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INTRODUCTION 

In this paper we will look at the structure of Hoare-like logics which are 

designed to prove partial correctness properties of programs belonging to alge- 

braically specified progra~mning systems. By an algebraically specified progran~ing 

system we have in mind a program language possessing a selection of deterministic 

assignment and control constructs, and a fixed finite collection of data types 

defined by an algebraic specification (using initial algebra semantics). We will 

be interested in Hoare logics which are intrinsically defined by these languages in 

the sense that all assertions about the underlying data types, allowed in program 

correctness proofs, must be formally derivable from their algebraic specifications. 

Thus, viewed from the point of view of specification languages for data types, the 

basic question we will be exploring is "To what extent can information about a data 

type and, in particular, about the co~putations it supports, be 'encoded' in an 

algebraic specification for the type?". 

To begin with, let us recall the role intended for a data type specification 

in the construction of a programming system. A syntactic specification (Z,E) is 

supposed to axiomatically characterise a data type semantics in terms of properties 

E of the type's primitive operators E. An algebraic specification, in conjunction 

with initial algebra semantics, achieves this in a straightforward proof-theoretical 

way: given syntactic expressions, or terms, t and t' over E then t and t' are 

semantically equivalent if, and only if, one can formally prove that t = t' from 

the axioms of E. At first sight, it seems that little else beyond these correct- 

hess of representation assertions can be extracted from a specification by formal 

deductions. For example, consider the data type of natural numbers N equipped 

with zero, successor and predecessor. An obvious specification for N consists of 

the operator signature Z = {0~SUCC,PRED} and the set E of axioms 

PlIED(O) = 0 PRED(SUCC(X)) = X. 
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But assertions like 

X = 0 v SUCC(PRED(X)) = X and 0 # SUCC(O) 

which are clearly true in the initial model N are not provable from E. In design- 

ing a Hoare logic for an algebraically specified programming system we would do well 

to avoid negated and disjunctive formulae altogether. 

Now the programming systems we want to analyse are those modelled by standard 

while-programs computing on a single-sorted structure defined by an algebraic speci- 

fication (E,E). Because of the special nature of assertions provable from alge- 

braic axioms, we wish to experiment with Hoare logics based upon assertion languages 

consisting of finite conjunctions of equations only. But such a language EL is 

incompatible with the sort of boolean tests appearing in the control structures of 

standard while-programs. We dissolve this difficulty by applying the thesis that 

programming constructs should be designed with the problem of proving statements 

about their behaviour clearly in mind, a thesis associated with the names 

E.W. Dijkstra, R.W. Floyd and C.A.R. Boare. To match the correctness proofs, which 

will involve equational assertions only, we design a new set of control structures, 

allowing only equational tests, and then derive some proof rules about their oper- 

ation. This new algebraically styled progra~m~ing language we call the set of 

equational while-programs EWP; it has essentially the same computing strength as 

the standard while-programs (Theorem 2.2). With these preparations, we can con- 

sider our original problem well-posed: Can an algebraic specification for a 

progra~ng language be made to axiomatise information required for correctness 

proofs for its programs? We prove the following adequacy theorem for algebraic 

specifications and their algebraic logics for program correctness (Theorem 4.1): 

THEOREM. Let A be any infinite computable data type of signature E. Let SI,...,S n 

be equational while-programs oVer E. For i = I,... ,n let Pi and qi be any pre- 

condition and postcondition for S i taken from EL(E). If the partial correctness 

statements {Pi}Si{qi} (i ~ i ~ n) are provable in the Hoare logic for EWP which 

allows any true computable assertion about A in its correctness proofs then there 

exists a finite equational specification (Eo,Eo), involving at most 6 a~liary 

operators and 4 equations only, such t~t 

(I) (Eo,E O) define8 A under initial a~ebra semantics; and 

(2) the statements {Pl}Sl{ql},...,{Pn}Sn{qn} can be proved in the equational Hoare 

logic for EWP using equational assertions from EL(EO) all of which are 

provable from the axioms of E O. 

The existence of such a concise specification for computable data types is of 

interest independently of the extra proof-theoretical information it can be expected 

to contain (Theorem 4.2). Notice the number of equations does not even depend 

upon the number of operators of the data type. 

