialists, which is undesirable in organi-

zations producing application software for their own needs only. Thus, we are mainly

addressing firms producing software on a large scale and therefore able and willing

to consider a sizeable extra investment in methods.

In this introduction my aim is to clarify basic concepts and sketch out some lines

of argumentation so as to prepare the ground for the discussion and to stimulate your

thoughts on the topics taken up in detail in the seminar lectures and colloquium

papers. In these contributions, the central theme of the conference is approached

from various sides:

Several papers focus on concepts of formal semantics and their application to

specific tasks in software development, such as the specification of modular pro-

grams, the derivation of programs from formal specifications and the treatment

of concurrency. These papers encourage us to think of programs in abstract, mathe-

matical terms, and emphasize program correctness, correctness being understood in

a very technical sense as a property which can, and should, be proved formally on

the basis of a given specification, while the relation of the specification itself

to what is needed in reality remains open~

A second group of papers present software tools to support the application of fo_~r-

mal approaches. Typically, the tools facilitate the formulation of syntactically

correct specifications; they perform consistency checks and partially automate

the transition from specifications to programs or the generation of test data on

the basis of a given specification. Since the use of formal approaches tends to

lead to considerable extra work involving bulky documents, which have to be kept

up to date over a long period, the convenience offered by such tools has a deci-

sive influence on the usability of the underlying method. Of particular impor-

tance in practical work is the possibility of making changes conveniently and con-

sistently in all documents.

In other papers the scope is widened to me~hods for software development as a

whole. They report experiences with more or less formal methods gained in projects

and in introducing methods in industrial settings. We can see here that methods

are not well-defined "things" which can be mechanically applied to produce pre-

dictable results; rather, the introduction of a method in any given setting in-

volves complex processes of learning, gaining experience and method adaptation,

in which the original method as presented by its author serves as an inspiration

and is eventually transformed to meet the actual needs of its users. Strictly

speaking, there can be no formal method for software development as a whole be-

cause software development involves other issues besides formalization.

Finally, the scope of applicability of focal methods and the claims put forwar_dd

b_~___their~roponent ~ are critically examined; in one case, by pointing to specific

problems in software development which can or cannot be aided by formalization in

the widest sense; in another, by showing how all formal approaches, in the end,

depend on intuitive insight, so that in software development, as in all other

human activities, our basic aim must be to go along with and strengthen our own

intuition. As an essential requirement for formal methods themselves, it follows that

they must be suitable as aids to our intuition.

We hope that the various partial views presented by some of the leading authors in

our field will enable you to better ascertain your position in relation to others.

We would like to enable practitioners to see what the approaches offer, how they

should be applied, and what their benefits and their limitations are; to enable teach-

ers to gauge to what extent training in software engineering should be geared to such

formal approaches, given their relevance; and to enable researchers to get feedback

on the usefulness of their methods with a view to making them increasingly workable.

For all of us, I hope that we shall improve our understanding of how aspects that can

be formalized interact with others that cannot, and how this can be taken into account

by methods. Perhaps Wlad Turski had something like this in mind when he suggested

"Formalism - or else?" as the title for the panel discussion.

I will devote the rest of my introduction primarily to the question of formal methods

and their relevance to software development as a whole. In doing so, I have to combine

the role of hostess in a controversial discussion aiming at mutual understanding with

a strong viewpoint of my own, which I do not wish to hide. I will, therefore, base my

arguments on my own views, without wishing to impose these views on you, and you are

invited to disagree.

To clarify positions, I will attempt to sketch out a "formalist" standpoint, summa-

rizing the key arguments of proponents of formal methods, as I know them, and a "coun-

ter-formalist" standpoint criticizing this line of argumentation. I consider n~yself

a moderate counter-formalist. There is, however, no one coherent counter-formalist

position. My own critique is based on a process-oriented view of software development,

which I will contrast with the formalist position.

What do we mean by "formal"?

The underlying convictions of formalists and counter-formalists can be illustrated

by examining various meanings of the term "formal" as given in the Oxford English

Dictionary, which I have excerpted from a much longe~ numbered list of usages:

formal

1 Of or pertaining to form, in various senses

a) pertaining to the form or constitutive essence of a thing: essential

(opposed to material)

c) pertaining to the outward form, shape, or appearance (of a material object);

also, in immaterial sense, pertaining to the form, arrangement, external

qualities

d) Logic. Concerned with the form, as distinguished from the matter of reasoning

Done or made with the forms recognized as ensuring validity; explicit and

definite, as opposed to what is the matter of tacit understanding

Marked by extreme or excessive regularity or symmetry; stiff or rigid in

design; wanting in ease or freedom of outline or arrangement

b) in immaterial sense: having a 'set' or rigorously methodical character.

