
Finite Models for Deterministic Propositional Dynamic Logic

Mordechai Ben-Ari I, Joseph Y. Halpern 2, and Amir Pnueli 1

I. Department of Mathematical Scienc~es,
Division of Computer Sciences,

Tel Aviv University,
Ramat Aviv, Israel.

. Mathematics Department,

Harvard University,
Cambridge, Massachusetts 02138

1. Introduction

Dynamic logic, an outgrowth of modal logic, was introduced by Pratt [5] as a logical

theory capable of expressing properties of computer programs. Fischer and Ladner [I] have

investigated the purely logical properties of the propositional fragment of dynamic logic

(PDLI. Their principal results are a decision procedure for satisfiability and a proof of the

finite model property: if a formula in PDL is satisfiable then it is satisfiable a finite

model; in fact one of size 2 n. These results were re-derived and extended by Pratt 1"6, 7]

who gave a 2 cn deterministic time algorithm for PDL using tableau techniques. Segerberg

[8] proposed an axiomatization for PDL, which was later shown to be complete by various

researchers (see 1"2] for an elementary proof and further references).

Deterministic PDL (DPDL) is the logical theory with the same syntax as PDL but with

its semantics restricted so that in each state an atomic program specifies at most on

successor state. Parikh [3] has given a decision procedure for DPDL as a corollary to the
decision procedure for a very strong theory: second order process logic. However, that

procedure is of non-elementary complexity and cannot be considered practical for DPDL

We give a 2 cn deterministic time decision procedure for satisfiability in DPDL.

This agrees with the lower bound shown by Parikh [4]. The proof uses the notion of a partial
D model for a formula p, which is precisely what we end up with when we apply the

Fischer-Ladner factor model construction to a DPDL model for p.

We introduce the syntax and semantics of PDL and DPDL in section 2. In section 3

we review the ideas of the Fischer-Ladner proof of the finite model property for PDL, and

250

provide the motivation for and definitions of partial PDL, DPDL, and D models for a

formula p. In section 4 we prove the main technical result, namely that a formula of size n

is D P D L satisfiable iff it has a partial D model of size 2 n iff it has a DPDL model of size

n2"4 n. We use ihis result in section 5 to give us the decision procedure. It is worth

noting that we do not have to construct a DPDL model for p in order to decide whether or

not p is DPDL satisfiable. Finally, in section 6, we use the methods of [2] to give a

complete Segerberg-like axiomatization of DPDL.

Valley has sketched a completeness proof for DPDL in [9] and a decision procedure in

El0]. He suggests that the techniques of [10] can give a finite model but does not give

details.

2. S y n t a x and Semant ics

2.1 Syntax: The alphabet for PDL (as well as DPDL}, ~ consists of a set ~0 ' whose

elements ~lre called atomic formulas, a set ~0' whose elements are called atomic programs,

and the symbols u ; , * , ? , % <,) , { ,) .

The set of programs, ~, and the set of formulas, ~, are defined inductively using

the following rules:

.

2.

3.

4.

.

any atomic program in ~0 is a program;

if a and b are programs, then so are (a;b), (aUb), and a*;

any atomic formula in 4'0 is a formula;

if p is a formula and a is a program, then " p and <a>p are

formulas;

If p is a formula, then p? is a program.

We also use the following abbreviations: p A q for <p?>q, p V q for ~ " p A -,q),

p -~ q for " p V q, p - q for (p -~ q) ^ (q -* p), and [a]p for -,<a>-,p.

The length of a formula p, written IP], is the length of p regarded as a string over _f .

2.2 Notation: We will normally reserve P, Q, R, ... for members of ~0 ' and A, B, C, ...

for members of ~0" The letters p, q, r, ... denote formulas, while the letters a, b, c, ...

denote programs.

2.3 Definition: A PDL structure M is a triple (S, ,r, p) where S is a set whose

elements are called states, ~r: ~ -, cdv(S) is an assignment of formulas to sets of states,

and 0" ~g -~ e)°(S x S) is a mapping of programs into binary relations on S which satisfies

251

the following constraints:

Io

2.

3.

4.

o(a;b) = p(a)°p(b) (composition of relations)

p(aVb) = o(a)Uo(b) (union of relations)

p(a*) = (p(a))* (reflexive and transitive closure)

o(p?) : {(s, s)l p ~ ~-(s)}

A DPDL structure satisfies in addition:

5. For all A ~ Z0' o(A) defines a partial function;

i.e. if (s, t), (s, t') ¢ p(A), then t -- t'.