To date, the general proof theory of algebraic specifications has not received 

the especial attention it deserves although its problematic nature is well-known: 
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it arises frequently in studies of the correctness of data type specifications made 

from Horn formulae - for example~ ADJ [29], EHRIG et al. [18]; and in work on data 

type specification languages - for example, BURSTALL & GOGUEN [16] and GOGUEN & 

TARDO [20]. Am attempt at a systematic treatment of the subject is contained in 

the interesting thesis of KAPUR [24], but a great deal more theoretical research 

needs to be done. 

This paper is the seventh in our series on the power and adequacy of the 

algebraic specification methods for data types [9-14] (see also [15]); an important 

sequel is [7]. This paper is also related to our work with J. Tiur>~_ on first- 

order axiomatically specified programming systems [8]. 

We assume the reader is well versed in the theory of algebraic specifications 

for data types and is familiar with logics for partial correctness. The basic 

references for these subjects are ADJ [21] and HOARE [23], COOK [17], respectively; 

also the reader may care to consult the survey paper APT [i]. Knowledge of our 

earlier articles is desirable, but it is not strictly necessary. 

Finally, we thank W.P. de Roever and K.R. Apt for focussing our attention on 

the proof-theoretic capacities of algebraic specifications in seminars of the 

Programming Language Semantics Workgroup of the Mathematical Centre and the 

University of Utrecht. 

I. DATA TYPES 

Syntactically, our programming systems are modelled by a pair [(E,E), PROG(E)] 

consisting of an algebraic specification (E,E) and a set of program schemes PROG(Z) 

based upon the operator names contained in the signature Z. Semantically, we model 

these languages by a pair [A~PROG(A)] wherein A is an algebra of signature E defined 

by the specification (Z,E), under initial algebra semantics, and PROG(A) is the set 

of all partial functions on A computable by the program schemes in PROG(Z) inter- 

preted in A. The specific program schemata in which we will be interested are 

discussed in the next section; here we collect together some remarks about the 

syntax and semantics of data type specifications. 

A data type will he modelled by a single-sorted algebra finitely generated by 

elements named in its signature. (The restriction to single-sorted structures is 

made for convenience in notations and to enable us to better explain the mathematical 

issues involved; readers acquainted with our earlier work will see immediately how 

to write this paper in its many-sorted generalisation.) All signatures are finite 

and all specifications use either equations or conditional equations as axioms. The 

semantics of a specification (E,E) will always be its initial algebra semantics. 

Thus, the unique meaning of the specification (~,E) is the initial algebra I(E,E) of 

the category ALG(Z,E) containing all l-algebras satisfying the axioms of E. By 

T(E,E) we denote the standard term algebra construction of I(E,E); that is the 

factor algebra of the E-term algebra T(Z) determined by the least E-congruence on 
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T(E). 

A given algebra A has a ~nite equational (or conditional equational) speci- 

fication (E,E) if the signature of A is ~, E is a finite set of equations (or 

conditional equations) over E, and A ~ T(E,E). 

We allow hidden operators into specifications in precisely the following way. 

Let A be an algebra of signature E A and let ~ be a signature extended by EA; 

that is E c E A. Then we mean by A IE the E-algebra whose domain is that of A and 

whose operations and constants are those of A named in E: the E-reduct of A; and 

by <A>2 the E-subalgebra of A generated by the operations and constants of A named 

in E viz. the smallest E-subalgebra of AIE. 

A given algebra A of signature E has a finite equational (or conditional equa- 

tional) hidden enrichment specification (E0,E0) if E c E 0 and E is a finite set of 

equations (or conditional equations) over ~ such that 

T(E0,E 0) I~ = <T(E0,E0)>E M A 

Finally, we formalise the concept of a computable data type using the standard 

definition of a computable algebra due to M. 0. RABIN [28] and A.I. MAL'CEV [26]. 

An algebra A is said to be computable if there exists a recursive set of 

natural numbers ~ and a surjection ~: ~ ÷ A such that to each k-cry operation ~ of 
k 

A there corresponds a recursive tracking function "5": ~ ÷ ~ which commutes the 

following diagram, A k o 

k 7 >a 

wherein ~k(xl,...,Xk) = (~Xl,...,~Xk)~ And, furthermore, the relation ~ , defined 

on ~ by x s~ y iff ~(x) = a(y) in A, is recursive. 

