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1, Imtroduction

We consider a restricted version of the alternating Turing machine model
introduced in [2] and [13]. Qur machine, the altermating multihead finite
automaton, has no storage tape, just a read—only input tape with multiple heads. A
primary reason for studying such automata is that altermation adds so much power to
automata that it is necessary to examine very restricted alternating automata if omne
wishes to compare alternating classes with familiar classes such as the context—free
languages, log space, and so forth. (Note that an alternating pushdown automaton is
as powerful as a deterministic Turing machine with an expomential time bound [1].)
We are also interested in determining the simplest kind of device for which alterna—
tion adds computational power.

We hope that the study of alternating multihead finite automata gives 1us
information sabout the structure of deterministic polynomial time, a very important
class, since (as we show later) the languages accepted by two-way alternating mul-
tihead finite automata are exactly the languages accepted by deterministic Turing
machines in polynomial time.

Our results are summarized in Section 6,

2, Preliminaries
The symbol N denotes the set of positive integers, A denotes the empty string,
and if x is a string, |x| denotes the length of x. All logarithms are to the base 2.

Multihead finite automata

pefinition. A two-way alternating finite automaton with k heads (2afa(k)) is a

structure M = (K:Z’5sT»QO,U,F), where X is a finite set of states; 5 dis the input
alphabet (not containing ¢ and $); 6 is the transition function, mapping K X (T U
{¢,$)) into the subsets of K x {-1,0,+1}, with the restriction that for all p,q € K,
(q,d) € 5(p,¢) implies that d > 0 and (q,d) € 5(p,$) implies that d ¢ 0; =T is the
head selector fupnction, mapping K into {1,2,...,k}; dy € K is the initial state; U &
K is the set of universal states; and F € K is the set of accepting states.

If (p,d) € 8{(q,a) and t(q) = h, then M, if it is in state g with head h scan~—

ning a on the input tape, may enter state p and move head h to the right d squares.

Definition. Let M be a 2afa(k) as defined above., If U =@, then M is a two-way
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nondeterministic finite automaton with k heads (2nfa(k}). If for 2ll g €K, a €35 u

{¢,8), 8(q,a) is empty or =z singleton, then M is a two-way deterministic finite
antomaton with k heads (2dfa(k)). M is a one-way alternating finite automaton with
k heads (lafa(k)) if 8 maps K x (T v {£,$]) into the subsets of K x {0,+1}. If M is

one-way and nondeterministic [deterministic], then M is called a 1nfa(k) [1dfa(k)].

A confignration of M on input x € ¥* is a (k + 1)~-tuple (q’il""’ik)' where ¢ € K
and1$ij_§_|x|+2forlgj_<_k.

A configuration of M describes a state of M's computation: g is the state of
g

M’s finite control and il""’ik represent the positions of M's k heads.

Definition. Let M be a 2afa(k) as defined above. The transition relation on con-
figurations of M with input x is given by (q,il,...,ik) h{x (p,il,...,ih+d,_,,,ik)
if and only if (p,d) € 8(q,a), where t{(q) = h and a is the i, th symbol of ¢x$. For

C and D configurations of M, we say that D is a successor of C {on input x) if € ﬁfx

p. IfC hﬁx D, then D is an immediate successor of C.

The initial configuration of M is (qo»l,...,l)- A configuration C =

(q‘il""’ik) is said to be universal if g € U, exjstential if q € K - U, and
accepting if q € F. An accepting computation tree of M on input x is a tree T whose

nodes are labelled by configurations of M on input x such that (i} the root of T is
labelled by the initial configuration of M, (ii) if € is a wuniversal configuration
that labels an internal node y of T, then the labels of the immediate descendants of
y are exactly the immediate successors of € on input x, (iii) if C is an existential
configuration that labels an intersmal node y of T, then y has exactly ome immediate
descendant, whose label is one of the immediate successors of € omn input x, and (iv)
the leaves of T are lebelled with accepting configurations. We say that M accepts x
if there is an accepting computation tree of M on input x. Let L(¥) = {x €§* | ¥
accepts x}.

The family of langnages {L(M) | M is a 2afa(k)) is denoted 2AFA(k). Similarly,
the families accepted by 2nfa(k), 2dfa(k), lafa(k), 1nfa(k), and 1dfa(k) are denoted
2NFA(k), 2DFA(k), 1AFA(k), INFA(k), and 1DPFA(k), respectively.

The following lemma states that we can assume that an alternating multihkead
finite automaton can detect coincidence of heads, even though the model does not

explicitly contain this feature,.

Lemma 2.1, Let M be a 2afa(k) [lafa(k)] that has the (additiomal) ability to detect
when two heads coincide. There exists a 2afa{k) [lafa(k)] ™' lacking this
capability that accepts the same language as M.