In my opinion, several of these meanings of "formal" are implied when different people~

in varying contexts, speak about formalization in software development, without this

becoming explicit. In particular, formalists and counter-formalists use this term

differently. I would like, therefore, to point out some important types of differences

between the various usages:

- How is form seen to be connected with matter or substance?

In I a) form appears as constitutive essence, while in i c) it is reduced to

outer appearance. Substituting "contents" for "matter" in our immaterial world

of software development, I think formalists would tend to argue that the choice

of formalism used to express our specifications (for example) will have consti-

tutive influence on the contents to be expressed, while their critics will hold

that the formalism chosen will influence the external appearance of these con-

tents.

- What values are associated with issues of form?

In 5, obeying given rules of form inspires confidence, because they are perceived

as ensuring the validity of results. By contrast, in 9 form has distinctly nega-

tive connotations, such as restricting freedom in design and behaviour.

I zhink that both of these views are to be found in our context, too; promoters

of formal methods, in particular, are highly confident that formalization will

lead to greater systems quality, while their critics usually think of design as

a creative process in which an initial vision of the "whole system is gradually

refined and improved on the basis of a critical evaluation of preliminary pro-

posals and in which formalisms may appear as a hindrance.

To what extent is form considered on its own?

Again, in i a) form and matter seem inextricably linked; in i d), however, which

is the usage most directly related to what we mean by "formal" in the expression

"formal semantics", form is explicitly severed from the contents of reasoning

and considered on its own. While this may be fine for logic, I consider it dan-

gerous in the development of software systems, which are not abstract games, but

intended to affect, by their contents, other peoples' lives.

Also, in 5 formal is seen to be opposed to what is a matter of tacit understand-

ing. But all our understanding, knowing and communicating fundamentally rests on

tacit understanding, which stems from the context of common action and experience.

Therefore, for for~Jal descriptions to be meaningful to people, they should not

be opposed to, but explicitly rooted in, what is a matter of tacit understanding.

In software development, all discussions ultimately rest on tacit understanding,

referring to the intended application context. For a formal document to be mean-

ingful, we have to ensure, by suitable informal procedures such as the careful

reconstruction of concepts, as used in the relevant application area, or by ar-

guments giving the context and the decisions that have led to the specific formal

model, that it relates to our tacit understanding.

Formal methods

A method offers guidelines, consisting of techniques, tools and forms of organization.

In a formal method, the techniques and tools centre around the use of a formalism,

for example a language with a formal syntax and formal semantics~ By contrast, lan-

guages (and methods using them) are called semi-formal if they have a formal syntax

but no formal semantics. People also speak about informal methods, but, in my opinion,

this term is only fit for colloquial use, since it indicates the absence of formalism

but not the presence of anything else.

I see important differences between formal and semi-formal languages in their use as

communication media between people (for example, when writing specifications):

Semi-formal languages can be used for partial, incomplete descriptions arranged

in a formalized manner, whereas whatever is described with the help of formal

semantics must be complete and unambiguous; this is normally required only for

texts which are to be machine-processed.

Semi-formal languages do not provide the basis for formal correctness proofs,

claimed to be one main advantage associated with the use of formal methods.

In discussing the relevance of formal methods to software development, we have to

distinguish between methods on two levels: global methods addressing software develop-

ment as a wholes and components of such methods supporting specific tasks with local

applicability. Formal methods can only appear as component methods, to be combined

with other component,methods offering semi-formal languages and techniques for writing

prose-texts, as well as informal methods to be discussed later. For formal methods to

be useful, their combination with other method components and their embedment in soft-

ware development as a whole must be carefully designed since, surely, it is the pro-

cess as a whole, and not the local use of any particular method, that determines the

quality of the resulting product.

The formalist arqum_ent and its critique

As far as I am aware, formalists, in advocating their methods, rely on the following

view of software development:

Software development starts from fixed requirementsn which are given but, as yet, not

usually formally expressed (it is to be hoped, from the formalists' point of view,

that suitable formal techniques will soon be available for handling requirements).

The task of the software developer is to transform these fixed requirements into a

correct (and efficient) program. This transformation occurs in several steps. First,

we need to specify WHAT the program does in abstract, mathematical terms without re-

gard to HOW the program is implemented. Then, for any given programming language, the

corresponding program can be derived in one or more steps which themselves can, and

should, be formalized. As opposed to conventional programming, the resulting program

can be proved correct with formal proof techniques. If needed, it can subsequently be

transformed into a more efficient solution.