In this formal definition, the notion becomes a so-called finiteness condition 

of algebra: an isomorphism invariant possessed of all finite structures. Equally 

important is this other invariance property (MAL'CEV [26]): 

If A is a finitely generated algebra comput~le under both ~: ~ ÷ A and 

$: ~B ÷ A then ~ and ~ are rec~sive~ equivalent in the sense that there exist 

recursive functions f,g which con~nute the diagram: 

A 

g 

A corollary of this property is the following theorem. 

If A is computable under coordinatisation ~ then a set S c A n is said to be 

= ~n : £ (~-) computable if the set ~-I(s) {(xl,...,x n) £ (aXl,...,a ~) S} is 

recursive. 

I.I. THEOREM. Let A be a finitely generated computable algebra, and S c A n . If 

S is computable with respect to one computable codification of A then it is compu- 
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table with respect to every computable codification of A. 

Given A computable under ~ then combining the associated tracking functions on 

the domain ~ makes up a recursive algebra of numbers from whieh ~ is an epimorphism 

to A. Applying the recursiveness of ~ to this observation it is easy to prove 

this useful fact. 

1.2. LEMD~. Every computable algebra A is isomorphic to a recursive number algebra 

whose domain is the set of natural numbers, ~, if A is infinite, or else is the 

set of the first m natural numbers, ~m" if A is finite of cardinality m. 

A reference for the elementary theory of the recursive functions is MACHTEY & 

YOUNG [25]; howeverp our main tool is the Diophantine Theorem which we now state 

(a good account of this subject is contained in MANIN [27]). 

Let ~ [XI,...,X n] denote the ring of polynomials with integer coefficients in 

indeterminates XI,...,X n. A set S c k is said to be diophantine if there exists 

a polynomial p E ~ [XI,...,~, Y1 ..... Y/] such that for x = (xl,...,x k) E w k and 
1 

Y = (Yl ..... Y/) ~ ~ 

X ~ ~ ~=~ By E J.[p(x,y) = 0]. 

Equivalently, a diophantine set ~ can be defined by asking for polynomials 

p,q e ~[XI,...,~ , YI,...,YI], the semiring of polynomials with natural number co- 

efficients in the indeterminates XI,..., ~, YI, .... ,YI, such that for 
k l 

x = (X I ...... x k) e ~ and y = (Yl ..... Y/) e e ' 

x c ~ ~=~ By ~ /. [p(x,y) = q(x,y)]. 

Clearly, each diophantine set is recursively enumerable; the converse is due 
• • o V  

to Y. Matijacevlc: 

1.3. DIOPHANTINE THEOREM. All recursively enumerable sets are diophantine. 

2. WHILE-PROGRAMS 

Let E be a signature and let WP = WP(E) denote the class of standard while- 

programs over E. For the semantics of WP we'leave the reader free to choose any 

sensible account of while-program computations applicable to an arbitrary ~- 

structure A, from the graph-theoretical semantics of GREIBACH [22] to the denota- 

tional semantics of DE BAKKER [6]. For the purposes at hand, perhaps a naive 

operational view would be best [30], but the reader's choice can hardly be problem- 

atical. 

The class of equational while-programs EWP = EWP(Z) represents a modified pro- 

gram formulae, one designed to avoid the use of negations and disjunctions because 

the Hoare logics we have in mind to service algebraic specifications are proof 

systems based upon equational first-order formulae. The class EWP is inductively 

defined from assignment statements by means of composition, guarded conditionals 

and the while-construct augmented by an algebraic assertion as a correctness check: 
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ASSIGNMENT. For X a program variable and t a polynomial expression over 

E we may form an assignment statement X : = t . 

COMPOSITION. For S 1 and S 2 equational while-programs we may form their 

composition S1; S z . 

GUARDED CONDITIONALS. For t. and t~ (i ~ i ~ k) polynomial expressions over E and 
l I 

S i (I ~ i ~ k) equational while-programs we may form the 

guarded conditional 

= , ÷ SiD...~t k ' ÷ S k) (t I t I = t k - 

ITERATION WITH For t, t', r, s polynomial expressions over I and S an 

CORRECTNESS CHECK. equational while-program then we may form the guarded 

iteration 

while t = t' do Sod now check r = s won. 