Proof, Whenever M’, during its simulation of M, wants to branch, depending on
whether two heads coincide, it enters an existential state to guess whether the
heads coincide. If M’ guesses that they do, it enters a universal state to choose
whether to continue the simulation (under the assumption that the heads coincide) or

to move the two heads to the right simultaneously, entering an accepting state if
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and only if both heads reach the right endmarker at the same time. A guess that the

beads do not coincide is handled in a similar fashion. [J
Multihead pushdown automats

Definition., A two-way nondeterministic pushdown automaton with k heads {(2npda(k))

is a structure M = (K,Z,A,S,t,qo,ZO,F), where K, $, T, qq° and F are the same as for
a 2afa(k), A is a finite set of pushdown symbols, Z0 € A is the start symbol, and &
maps K X (S u {£,$}) x A into the subsets of K x {~1,0,+1} x ({A} v A v 4%y,

If (p,d,y) € 8(q,a,Z) and t(q) = h, then M, if it is in state gq with head *h
scanning a on the input tape and with Z on top of the pushdown, may enter state p,

move head h to the right d squares, and replace Z on the pushdown by the string y.

Definition. Let M be a 2npda(k) as defined above. A configuration of M on imput =x

is a (k + 2)-twple C = (g,i;,...,44,0), where ¢ €K, 1 < i; < Ix] +2 for 1 ¢ j (K,

J
and o € A*; C is a surface configuration if o € A,

A configuration has the same meaning as for a multibead finite automaton,
except that the string e represents the contents of M's pushdown, with the top of
the pushdown to the right. The definition of the transition relation on con—
figurations is straightforward, as are the definitions of deterministic and one-way.
A string x is in L(M) if and only if (qo,l,...,l,zo) E{X (d,ig,...,4p,0) for some
g € F. Let 2NPDA(k) = {L(M) | M is a 2npda(k)}. The classes 2DPDA(k), INPDA(k),
and 1DPDA(k) are defined similarly.

We now give two lemmas that will be the basis for simulations of multihead

pushdown automata in Section 3. The proofs of these lemmas are straightforward.

Lemma 2.2. Let M be a 2npda(k) [lnpda(k)]. We can construct a 2apda(k) [Inpda(k)}
M’ such that L{M’) = L(M) and such that, whenever M' enters an accepting state,

there is only one symbol on the pushdown,

Definition. Let M be a 2npda(k), let P = (p’il""'ik'Z) and Q = (g,jq,...,d5,¥) De
surface configurations of M on some input x, and let n be 2 nonnegative integer.

The pair (P,Q) is p-realizable (on inmput x) if P E%x Q.

Lemma 2.3. If P and Q are as defined above, then the pair (P,Q) is n-realizable if
and only if either

(1) P ﬁ%‘ Q via a series of moves that do not change the pushdown height, or

(2) there exist surface configurations R = (r,ﬁl,...,Qk,X) and § = (s,ml,...,mk:w)
such that (p,iy,...,4,2) kg, (r,ﬁl....,Qk,YX), (s,my,o.oom, W b, (@dgs. .0 g A),
and (R,8) is (n-2)-realizable, or

(3) there exist a surface configuration R and an integer i, 1 {( i { =n, such that

(P,R) and (R,Q) are i- and {(n—i)-realizable, respectively.

Turing machines and auxiliary pushdown automata

Let ASPACE(S(n)) denote the class of languages accepted by S(n) space-bounded
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alternating Turing machines, and define NSPACE(S(n)) and DSPACE(S(n)) analogously
for mnondeterministic and deterministic Turing machines. Let P denote the class of
languages accepted by polynomial-time-bounded deterministic Turinmg machines.

An auxiliary pushdown automaton <(auxpda) [3] is just an off-line non—
deterministic Turing machine with an additiomal pushdown store. Let AuxPDA(S(n))

denote the class of languages accepted by S{n) space—bounded auxpda's.

3. Relationships with nonalternating pushdown antomata
The following theorem states that the 'limit’ of the 2AFA(k) classes, as well
as those of the more familiar 2DPDA(k) and 2NPDA(k) classes, is the family P.

Theorem 3.1,

k[élNZDPDA(k) ﬂngZNPDA(k) = AuxPDA(log n) = P = ASPACE{log n) =k2M2AFA(k).
Proof. Cook [3] showed that AuxPDA(log n) = P; the result P = ASPACE(log n) is due
to [1]. The equalitiesngZDPDA(k) = AuxPDA(log n) and ngZNPDA(k) = AnxPDA(log n)
may be shown by a standard construction (see [8], for example) that shows how to
simulate a log n space-bounded tape by multiple two—way input heads, and vice-versa.

The fact that ASPACE(log =) =kg 2AFA{k) follows from this same construction. LJ
N

Theorem 3.1 raises the question of the number of heads required for am alter-—
nating finite autometon to simulate a deterministic (or nondeterministic) multihead
pushdown automaton, and vice-versa. (All devices in the sequel have multiple imput

heads, so to save space we usually omit the word 'multihead.’)