If p E @, then we can view ~r(p) as the set of states in which p is true. And if

a ¢ ~, then a(a) is the input-output relation of program a, i.e., (u, v) c p(a) means

that by starting in state u and running program a we can halt in state v.

The size of a structure M : (S, ~r, p) is the cardinality of $.

2.4 Definition: A (D)PDL model is a (D)PDL structure (S, ,r, p) satisfying the

following additional constraints on ,r:

6,

7.

~r(-'p) = S - ,r(p)

,r(<a>p) -- {s ¢ SJ 3t((s, t) ~ p(a) and t ¢ ,r(p))}

2.5 Reraar'ks: t. Given ~r': @0 "~ c~S)' p': ~0 -~ ~(S x S), we can always

uniquely extend , r ' to It: ¢ -* ~ S) and p' to p: ~ -, ~'(S x S) so that conditions

1-4, 6, and 7 hold. Moreover, if p' satisfies condition 5, then so does p. Thus, for a

(D)PDL model, ~r and a are completely defined by their actions on the primitive formulas and
programs.

2. We will say t is an a-successor o f s in a structure if (s, t) E p(a).

In a DPDL model, each s ~ S has at most one A-successor for all A ¢ X: 0. Any (D)PDL

model M = (S, ~r, p) can be viewed as a directed graph, with the nodes labelled by states in S.

We join s to t by an edge labelled A iff (s, t) ¢ p(A). The graph together with ,r

uniquely defines M.

2 . 6 Definitions:. Let M : (S, r , p). Then

1. M, s ~ p (p is true in s f S) iff p ¢ ~r(s),

2. M I= p (p is satisfiable in M) iff, for some s c S, we have M, s 1= p,

3. a formula p is (D)PDL satcsfiable iff for some (D)PDL model M, M ~ p,

4.

252

~(D) P (P is (D)PDL valia) iff for all (D)PDL models M = (S, ~r, p) and all s c S,

we have M, s 1= p.

2.7 Lemma'.
1. I f I= p, then I= D p. (It thus follows that if p is DPDL satisfiable then p is

PDL satisfiable.)

2. M, s ~ <p?>q iff M, s ~ p and M, s I= q. (This justifies the abbreviation p A q

for <p?>q).

3. ~ <a;b>p -: <a>p.

4. l= <aOb)p - <a>p V p.

5. 1= <aX)p =- p V <aXaX>p.

6. For A ~ ~0' I=D <A>p -, [Alp.

Proof. Straightforward from the definitions In 1, note that a DPDL model is afortiori a

P D L model.

2.8 Remarlc. Note that the converse to Lemma 2.7(1) fails. For example, <A>p ^ <A>-'p is

P D L satisfiable but not DPDL satisfiable, while its negation is DPDL valid but not PDL valid.

3. FL-Closure and Part ial Models

3.1 The Fischer-Ladner closure of a formula P0' FL(P0)' is defined to be the least

set F such that P0 ¢ F and

1. - , p e F -, p c F

2. <a>p ~ F -, p ¢ F

3. <a;b>p c F -, <a>p ~ F

4. <aOb>p ~ F -. <a>p, <b)p ~ F

5. <a*>p ~ F -, <aXa*>p ~ F

6. <p?>q ~ F -, p, q ¢ F

$.2 Theorem: (Fischer-Ladner) If tP0~ : n, then tFL(P0)I < n.

Proof S e e [l] . i

3.3 Definition: If PO is a formula, let Zo(p O) : {A ¢ 1:131 A appears in PO}"

Let ~:(po) be the least set containing ~:o(Po) such that if a, b ¢ Z(po) so are

aUb, a;b, and a*, and if q ¢ FL(Po), q? ¢ X(PO).

253

The point of F~P0) and 7.(P0) is that if we want to construct a PDL model satisfying

PO' the only formulas and programs which we must take into account are those in FL(P0)

and ;g(po). This comment is made more precise in the proof of the following theorem.

3.4 Theorem (Fischer-Ladner): If IPO = n, then P0 is PDL satisfiable iff P0 is

satisfiable in a PDL model of size <_ 2 n.