It is quite adequate for the technical work to follow to give an informal des- 

cription of the semantics of equational while-program computations. The semantics 

of the assignment statements and composition operations are handled in the usual way 

(of the reader's chosen semantics). For the conditional operator and the iteration 

operator the reader must formalise the following naive operational meanings for 

these constructs: 

An execution of the guarded conditional operator on initial state ~ involves 

an arbitrary but effectively computable choice of one index i N i N k for which 

t i = t!1 is true of o after which S i is executed on ~. The execution results in a 

divergent computation whenever none of the guards t. = t! is true. Thus, we 
1 i 

require a deterministic implementation of the command's usual non-deterministic 

semantics. 

An execution of the iteration construct on initial state ~ corresponds to the 

usual execution of the while-construct except that for termination executing the 

embedded while-construct on s must lead to a final state for which r = s holds true. 

For A any E-structure, let WP(A) and EWP(A) denote the sets of all partial 

functions on A computable by the programs of WP and EWP respectively. We conclude 

this section with a comparison of the computing powers of these two classes of 

programs (Theorem 2.2). 

First of all, let WP 0 = WPO(Z ) be the class of all those standard while- 

programs which involve boolean tests in their conditional and while-constructs only 

of the forms 

t = t or t ~ t' 

for t, t' polynomial expressions over E. Let WPo(A) be the set of all functions 

on E-structure A computable by programs from WP O. The proofs of the following 

facts are routine exercises 

2.1. LEMMA. For any E-structure A, WP0(A) = WP(A). 

2.2. THEOREM. Let A be any struature. Then EWP(A) c WP(A). If A possesses 
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constants T,F and a binary operator 

E(a,b) = [~ if a = b if a # b 

then EWP(A) = WP(A). 

3. HOARE LOGICS FOR EQUATIONAL~HILE-PROGRAMS 

Having settled on the programming formalism EWP for operating with algebrai- 

cally specified data types, it remains for us to provide it with the two Hoare 

logics for proving partial correctness properties for its computations. The first 

Hoare logic HL(EL(E),EO(E)) has an algebraic form and is designed for use with 

algebraically specified programming systems [(E,E),EWP(E)]. Its principal charac- 

teristics are an equational assertion language EL(E) and an oracle E0(E) for the 

Rule of Consequence which consists of those equational assertions provable from the 

data type specification (E,E). 

The second Hoare logic HL(CL(A),CO(A)) is made to model a Hoare logic whose 

assertion language CL(A) defines precisely the decidable assertions about a 

computable data type A and has as oracle the set of all decidable assertions C0(A) 

true of A. 

We shall define both these Hoare logics as particular instances of a general 

description of Hoare logics for EWP. This general format is made inside the 

infinitary language L = L (~) based upon the signature E as this language is 
~i,~ ~i,~ 

sufficiently expressive to faithfully represent C0(A) whereas first-order logic is 

not. (In this use of i to circumvent expressihility problems in the logic of 

program correctness we follow ENGELER [19] and BACK [4,5]). 

Let L be a sublanguage of L ,m(E) by which we mean L is a set of infinitary 
i . . 

formulae closed under finite conjunctions and substltutlons. The basic syntactic 

object of a Hoare-like logic with assertion language L is the [-asserted program. 

This is an expression of the form {p}S{q} where S is a program and p,q £ L and, in 

this paper, the finitely many free variables of S, p, q coincide. 

Let 0 a L × L such that if (~,$) e 0 then the formulae ~ and B have the same 

finite set of free variables. 

The Hoare logic HL(L,O) for EWP based upon assertion language i and oracle 0 is 

defined as the set of all asserted programs {a}S{~} for a,~ ~ i and S ~ EWP genera- 

ted by the following axioms and proof rules: let S,SI,...,S k { EWP; p,q,pl,ql,r e L; 

and let t,t',tl,t{,...,tk,t{,s,s' be polynomial expressions over E. 