Theorem 3.2. For k > 1, 2NPDA(k) C 2AFA(3k).
Proof, Let M = (K,E,A,s,r,qo,ze,F) be a 2npda(k). By Lemma 2.2 we can assume that
w € L(M) if and only if (q,1,...,1,Z,) %,w (Q,iqserig¥) for some q € F, 1 ¢
Jpreeendy < Iwl + 2, YeA, and n 2 0. Lemma 2.3 now enables us to construct a
2afa(3k) M’ that accepts the same language as M. On input w, M' need only check
that (PO,Qf) is n—realizable, where ?0 = (qo,l,...,l,ZO) and Qf = (q.jl,...,jk,Y).
Note that M’ can store a surface configuration of M using k heads, plus some finite
memory, so M' can store three surface configurations of M simultaneously.
Initially, M’ uses 2k heads to store PO and Qp (the latter is chosen existentially).
To check a pair (P,Q) for realizability, M’ chooses existentially which one of
(1), (2), or (3) of Lemma 2,3 to check. If M’ chooses to check (1), it attempts to
transform P into Q visz a series of moves (chosen existentially) that do not change
the pushdown height. If a surface configuration derived from P by a series of such
moves matches Q (M’ can detect this, since it has the ability to check for
coincidence of heads), then M' enters an accepting state, Condition (2) is checked
by choosing existentially a move that takes P to some configuratien R and a move
that takes some configuration S to Q, changing P into R and Q into S, then checking
(R,8) for realizability. If M' chooses to check (3), it chooses existentially some
surface configuration R (using the extra k heads to store R) then enters a universal

state to choose whether to check {P,R) or (R,Q) for realizability.
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Lemma 2.3 guarantees that, if w € L(M), there is an accepting computation for
M’ on w. As it checks a pair (P,Q), if M’ chooses correctly which of (1), (2}, or
(3) holds, them it either halts (case (1)) or begins to check a ’'smaller’ pair
{cases (2) and (3)). Thus, if M' always guesses correctly, it will halt and accept
along each path.

On the other hand, if M' accepts a string w, then M must also accept it. This
follows from a weaker form of Lemma 2.3 in which ’'n-realizability’' is replaced by

. i1t e, I,
‘realizability’ and h@x by h&x .0
The simulation employed in the proof of Theorem 3.2 will not suffice to prove

INPDA(k) & 1AFA(3k), although the simulation that we use also relies on Lemma 2.3,

Theorem 3.3. For k > 1, INPDA(k) C 1AFA(3k).

Proof. Let M = (K:ELA»5»T:QQ,20'F) be a Ilnpda(k). By Lemma 2.2 we can assume that,
on input w, a lafa(3k) M’ need only check that (PG’Qf) is n-realizable, where Pj =
(dgels-rs1,Zg) and Qp = (q,3qs...0dg 1), for some g €F, 1 jy,...njy & Iwl+ 1,
Y €A, and n > 0. (Note that ome-way automata need no left endmarker ¢.)

M' uses three heads ([h,1], [h,2], and [h,3]) to simulate each head h of M. As
it begins to check a pair (P,Q) for realizability, where P = (p’il""'ik'Z) and Q =
(q’jl""’jk’f)’ M! has P and Q stored as follows. States p and q and pushdown sym—
bols Z and Y are stored in the finite control, The head positions il""’ik and
jl”"’jk are stored in the following way: the position of head [h,1] directly
represents i , and the distance from head [h,1] to head [h,2] represents jwl + 1 -
jh’ At this point, head [h,3] is not in use, and coincides with head fh,2]. The
finite control of M’ contains the symbol of w at position jh (the symbol at position
ih can be read directly from the tape). The simulation depends om the fact that, if
(P,Q) is realizable, them i,  j;, since M is onme-way.

To check (P,Q) for realizability, M’ guesses which ome of (1), (2), or (3) of
Lemma 2.3 to check. If it selects (1), it then attempts to transform P into Q via a
series of moves {chosen existentially) that do not change the pushdown height. If a
move requires head h to move right, M’ moves heads {h,1] and [R,2] to the right. If
M' detects that a surface configuration (contzining state p’ and pushdown symbol Z',
say) derived from P by a series of such moves matches Q (all heads [h,2] scan the
endmarker and both p’ = g and Z' = Y}, then M’ enters an accepting state,

If M’ chooses (2), then it guesses a move from P to some configuration R and a
move from some configuration S to @, changing P into R and Q into 8, them checking
(R,8) for realizability. Suppose that changing P to R requires moving head h one
square to the right. M' moves heads [h,1] and [h,2] each one square to the right.
If changing Q into § requires moving some head, say h, one square to the Ileft
(because the move that takes S into Q moves it one square to the right), M’ moves
bead [h,2] one square to the right and stores in its finite control a guess for the
symbol scanned by head &k in S such that M can legally move from S to Q. M' next
chooses universally either to begin checking (R,S) or to move heads [h,1] and [h,2]
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simultaneously to the right until the latter head reaches the endmarker, enterimg an
accepting state if and omly if head [h,1] scans the symbol just guessed.

Now suppose that M’ has chosen (3). M’ guesses some surface configuration R =
(1:91,‘..,Qk,x) such that ih < Qh L for all h, storing r and X im its finite
control, Each Qh is guessed by moving head [h,3] to the right either (i) ip - Qh
squares (if M' guesses that Jp - Qh { Qh ~ ip) or (ii) Qh - iy squares (if M’ gues-
ses that ih o T P Rh)' These two cases are depicted in Figs. 1(a2) and 1(b),

respectively.
iy u in $ ip {n in $
1é~|w I+1—jh—>T<—jh-lh—e? Te—lwlﬂ—jh%feﬂfih-%f
[n,11] [&,21] [1,3] [n,1] [b,21 [h,3]
(a) (v)
ip Ly in $ iy ln In $
1(—-——!\? f+1—Qh———-ﬁ? '?é—iwl+1~—jh"91
[h,1]3 {r,23,1n,31] [h,1] [1,2],(n,3]

(e) (d)

Figure 1.