In the view of formalists, the use of formal methods leads to important gains:

i. The process of formalization (abstraction) in the early stages of software de-

velopment will promote the finding of errors~ inconsistencies and missing ele-

ments in the requirements.

2. On the basis of the specification, software developers will be able to answer

questions on the intended functionality of the program at a very early stage.

3. Programs can be proved correct with respect to their specifications.

4. Specifications carl be transformed into programs according to fixed rules

("mechanically").

5. In some methods, specifications can be executed and thus serve as a prototype

for the future system.

In giving a critique of the formalist position, I will disregard questions of train-

ing, motivation, resources and tools. I will confine myself to the questions: To what

extent is the formalist standpoint relevant to software development? Are its assump-

tions valid? Are its claims justified?

In doing so, I will draw on a different, process-oriented view of software develop-

ment, which can be summarized as follows:

Software development consists of processes of learning, creative cooperation and com-

munication involving people of differing backgrounds and interests. Its object is not

so much a product derived from fixed requirements, but a change in human work process-

es involving the use of this product. While there is a class of well-defined function-

al requirements, which may be determined in advance and perhaps even formalized, this

does not hold for those aspects that determine the suitability of a program as a tool

for human users: the distribution of functions between man and machine, the matching

of system functions to work-steps, the possibility of human intervention in the case

of system errors, and the handling of errors in the context of human work. These as-

pects are not amenable to formalization since they cannot be described completely and

unambiguously in advance. Furthermore, software requirements change with the needs of

the user organization.

Therefore, software development must be understood in cycles of (re-)design, (re-)im-

plementation and (re-)evaluation in which processes of software development leading

to system versions are interleaved with processes of system use; since software quality

is determined in using software, the development and use of software must be consid-

ered together.

In this view, formal methods fail to address key issues in software development:

- finding out what are the relevant requirements and how they relate to each

other;

- designing system functions and software architecture taking into account both

the informal context of the system's use and the specific properties of the

underlying base machine;

making software systems suitable as tools for people;

adapting existing systems to meet new needs.

Against this background, several benefits of formal methods, as claimed by their pro-

ponents, appear doubtful:

- ad I. Formalization is only one activity that will lead to finding errors and

- ad 2.

- ad 3.

- ad4.

- ad 5.

missing elements, and it is not necessarily the most reliable one. In par-

ticular, it does not point to discrepancies between the requirements as

formulated and the real needs of the application context.

"Understanding" system functions on the basis of a formal specification

means understanding their abstract mathematical properties; it does not

enable us to answer reliably questions pertaining to the use of these

functions in h~man work or problem-solving.

Proofs essentially rest on argumentation; they are established, found con-

vincing or revised in a social process involving learning and constructive

criticism; formal proofs are subject to the same errors as programs and

would themselves have to be proved by informal argumentation; therefore,

it is not obvious what is gained by formal correctness proofs of programs;

moreover, it is not clear what is gained by a "correct" program since the

specification rests on shaky ground, being the formalized version of the

result of an unreliable communication process early in software development°

I know of no case where a progrHmmer has derived a program mechanically

from a specification, and I think there are good reasons why programmers

proficient in formal methods, after having written the specification, have

to make a design which takes the specification into account, but cannot be

derived from the specification by any fixed rules. There are large parts of

programs which are beyond the scope of formal specifications: details of

man-machine interaction, formats of input and output data, communication

mechanisms with peripheral devices and software utilities; they also obey

different quality criteria, such as efficiency and storage economy; a new

design will, therefore, lead to better results.

A specification that can be executed by a computer is a program; it may

well be that improved programming languages based on formal semantics will

constitute an improvement on existing languages, but this leaves open the

problem of specifications that are useful for humans; such a specification

cannot be a formal document only, and it must be geared to the actual needs

in commthnication between the people involved, rather than to the prerequi-

sites of mathematical theories.

Towards a balance between formal and informal methods

The purpose of t~his conference is not, of course, to confront two irreconcilable

positions, but to work towards a harmonious interplay between process and form at all

levels in software development. Therefore, the two standpoints sketched out above

need to be seen as complementary rather than contradictory~

Even in the process-oriented view, we work at any point in time towards a product

whose requirements are considered fixed. On the other hand, every formalist will

readily agree that formal methods are applied in a context of changing human needs.

Furthermore, while both views can be applied to all software systems, their relative

importance depends on the type of system to be constructed and how it is embedded in

its usage context. For example, compilers for a given programming language have a

well-defined desired functionality and are therefore vastly more amenable to formal

approaches than interactive application systems where the interleaving of computer-

supported and other work-steps of predominantly lay users is a major concern. There-

fore, not all points of the critique of the formal argument carry equal weight in all

situations.