I. ASSIGNMENT AXIOM SCHEME. The asserted program 

{p[t/X]} X := t{p} 

is an axiom where p[t/X] stands for the result of substituting the expression t for 

free occurrences of variable X in p. 
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2. COMPOSITION RULE. 

3. GUARDED CONDITION RULE. 

4. ITERATION RULE. 

{P}Sl{r],{r}S2{q} 

{P}SI;S2{q} 

{pAt l=t ~ }S 1 {q} ..... {PAtk=t~'~}Sk{q } 

- -  {P}(tl=t'+Sl l~'''~tk=tk÷Sk){q} 

{pAt=t'}S{p} 
~.~while t=t ' do Sod now check s=s ' won IpAs=s'}" 

5. CONSEQUENCE RULE. 
(P~Pl)e0,{Pl}S{ql}, (ql,q)~0 

{p}S{q} 

Notice that all proofs in HL(L,0) are finitely long. 

The semantics of HL(L,0) is simply that of the partial program correctness 

semantics for asserted programs derived from the standard satisfaction semantics of 

the infinitary formulae of the assertion language. Thus, a given asserted program 

{p}S{q}, with S, p, q having n free variables, is said to be valid over a E-structure 

A if for o ~ States~),whenever A > p(o) then either S(a) converges and A ~ q(S(o)) 

or else S(~) diverges. We shall abbreviate validity by A ~ {p}S{q}. 

The partial correctness theory of EWP in language L over E-structure A is 

defined by 

Pc(L,A) = {{p}S{q}: A k {p}S{q} for S c EWP, p,q e L}. 

A Hoare logic HL(L,0) is said to be sound for structure A if HL(L,0) a PC(L,A) 

The oracle 0 is said to be valid over a structure A if for any (p,q) ~ 0, with p,q 

having n free variables, and for any a c A n , A ~p(a) ÷ q(a). 

3.1 SOUNDNESS THEOREM. Let HL(L,0) be a Hoare logic and A any Z-structure. If 

the oracle 0 is valid for A then the Hoare logic HL(L,O) is sound. 

The proof of Theorem 3.1 we leave as an easy exercise for the reader and his or 

her semantics for EWP. The following observation is obvious. 

3.2 FINITENESS LEMMA. Suppose HL(L,0) ~ {p}S{q} for p,q c L and S ~ EWP. If 

Op,q c 0 is the set of all oracle assertions a~pearing in some proof of {p}S{q} then 

HL(L,Op,q) ~ {p}S{q}. 

3.3 E~UATIONAL HOARE LOGIC. Given an algebraic specification (Z,E) we assign to 

it an equational Hoare logic HL(EL(z),E0(E)) defined by taking the assertion language 

k to be the set EL(Z) of all finite conjunctions of equations over ~ and taking as 

the oracle 0 the set E0(E) of all pairs of finite conjunctions of equations 

(p,q) e EL(Z) × EL(Z) such that 

E ~ p + q. 

Thus, HL(EL(z),EO(E)) is an entirely syntactical construction and 

HL(EL(z), EO(E)) ~ {p}S{q} 

tells us that the pre- and post- conditions p and q are finite conjunctions of 
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equations defining a partial correctness statement provable from equational infor- 

mation derivable from the axioms E. 

3.4. COMPUTABLE HOARE LOGIC. Given a computable data type A of signature E we 

assign to it a Hoare logic of computable assertions HL(CL(A),CO(A)) defined by 

taking the assertion lan~age L to be th~set CL(A) of all infinitary formulae 

p ¢ L such that the set {a ¢ An: A ~ p(a)} is computable. Notice this CL(A) is 
~i ~ an absolutely well-defined construction thanks to Theorem i.i. As an oracle 0 we 

take the set C0(A) of all pairs of infinitary formulae (p,q) E CL(A) × CL(A) such 

that A ~p ÷ q. Thus, HL(CL(A),CO(A)) is a semantical construction and 

HL(CL(A),C0(A)) ~ {p}S{q} 

tells us that the pro- and post- conditions are decidable predicates defining a 

partial correctness statement using true computable intermediate assertions only: 

See APT, BERGSTRA & MEERTENS [3] and APT [2] for a discussion of this hybrid type 

of Hoare logic and its mathematical structure. 