M’ now enters a universal state to choose whether to check that (P,R) is realizable
or that (R,Q) is realizable,

If M' has chosen to check (P,R), it first replaces q and Y in its finite
control by r and X. For each h, if case (i) applies, M’ moves head [h,2] to the
right wuntil it coincides with head [h,3]. 1If case (ii) applies, M' moves heads
[h,2] and [h,3] simultaneously to the right until it guesses that head [h,3] is now
Qh - ih squares from the endmarker. M' next chooses umiversally either to verify
this guess or to continue. In the former case, M' moves heads [h,2] and [h,3] to
the right simultaneously (moving head [h,2] twice as fast as head [h,3]), entering
an accepting state if and only if both heads reach the endmarker at the same time.
In the 1latter case, M' moves head [h,2] to the right until it coincides with head
[h,3]. In both cases (i) and (ii), each set of heads is eventually positioned as in
Fig. 1(c). M now guesses the symbols at positions Ql""’ﬂk on the dinput and
chooses universally either to begin checking (P,R) for realizability or to move each
pair of heads [h,1], [h,2] simulitaneously to the right until the latter head reaches
the endmarker, entering an accepting state if and only if each head [h,1] scans the
symbol guessed to be at positicn‘ﬁh,

If M' has chosen to check (R,Q}, it first replaces p and Z in its finite
control by r and X. Whenever case (i) applies, then M’ performs the operations
described above under case (ii), except that [h,1] is moved one square to the right
whenever [h,2] is moved. Whenever case (ii) applies, M’ performs the operations

described above under case (i), except that [h,1] is moved in conjunction with
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[k,2]. The final positionm of the heads is as shown in Fig. 1{a). [

Having given efficient simulations of ome~ and two—way pushdown automata by
alternating finite automata, we now consider the simulation of one- and two-way

alternating finite automata by pushdown automata.

Lemma 3.4, Let M be a 2afa(k) with s states. If w € L(M), then there is an accept—
ing computation tree for M on w of height at most snk, where n = lw] + 2.
Proof. Let M be a 2afa{k) with s states. Suppose that w € L{M}, and let T be the

ascceptance tree for M on w with the fewest nodes, For n = lwl + 2, there are sak

distinct configurations of M on w. Thus, if the height of T is greater than snk,
there must be two nodes x and y labelled with the same configuration such that x is
a proper ancestor of y. By removing the subtree rooted at x and replacing it by the
subtree rooted at y, we obtain an acceptance tree with fewer nodes, which is a

contradiction. [

Theorem 3.5. For k > 1,
(a) 2AFA(k) < 2NPDA(k),
(b) 2AFA(k) <€ 2DPDA(2k),
(c) 1AFA(X) < 2DPDA(k).
Proof. (a) Let M be a 2afa(k). A 2npda(k) M' can simulate M on input w by perform—
ing a nondeterministic depth-first search of an accepting computation tree T for M
on w (assuming that ome exists). M' uses its k heads exactly as M would, and uses
its pushdown to keep track of the search by pushing a symbol representing the old
state and the move from that state each time a move of M is simulatfed.
¥When M’ encounters a universal configuration C of M, it verifies that all
immediate successors of C lead to accepting computations by exploring each subtree
below C. VWhen M' encounters an existential configuration of M, it guesses which

move of M to simulate and verifies that this choice leads to an accepting subtree.

(b) The simulation is the same as in (a), except that here M’ (mow a dpda(2k)),
when it 7reaches an existential configuratiom, must try each immediate successor in
turn, since it cannot guess which one labels the root of an accepting subtree. That
is, M’ does mnot reject the input when a nonmaccepting configuration of M is reached
which has no successors; rather, it backs up to its lowest existential ancestor and
tries the next choice.

By Lemma 3.4, if w € L(M), then there is an accepting computation tree for M on
w of height at most snk, where n = lwl + 2 and s is the number of states in M, so M’
meintains a count indicating the current level of the search, Whenever the count
reaches snk, the search backs up. M' uses its k additional heads to count up to

ok - 1, By using a finite amount of additional memory, M’ can count up to sof,

(¢) The simulation is the same as in (b), except that the k heads used for the
counter are mnot needed. We can assume that, if w € L(M), then there is am accepting

computation tree for M on w such that M never makes more than s - 1 comsecutive
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moves along any path of the tree without moving a head. (This is shown as in the
proof of Lemma 3,4.) This means that M' does not need the counter as in part {b):
if M' simply backs up whenever M has made s comsecutive moves without moving any
head, then the simulation must terminate, since M can make at most k(n+l) moves that
shift a head. The count of moves made without a head shift is placed on the push-

down as part of the symbol encoding the old state and move from that state. 0

Parts (b) and {c) of Theorem 3.5 strengthen Sudborough’'s results that 2NFA{k) &
2DPDA(2k) and 1NFA(k) < 2DPPA(k) {[22,24]. VUnfortunately, part (a) is mnot a
corresponding strengthening of Sudboromgh’s result that 2NFA(2k) € 2NPDA(k).