As a sceptic with respect to formal methods, I can nevertheless see their usefulness

in several important respects:

- to clarify concepts underlying our software work, as has happened in the case of

abstract data types and modules, which have emerged, as a result of work in for-

mal semantics, as vehicles for focussing our thoughts and discussions in software

design and which can be studied and practised on the basis of small examples;

personally, I find this help immensely valuable, and I believe that a large por-

tion of the positive experiences reported by users of formal methods is due to

this effect;

- for literal application in well-defined sub-problems, where concerns of function-

ality and reliability take precedence over concerns of usability and where re-

quirements can be expected to remain stable; in my view, the treatment of con-

currency falls into that category;

- to serve as an inspiration or guidance for organizations developing their own

methods; I feel that the emphasis here must be on retaining the spirit of the

method while deliberately omitting the literal use of some of its more formal

elements and adding suitable informal elements geared to supporting processes

of learning and creative cooperation;

- to standardize solutions in problem classes which are already well understood

and where the problem of designing new systems in a creative process can, to

some extent, be replaced by the use of known solutions;

- to provide new ways of programming with the help of languages based on formal

semantics, which may well avoid the serious shortcomings of existing programming

languages while at the same time permitting the formulation of programs at a

higher level.

10

On the other hand, Z feel strongly that processes of learning r communication and cre-

ative cooperation cannot, and should not, be formalized, although attempts at doing

so are wide-spread amongst authors of software design methods, for example when struc-

turing criteria like ~'top-down ~' are applied to the design process as it takes place

in time, rather than to the form of its result. In my o~ experience as a software

designer and project adviser, processes cannot be entirely formalized, and attempts

at doing so prove positively harmful.

Such attempts to reduce process to form are based on a serious misunderstanding of the

nature of processes. Processes are irreversible; they take place in time. By their

very nature, they cannot be fully understood and described in advance; they can only

be understood by the people involved in these processes as they happen. Here, people

act in open situations, on the basis of their needs and commitments, pursuing changing

goals as they go along and revising their understanding in the event of new insights.

If we wish to understand the nature of such processes, we have to develop a new the-

ory drawing largely on concepts that are useful for studying living systems, as they

exist in nature and society, and language as it is used in communication between peo-

ple.

Though no such theory is available at present, we can nevertheless suggest concrete

informal methods to support processes of communication, which are in wide use:

- working out relevant examples, taking into account the application context

- taking care in the choice of basic concepts used in software development so as

to enhance common understanding

- constructive criticism of partial solutions or partially formalized solutions

on the basis of transparent criteria

- carrying out controlled experiments, for example in the form of prototypes,

which can be evaluated

- using psychological methods for improving the communication between groups of

people enacting different roles.

Whether or not formal methods are applied, these informal procedures may be expected

to bring enormous benefits.

I should like to close this introduction with a few personal words. My involvement

in the TAPSOFT conference must be understood in terms of my friendship with my col-

league Hartmut Ehrig, which is based on great mutual respect at a personal level,

while at the same time we most heartily disagree: he is a powerful advocate of formal

methods, whereas I remain an undaunted sceptic in this respect. However, because of

11

our friendship, it has not been possible for us to dismiss each other's viewpoints

as irrelevant; so, instead, we have carried on a continual heated discussion over

several years. As a result, I now have a fairly good appreciation of what algebraic

specification can or cannot do for me, under what circumstances and for what purposes

I would use it in software development, and how it could be embedded in the overall

approach which I favour. I am sure, too, that Hartmut has a better appreciation of

the importance of those aspects of software development which cannot be formalized.

Yet, I continue to work without feeling any compulsion to become proficient in alge-

braic specification, while he continues to "abstract from" those unpleasant aspects

of software development which are not amenable to formal approaches, in order to make

progress in elaborating his specification technique. Thus, our disagreement is not re-

solved, and it cannot bet since it rests on both sides on differing fundamental con-

victions. And yet, as we share a common concern for greater quality in software de-

velopment, the basic question in my mind is how these two viewpoints can fruitfully

interact and be combined to produce workable approaches.

I have borrowed the phrase "a balance between formal and informal methods" from Don

Knuth. In his enlightening paper on "Literate Programming" he writes: "I owe a great

debt to Peter Naur for stressing the importance of a balance between formal and

informal methods". I owe Peter Naur a much greater debt in this respect, since he has

for years been my main support in developing my own ideas in a context where contrary

views were for a long time the predominant ones.