3.5. ~ASIC OBSERVATIONS. FOr any computable data type A of signature E , each 

computable s~bset S a A n is definable in CL(A). Clearly, EL(E) c CL(A). 

4. THE ADEQUACY THEOREM 

4.1. THEOREM. Let A be an infinite computable data type of signature E. Suppose 

that 

HL(CL(A),CO(A)) ~ ~Pi]Silqi] 

wherein S i ~ EWP(E) and pi,qi c EL(E) for i = l,...,n. Then there exists an 

equational speoification (E0,EO), with ~0 - ~ containing at most 5 new function 

symbols and i constant and with E 0 containing 4 equations over EO, such that 

(i) under its initial algebra semantics (Eo,Eo) defines A as a hidden enrichment 

specification, and 

(2) HL(EL(Eo),EO(Eo) ) ~ {Pi}Si{qi} for i = l,...,n. 

PROOF. We will divide the proof into two larg~y independent blocks. First of all, 

let A be isomorphic to a recursive number algebra R with domain m (Lemma 1.2). We 

will make a new recursive number algebra ~, of signature EH, such that 

~I E = <RE> E = R. And we will make a set of conditional equations EH, which are 

true of ~H' 

RH ~ E H 

and for which 

HL(EL(EH),E0(EH) ) ~ [Pi}Si{qi} (i ~ i ~ n). 

The second block is the proof of the following general specification cum 

compression theorem. 

4.2. SPECIFICATION THEOREM. Let A be an infinite computable algebra finitely 

generated by elements named in its signature E. Then there exists a specification 

(Eo,Eo) , in which E 0 extends E by 5 new function symbols and I new constant and 
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E 0 contains only 4 equations over ZO~ such that (Zo,Eo) defines A as a hidden 

enrichment specification under its initial algebra semantics. 

Moreover, for any finite set E of conditional axioms over z satisfied by A, 

(Eo,Eo) can be chosen so that each axiom of E is formally provable by the rules of 

first-order logic from E O. 

Our theorem now follows immediately from these two blocks. In the Specification 

Theorem 4.2, take A = R H as the algebra to be specified and take E = E H as the 

axioms to be compressed. The specification (Eo,Eo) specifies R H and since E 0 

proves E we know that E 0 proves the {Pi}Si{qi} in the equational Hoare logic over 

E H. To obtain the result of our main theorem we recover R from R H and check the 

numerical bounds claimed; these latter tasks are trivial, of course. Consider the 

part of the proof devoted to the Hoare logics involved. 

For notational convenience we take n = I. Suppose that HL(CL(R),C0(R)) 

{p}S{q} wherein p,q £ CL(R) are conjunctions of equations. Let P be a proof of 

this fact in the Hoare logic and let {ip,...,Ip} be a list of all the formulae of 

CL(R) occurring in P. Let X I .... ,X k be a list of all the free variables mentioned 

in the formulae of P. Now, each formula ip arising in the proof P can be assumed 

to be factorised into the form 

ip a(i) iF 
= A . 

j=l J 

where ip. is either an equation over Z or is some formula of CL(R) that is neither 
J 

an equation, nor a conjunction of two other formulae of CL(R). We shall transform 

P into a proof ~(P) is an equational Hoare logic and we propose to do this by re- 

placing these latter complex subformulae of the ip with equations over a signature 

E H extending E; thus, ip is turned into a formula ~(ip) which is a finite con- 

junction of equations over ~H" Replacing each occurrence of ip in P by the formula 

~(ip) results in a syntactical object ~(P) which looks like a proof of {p}S{q} in an 

equational Hoare logic over E H. What remains is the task of finding an oracle to 

define a Hoare logic in which ~(P) is indeed such a proof. And, of course, we have 

to show that the oracle can be specified by a finite set of conditional axioms. 

The formal rSle of the algebra R H is to prove the consistency of these syntac- 

tic manoeuvres and to act as a template for the second half of the proof which applies 

the Specification Theorem 4.2. But it seems best to introduce R H straightaway to 

explain the idea behind our choice of E H. 