Theorem 3.5 yields fairly efficient simulations of one— and two-way non-
deterministic pushdown automata by two—way deterministic pushdown automata, The

next corollary follows from Theorem 3.2; the two after it follow from Theorem 3.3.
Corollary 3.6. For k > 1, 2NPDA(k) C 2DPDA(6k}.

This result is better than the one obtained by Kameda [12], who showed that
2NPDA(k) € 2DPDA(12k+1), but not as good as the one achieved by Sudborough [23], who
showed that 2NPDA(k) C 2DPDA(4k). (Monien [18] claims that, by using the techniques
of [15], the result 2NPDA(k) ¢ 2DPDA(3k+1) is possible.) However, it is interesting
to note that Sudborough’s argument depends onm an intricate simulation wusing the
ideas of Seiferas [19,20], whereas our result is a direct simulation, using an al-
ternating finite automaton as an intermediate step., This suggests that alternation
may be useful in the simulation of ome type of nonaltermating device by another.

The fact that Corollary 3.6 is close to Smdborough's result suggests that the

results of Theorems 3.2 and 3.5 cannot be improved much,
Corollary 3.7 [23]. Every context—free langnage is in 2DPDA(3).

Note that if all context-free languages were in 1AFA(2), then by Theorem 3.5,
all would be in 2DPDA(2). Using Cook's simulation [4], this would imply a context-
free language recognition algorithm that runs in time O(nz), which would be
surprising. Thus, it seems unlikely that Theorem 3.3 can be improved, at least in
the case that k = 1,

The third and final corollary gives an efficient simmlation of a one—way non-
deterministic pushdown automaton by a two-way deterministic pushdown automaton.
This appears to be an original result, and is therefore evidence that alternating

devices are useful for proving results about nonalternating devices,
Corollary 3.8. For k > 1, INPDA(k) ¢ 2DPDA(3k).

4. One—way alternating finite automata

The first theorem states that a one-way alternating finite automaton with a
single head is no more powerful tham 2 one-way nondeterministic or deterministic

finite automaton with a single head.

Theorem 4.1 [1]. 1AFA(1) coincides with the class of regular sets.
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With two heads, however, a one~way alternating finite automaton is capable of
recognizing not only nonregular sets, but alsoc nonregular sets over a onpe—letter
alphabet., This result yields two important corollaries concerning the relationships

between the 1AFA(k) classes and the INFA(X) classes.

Theorem 4.2, 1AFA(2) contains a nonregular language over a single-letter alphabet.
Proof, Let L = {0zn | o > 1}, We construct a lafa(2) M that recognizes L. Ini-
tially both heads are at the left end of the imput. M operates as follows:
(1) Guess where the middle of the remaining input is and place head 1 there. (If
the two heads were on the last square of the inmput, then enter an accepting state).
(2) Universally choose to perform either (i) or (ii).
(i) Check whether the guess in (1) was correct by moving head 2 to the right
twice as fast as head 1. Enter an accepting state if and only if both heads
reach the endmarker at the same time.

(ii) Move head 2 right until it coincides with head 1, thea go to step (1), g

Corollary 4.3. 1AFA(2) ngNlNPDA(k).

Proof. VWhen restricted to a single—letter alphabet, the familkaNlNPDA(k) contains
c

only regular sets [71. [

Note that Corollary 4.3 allows Theorem 3.3 and Corollary 3.8 to be strengthened
to INPDA(k) § 1AFA(3k) and 1NPDA(k) §,2DPDA(3k), respectively.

Corollary 4.4. 1AFA(2) g;kUNlNFA(k).
€
Corollary 4.5. For k ) 2, 1NFA(k) = 1AFA(k).

An important gquestion concerning the one-way alternating finite automaton clas-—
ses is whether 1AFA(k) g 1AFA(k+1) for k > 1. Yao and Rivest [25] proved the result
for one-way deterministic and nondeterministic finite automata, and in fact showed
that 1DFA(k+1) - INFA(k) # O for all k > 1, From Theorems 4.1 and 4.2, it is clear
that 1AFA(1) ¢ 1AFA(2). However, we have so far been unable to show that 1AFA(K) &
1AFA(k+1) for k > 2.

We now show that there is a language in 1AFA(2) that is log-space complete for
the family P (see [10] for a definition of log-space completenmess and the glog
relation). This will enable us to show that, if every lafa(2) could be simulated by
a 2dfa(kx) (or 2anfa(k)), then a long-standing open problem in complexity theory would
be solved.

A path system is a structure § = (X,R,S8,6), where X is a finmite set, RC
XxXx3X, SCX, and 6 € X, Cook [5] (see [11] as well) has shown that the follow—
ing problem PATH is log-space complete for P: Given a path system 8 = (X,R,S$,06),
determine whether any element of S is admissible. (We say that x is admissible if
x € G or there exist y and z such that (x,y,z) € R and both y and z are admissible.)

Cook encodes PATH as 2 language SP over the alphabet {0,1,*}. A string in 8P

consists of binary codes for the members of X, followed by the triples of R and the
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members of S and G. We shall require a slightly different encoding.

Definition, Let ¥ = {0,1}. Let Lo be the set of all strings in the regular set
SIS D (Y that satisfy property C. A string of the form
vi# Vp#[xl#yl#zl} v [xq#yq#zq]wl# oW {(4.1)

satisfies property C if there exists a binary tree T whose nodes are labelled with
positive integers such that

(1) if i is the label of the root of T, then there exists j such that Vj = x
{unless T consists of a single node, in which case vj = wi):

{2) each internal node of T, labelled with, say, i, has exactly two immediate des-

cendants, labelled with, say, j and ¥ (from left to right), where Vi = X (zi = Xk)
if the left (right) descendant is internal and V= (z; = w) if it is a leaf;
(3) along each root-leaf path of T (labelled, say, il,...,is), we have iy > iy 4

for each k, 2 {k s ~ 1.

Thus, a string satisfies property C if it encodes an instance of PATH for which
there is a tree T certifying the admissibility of some element in § such that, along

any path of T, the triples occur in the same order as in the string,

Lemma 4,6, SP < log L
Proof. We construct a log n space—bounded Turing transducer M as follows. On input
w, where w is the encoding of a path system 8 = (X,R,S,G), M first outputs the
elements of S, encoded in binary and separated by #'s. M next outputs the triples
of R, each separated internally by #'s and enclosed within a [] pair. This step is
repeated a total of n times, where n is the cardinality of X. Finally, M outputs
the elements of G, encoded in binary and separated by #'s. Clearly the original
encoding of PATH permits M to operate in log |wl space.

Note that, if x € S is an admissible node, then there is a binary tree certify—
ing admissibility of height at most n, Using this observation, it is easy to show

that w € SP if and only if f(w) € L, where f is the function computed by M. 0

Lemma 4.7, LC € 1AFA(2).

Proof. The construction of a lafa{2) M to recognize LC is straightforward. When—
ever M has existentially selected a string x;, it enters a universal state to choose
whether to place one head on ¥; or z; (say the former). The other head then moves

right (past the first) until M guesses that an X, matching v has been found., [J

We now reach the main result of this section, which states that every lafa(2)
can be simulated by a 2dfa(k) [2nfa(k)], for some %k, if and only if P =
DSPACE(log n) [P = NSFACE(log n)]. The problem of whether deterministic polynomial
time is equal to deterministic (or nondeterministic) log space is a classical open

problem in complexity theory, to which a negative answer seems likely.
Theorem 4.8,
(a) 1AFA(2) gngZDFA(k) if and only if P
(b) 1AFA(2) gngZNFA(k) if and only if P

DSPACE(log n).
NSPACE(log n).
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Proof. Since U 1AFA(k) < P, U 2DFA(k) = DSPACE(log =n), and U 2NFA(k) =
ken keN keN
NSPACE(log n), the reverse direction of each equivalence is clear,

For the forward direction of (a), suppose that L € P, Then L glog SP. - Apply-
ing Lemma 4.6 and the transitivity of ilog [10], we have that L Slog Le.  Assuming
that 1AFA(2) gngZDFA(k), by Lemma 4.7 we have L engZDFA(k) = DSPACE(log n).
Since L is log—space reducible to a language in DSPACE(log n)}, L itself must be in

DSPACE(log n) [10]. The forward direction of (b) is proved in a similar fashion. 0

Theorem 4.8 is analogous to Sudborough'’s result [21] that INFA(2) < U 2DFA(k)
if and only if NSPACE(log n) = DSPACE(log n). Galil [6] has also proved :ﬁwsimilar
theorem, using 2DPDA(1) instead of 1AFA(2).

Part (a) of Theorem 4.8 may be stated as: 1AFA(2) € DSPACE(log n) if and only
if P = DSPACE(log n). Therefore,nglAFA(k) C DSPACE(log n) if and only if P =
DSPACE(log n). The best upper bound that we know of on the deterministic space com~
plexity of the familynglAFA(k) is given in the following theorem.

Theorem 4.9, k2N1AFA(k) < DSPACE(n) .

Proof. The proof of Theorem 3.5(c) gives a simulation of a lafa(k) M by a 2dpda(k)
M'. An examination of the simulation reveals that the height of the 1latter
machine's pushdown, on an input of length n, is bounded by sk(n+l), where s is the
number of states in M, From M’ we can construct a Turing machine M'’ that simulates
M', using its storage tape to hold the positions of the latter’s k heads and the

contents of its pushdown. 1

We know that U 1DFA{k) ¢ U 2DFA(k) and U INFA(k) & U 2NFA(k) (since U 1DFA(k)

€N keN € kel keN
andnglNFA(k), when restricted to a ome~letter alphabet, contain only the regular
sets [71). The corresponding question for alternating finite automata remains

open. However, Theorems 3.1 and 4.9 yield the following.

Corollary 4.10. U 1AFA(k) = U 2AFA(k) implies P < DSPACE(n).
keN ket

5, Two-way alternating finite automata
As in the ome—way case, single—head two-way alternating finite automata are mno

more powerful than their nondeterministic and deterministic counterparts.
Theorem 5.1 {14]. 2AFA(1) coincides with the class of regular sets.