For each I ~ i N l, let I. c {l,.~.,a(i)} denote the set of indices for those 
i 

subformulae ip. of ip which are not equations. To define R H we add to R the numbers 
J 

O~1,2 c R as distinguished constants and also these two functions 

succ(x) = x+l 

i if O~i<-l, jel i and A~i j(xl .... 'Xk); 

sat(xl,...,xk,i,j) = if OSi<-£, jel i and A~ Pj(Xl, ,Xk) ; 

otherwise. 
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Since each ip. defines a computable predicate on R, the function sat is recursive. 
J 

Let the signature of R H be E H = E u {0, TRUE, FALSE, SUCC, SAT}. 

The syntactic transformation of the proof P into ~(P) proceeds as follows. 

Given the formula ip of P, we leave alone all those components ip. which are already 
J 

equations over E, and we replace each ip. which is not by 
• J 

SA~(X I ..... Xk,SUCC~(O),S~TccO(o)) = T~UE 

which is an equation over E H. The resulting formula ~(IP) is a finite conjunction 

of equations over E H as expected; and therefore, replacing every occurrence of 

every ip in the proof P produces ~(P) which could be a proof of the asserted program 

{p}S{q} is an equationalHoare logic over E H. To define that Hoare logic we must 

inspect the oracle axioms appearing in the proof P. 

Let Q = {QI ÷ Qi .... 'Qt ÷ Qt} be a list of every use of the oracle C0(R) in the 

proof P. By the Finiteness Lemma 3.2, 

HL(CL(R),Q) ~ {p}S{q}. 

Since each Qi and Q~, for i ~ i ~ t, are some %P and ~P we can define 

~(Q) = {~(QI ) + ~(Qi) ..... ~(Qt ) ÷ ~(Q~)}. 
A trivial induction on proof structure allows us to conclude that 

HL(EL(EH),~(Q)) ~{p}S{q}. 

Thus to complete this stage of the argument we have only to get the oracle ~(Q) 

specified by a set E H of conditional equations over E H, Now remember that each 

formula ~(Qi ) ÷ ~(Q~) is almost a conditional equation: the deviation is that 

~(Q~) is a conjunction of equations over E H. The following lemma shows how to un- 

pick the conjunctions of ~(Q~) to form a set of conditional equations EH; its 

proof is a simple logical exercise. 

4.3 LEMMA. Let rbe any signature and let {ri(X) = r~(X): i ~ i ~ n} and {sj(X) = 

s~(X): i ~ j ~ m} be two sets of equations over r in a list of variables X. Then 
J 

for any formula t c L(F) the ~llo~ng are equivalent: 

i=l ri(X) = j~l sj(X) = s~(X)] e 

PROOF OF THE SPECIFICATION THEOREM. First, let A be infinite and isomorphic with a 

recursive number algebra R whose domain is ~ (Lenmm 1.2). We add the following 

constants and operations to R to make a new recursive number algebra R 
W 

O, x+l, x+y, x.y 

(If R contains any of these functions beforehand then some of this list is redundant, 

of course: R H already possesses zero and the successor function remember.) 

Next, let k denote the maximum number of conjunctions occurring in the premisses 

of the conditional axioms in E, or let k = I if E contains only equations. Witbout 

loss of generality, we can assume every conditional equation of E has k conjunctions 

in their premisses by padding with trivially valid equations X = X. Thus, each 
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conditional equation in E has the form 

t I = t~ ^...^ t k = t k + t = t'. 

We now define two more recursive functions which must be added to R . 

if x=y and 

d(x,y,z) = otherwise 

k 
h(xl,y I ..... xk,Yk,Z) = ~z if ^i=l xi =Yi; 

L 0 otherwise. 

Let R O be the result of adding these 5 functions and i constant to R. Clearly, 

ROE = <Ro>~ = R. Let E 0 = ~ u {O,SUCC,ADD,ML%T,D,H} be the signature of R O. We 

shall construct a specification (Eo,E O) which encorporates the conditional equations 

E, specifies R 0 under its initial algebra semantics and uses only 4 equations. This 

construction proceeds in several stages the first of which ends with a conditional 

specification of R O. 

4.4. LEMMA. R 0 possesses an initial algebra specification (Eo,EI) in which E l 

contains at most 6 + IZI conditional equations each one of which has at most i 

premiss. 