We next consider the guestion of whether 2AFA(k) & 2AFA(k+1). 1In the case of
two~way deterministic and pondeterministic finite automata, the answer is yes.
Tbarra [9] showed that 2DFA(k) & 2DFA(k+2)., Monien [16] improved this result to
2DFA(k) & 2DFA(k+1). The nondeterminmistic case proved to be more difficult, and
remained opem until Seiferas [20] proved that 2NFA(k) ¢ 2NFA(k+2). Monien then
noted in his 1977 corrigendum that the techniques of [16], when combined with
Seiferas's result, yield 2NFA(k) §;2NFA(k+1), In a recent paper, Momien [17] shows
that 2DFA(k) & 2DFA(k+1) and 2NFA(K) & 2NFA(k+1) hold even when the languages are

over a single-letter alphabet.



517

We now show that 2AFA(k) & 2AFA(k+1), using the techniques of [9] and [16]. We

first give a crude result showing that 3k+3 heads are better than k heads,

Lemma 5.2, For k > 1, 2AFA(k) ¢ ZAFA(3k+3).

Proof, Let k¥ > 1. By Theorem 3.5(a), we know that 2AFA(k) < 2NPDA(k). Ibarra {9]
has shown that 2NPDA(k) & 2NPDA(k+1) . Also, by Theorem 3.2, 2NPDA(k+1) <
2AFA(3k+3). Combining these inclusioms, we heve 24FA(k) ¢ 2AFA(3k+3). [

Definition. Let I be an alphabet, let —| and b be symbols not in ¥, and let k >
1. Ve define a function fZ £ Y& - ((Su {—4,¥~})k)* as follows. Let LSUTT
be symbols in 3 and define ag = -4, a4 = b-, where n = m + 2, Then fz k(al"'am)
= agay...a.k 4, vheze o = (aiz“"'aik) for j = iy+ipnt... +ign® 1 with 0 ¢ i<t
for all p, 1 {p { k.

The next three lemmas (analogous to those in [16]) use the fz X fanction to
develop translational results. In Theorem 5.6, these are combined with Lemma 5.2 to

show that, for two—way alternating finite automata, k + 1 heads are better thasm k.

Lemma 5.3. For k 21, j 22, LS¥* L € 2AFA(kj+1) implies fg 4 (L) € 24FA(j+1).

Lemma 5.4. For kX > 1, j
2AFA(j+1).

2 2, Lggs f

2'.].4'1(L) € 2AFA(j) implies fz,j(L) €

Lemma 5.5, For k > 2, L< Y%, fZ k(L) € 2AFA(j) implies L € 2AFA(kj).

Theorem 5.6, For k > 1, 2A4FA(k) ¢ 2AFA(k+1).

Proof. First, assume that 2AFA(k+2) < 2AFA(k). Let L € 2AFA(j(k+1)+1). By Lemma
5.3, fz,j(L) € ' 2AFA(k+2), so by assumption, fZ.j(L) € 2AFA(k). By Lemma 5.5, L €
2AFA(jk), so

2AFA(j(k+1)+1) € 2AFA(jk) for all j

1

2. (5.1)
Note that

2AFA(jk) < 2AFA((j-1) (k+1)+1) if j >
By alternately applying (5.1) and {5.2), we get
2AFA(3k(k+1)+41) < 2AFA(3k?) < 2AFA((3k-1) (k+1)+1) < 2AFA(3K* k) < ... < 2AFA(x2).
(Each application of (5.2) followed by an application of (5.1) causes the number of

I~
a

(5.2)

heads to decrease by k, Thus, since we started with 32 {after the first applica-—
tion of (5.1)), we eventually reach k2.) For k ) 2, this yields 2AFA(3k2+3)
24FA(x?), contradicting Lemma 5.2. Thus, 2AFA(k) ¢ 2AFA(k+2) for all k ) 2.

Since 2AFA(1) is the family of regular sets, clearly the theorem is true for
k =1. Choose some k » 2 and assume for the sake of comtradiction that 2AFA(k+1) ¢
2AFA(k}. Let L € 2AFA((k+1)k+1}). By Lemma 5.3, fz;k+1(L) € 2AFA(k+1} = 2AFA(k).
By Lemma 5.4, £ k(L) € 24FA(k+1) 2AFA(k} and, by Lemma 5.5, L € 2AFA(k2). Since

z’
k » 2, we have 2AFA(K%+2) < 2AFA(k

o
“3y, contradicting our previous result, ﬂ
6. Conclusions

Figure 2(a) summarizes the relationships between the ome—way multihead finite

automata classes; Fig. 2(b) does the same for the two-way classes. If two classes
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are connected by a linme, then the lower class is contained in the upper one. A
solid line indicates proper containment; a dashed line indicates that proper

containment is not known.

__P
. U
: NSPACE(log n) :
. AC
. i -7 i |
: 1AFA(4) DSPACE(log n) : 2AFA(4)
. | / ! | .
. /1NFA(4 ! : 2NFA(4)
! : 2
1DFA(4) 14FA(3) 2DFA(4) 2AFA(3)
) *’l,‘.p",
INFA(3) 3 ANFA(3)”
i [ e
1DFA(3) 1AFA(2) 2DFA(3) 2AFA(2)
%o
INFA(2) 2NFA(2)”
-
wmlxu) 2DFA(2)
|
1DFA(1) = 1NFA(1) = 1AFA(1) 2DFA(1) = 2NFA(1) = 2AFA(1)
Additional relevant facts: *If any inclusiom is mnot strict, then
1NFA(2) énglDFA(k} [25] DSPACE(log n) = NSPACE(log n) [21].
1AFA(2) QXE“INFA(k) [Corollary 4.4] #*If any inclusion is not strict, them
1DFA(k+1) & INFA(k) [25] NSPACE(l1og n) = P [Theorem 4.8(b)].
(a}) (b)

Figure 2.,

Table 1 gives the best simulation results currently known for multihead finite
automata and pushdown automata. The entry 2k in the row labelled by 2nfa and column
labelled by 2dpda indicates that the best simulation of a 2nfa{k) by a multihead
2dpda currently known requires 2k heads. The superscript following an entry
indicates where the result appears. A superscript ¥ indicates that the result is in
this paper. If no superscript appears, then the result is obvious from the
definitions of the devices. In some cases (marked with an X), it is known that no
simulation is possible. In other cases, if any simulation is possible (regardless
of how many heads the simulating machine has), then certain open problems are solved
(indicated nsing the code D = DSPACE(log n), N = NSPACE(log n)).

Our study of alternating finite automata reveals that these devices are quite
similar to pushdown automata, The resemblance is particularly striking in the case
of two~way alternating finite auntomata. We have proved that 2AFA(k) & 2AFA(k+1),
just as 2NPDA(k) §Q2NPDA{k+1) and 2DPDA(k) g;ZDPDA(k+1) {9]. Furthermore, the limit
of the 2AFA(k) classes is P, as is the limit of the 2NPDA(k) and 2DPDA(k) classes.
Most importantly, we showed that 2ZNPDA(k) € 2AFA(3k} < 2NPDA(3k}.

One-way alternating finite automata, on the other hand, are more powerful than

one-way pushdown automata. While one-way alternmating finite automata can simulate
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1dfa infa lafa 2dfa 2nfa 2afa ldpda Inpda 2dpda 2npda

1dfa k k k k k k k k v [Tk/21124]
1nfa |N=pl21) g x w21 g x ? v k[24] 27024
1afa | xt71 xI7] k P=D*  P=N* x xI71 xlI7] k* k*
2aga | 3071 x[71 ? x x x x[11 xI7 x  [e/21024]
2nfa x[7] x[71 7 N=D[21] x k x[7] X{?} 2 [24] rk/21{24}
2afa | x[71 x[71 ? P=D*  P=N* k x[7T xI71 gps k*
ldpda| 2 ? 3K+ ? ? 3K+ x x x k
inpda|N=D[21} sk NI211 3k* ? x 3K+ k
2dpda| xf71 x[7] 2 p=pl6] p=n[6] g3y 71 xI7] k x
rapdas| 2071 xI71 s pepl6] ponI6]  as  gIT1 gIT1 40231

{Warning: The entries in the first six rows are invalid if the device to be
simulated has only omne head, since then the device accepts a regular set and thus
can be simulated by any device in the table using only a single head.]

Table 1.

one-way pushdown auntomata (we showed that INPDA(k) < 1AFA{3k)), even the smallest
nonregular class, 1AFA{(2), contains & nonregular language over a single-letter
alphabet and 2 language that is log-space complete for P. (One may argue that
alternating finite automata are the simplest 'matural’ altermating devices, so it is
interesting that alternation adds so much power, even at this low level of com—
plexity.) The last two results imply that 1AFA(2) contains a language that is not
recognizable by any one—way nondetermimistic multihead pushdown automaton and that,
if every lafa(2) can be simulated by a two—way deterministic [nondeterministic]
finite automaton, them P = DSPACE(log n) [P = NSPACE(log =n)l. Since 1AFA(k) C
2DPDA(k), we see that one-way alternating finite automata are intermediate in power
between one~way nondeterministic and two—way deterministic pushdown automata.

Our study of alternating finite automata even yielded two results about mnomal-
ternating pushdown automata {(2NPDA(k) < 2DPDA(6k) and INPDA(k) < 2DPDA(3k)), thus
giving evidence that alternation is useful for proving properties of even fairly
simple nonalternating devices.

The most interesting open problem concerning alternating finite automata is the
question of whether 1AFA(k) & 1AFA(k+1) for all k > 1. This would seem to be the
case, but finding a proof appears to be very difficult. Two related problems ask
whether allowing two—way motion on the input tape adds power to alternating finite
automata: First, isnglAFA(k) g;ngZAFA(k)? Second, for k 2 2, is 1AFA(X) ¢
2AFA(k)? Corollary 4.10 suggests that the first inclusion is indeed proper. There
is also the problem of improving the results in the simulation table. When a
simulation is known, it may be possible to reduce the number of heads required for
the simulating device. When en implication for an open problem is given, it may be
possible to strengthen the implication or prove that no simulation is possible.
And, if the entry is a 7, then any result, mnegative or positive, would be an

improvement.
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