PROOF. The equations for the arithmetic are 

ADD(X,O) = X; MULT(X,O) = 0 

ADD(x, succ(Y)) = SUCC(ADD(X,Y)); MULT(X,SUCC(Y)) = ADD(MULT(X,Y),X) 

For each constant c c E naming number o e R take the identification 

c = SuccC(o) 

For each function symbol f c Z u {D,H} naming function f: n _ + ~ which is either an 

operator of R, or is d or h we construct a conditional equation as follows. Consider 

the graph of f, 
n+l 

g(f) = ~(xl,...,Xn,Y) ~ ~ : f(x I ..... Xn) = y}. 

This is an r.e. set and so, by the Diophantine Theorem, there exist polynomials pf 

and qf from ~[X,Y,Z] = ~[X 1 .... ,Xn,Y,Z ,...,Z m] such that 
m 

G(f) = {(x,y) ~ n x ~: 3z c e .pf(x,y,z) = qf(x,y,z)}. 

Let Pf and Qf be formal translations of pf and qf to polynomials over {O,SUCC,ADD, 

MULT}. For the function symbol f we assign the conditional equation 

Pf(X,Y,Z) = Qf(X,Y,Z) ÷i(X) = Y. 

This completes the definition of E . 

The proof that T(Zo,EI) m R O begins by defining ~: R 0 ÷ T(Eo,EI) by 

~(n) = [succn(o)] 

where [SUCCn(O)] is the equivalence class of terms in T(Z0) which are El-equivalent 

to Succn(o). This map ~ is the required isomorphism. The proof is a routine 

exercise and is, in fact, a simplified version of the corresponding proof in [ii]. 

We take the liberty of omitting it. Q.E.D. 

Now we must absorb the conditional equations of E. Take the conditional 

equations of E 1 and pad out their premisses to contain k conjunctions of equations, 
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if necessary. (Here it is important that k 2 i.) This done, set E 2 = E u E I. 

We will now describe a transformation of the set of conditional equations E 2 

to a set of equations E 3 satisfying these three conditions: 

I. IE31 = IE21 + I 

2. E 3 ~ E 2 

3. RO ~ E 8 • 

The technique is quite general and we will use it again in a moment. 

The first and "extra" equation in E a is simply 

H(Xl,X 1 . . . . .  x k , x k ,  z )  = z 

The r e s t  a re  made to co r r e spond  to  the  c o n d i t i o n a l  e q u a t i o n s  of  E 2. 

For each conditional eq,.ation 

= T A...At k Y ÷ t = t ~ t I t I = t k 

in E we write the equation 
2 

H(tl,t I . . . . .  tk,%t  ° H % , t  I . . . . .  tk,t ,t') 
This i s  a l l  of  E 3. Cond i t ion  (1) i s  obvious  and the  arguments f o r  p r o p e r t i e s  (2) 

and (3) are straightforward logical exercises. 

Now we are going to transform back the set of equations E 3 into a set E 4 of 

conditional equationsl However, this E 4 will contain only 3 conditional equations, 

consistent with RO, and be able to formally prove the equations of E 3. The first 

two elements of E 4 are 

D(X,Y,Z) = 0 ÷ X = Y and D(X,Y,Z) = 0 + Z = O. 

Let E 3 = {rl=s I ..... rl=s £} for £ = 6 + IEl + IEI + I. From this list we inductively 

define the following polynomials 

D I = D(rl,sl,0) Di+ I = D(ri,si,Di) 

for i = l,.o.,!-i and take the equation 

D~ = O~ 

to make E~. Again the properties we claimed for E 4 are routine matters to verify. 

The final stage is an application of our technique which turns conditional 

equations into equations. This produces a set of equations E 5 such that 

4. IE51 = IE41 + i = 4 

5. E 5 ~ E 4 

6. Ro ~ E 5 . 

This E 5 is the set of equations E 0 required for the statement of the Specification 

Theorem 4.2. 

To see that E 0 proves the given conditional equations, recall the chain 

E O = E 5 ~ E 4 ~ E 3 ~ E 2 = E u E l . 

And that (Eo,E O) specifies R 0 follows from this chain, condition (6) and Lemma 4.4. 
Q.E.D. 

We are indebted to Ms. Rita Martin (School of Mathematics, University of Bristol) 

for making this fine typescript. 
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