Proof: We just present a sketch here. The reader is referred to [1] for more details.

Suppose M = (S, r , p) is a PDL model satisfying P0" Define an equivalence relation -=- on S via

s I -- s 2 iff (M, s 1 I= p iff M, s 2 ~ p for all p ¢ FL(P0)).

Since an equivalence class is completely determined by which of the n formulas in

FL(P0) it satisfies, there are at most 2 n equivalence classes.

Let [s] = {s' c S I s' -= s}, and let S' = {[s][s ¢ S}. Note IS1 -< 2 n.

Define C': ~0 " r~S) ' p'': Z0 " ~($' x S~ via

~r"tP) = {Is] I s ¢ ~r(P)]

p ' (A) = {(Is], I t]) I (s, 0 ¢ p(A)}

Extend l r " to ~r': ~ -, ~d~(S'), p " to p': Z -* ~d~(S ' x $3 to get a PDI', model.

Let M' = (S', x ' , p'). Then it can be shown that for p ¢ FL(P0) ,

M , s ~ p i f f M ' , [s] ~ p . I

3.5 We would like to apply the above ideas to showing that a formula is DPDL satisfiable

i f f it has a finite model. However, when we try to carry out the above construction starting

with a DPDL model M = (S, ~r, p) satisfying P0' we find that in general M' = (S', lr', p'}

is not a DPDL model. What goes wrong is that there might be states Sl, s2, t l , t 2 ¢ $

w i th (S l , t l) ¢ a(A),(s2, t 2) ¢ p(A), s 1 -- s2, but t 1 ~ t 2, Thus both

([Sl] , [t l]) , ([Sl], It2]) ¢ o'(A), so p'(A) does not define a partial function.

However, the M' so constructed does have one important property, namely:

if <A>p c FL(P0) and M', [s'] ~ <A>p, then for all [t[I such that (Is0, I t0) ¢ p'(A),
we have M', It'] ~ p.

To see this, suppose M', [s'] ~ <A>p and for some [t~ with ([sO, It ']) • p'(A)

we have M', [tO I= ",p. Then, by definition of a', there exists s ¢ [sO, t ¢ [tO

254

with (s, t) c p(AL Moreover, M, t ~ -~p and M, s ~= <A>p. But since M is a DPDL model,

t is the unique A-successor of s in M, so M, t ~ p, contradicting M, t I= -~p.

The difference between this property and that of Lemma L7.6: ~D <A>p -, [A lp is

that the property is required to hold only for <A>p ~ FL(p 0) and not for all <A)p in the

language.

The above comments motivate the following definition of partial model. The idea is

tha t a partial model for P0 should be a structure which obeys the conditions required of a

model for P0' at least for the formulas appearing in and FL(P0L More formally we have

3.6 Definition: A partial (D)PDL model for P0 is a (D)PDL structure M -- (S, *% p) such

that lr(P0) g ~ and

7'.

For "~q ¢ FL(Po), ,r('~q) = S - r(q),

For <a>q ¢ FL(Po), ~r(<a>q) : {s[3t((s, t) ¢ p(a) and t ¢ ~-(p))}.

partial D model for P0 satisfies 1-4, 6', 7' and

'. For <A>q ~ FL(P0),
if s c n(<A>q) then for all t such that (s, t) ¢ p(A), t c ,r(q).

Note that a partial DPDL model for P0 is trivially a partial D model for P0"

The following lemma is just a refinement of Lemma I in [6]:

3.7 Lemm~ A formula P0 is (D)PDL satisfiable in a model of size N iff there is a

partial (D)PDL model for P0 of size N.

Proof: We consider the PDL case; the DPDL case is exactly the same. It is clear that any

PDL model satisfying P0 is automatically a partial PDL model for P0" For the converse,

suppose M : (S, r , p) is a partial PDL model for P0" Let r " -- ~rl~ 0, p'" = PNO' and

extend ~r" and p" to mappings ~-': ~ -~ c~S) and p': I~ -. 3¢~($ x 8) which satisfy the

PDL model constraints. Then it is easy .to show by induction on the structure of formulas and

programs that

p'lz(p -- plz(p , .'lFt p : ,,IFUpo .

Thus M' : (S, r ' , p) is a PDL model for P0" |

255

We conclude from this lemma that

P0 is DPDL satisfiable

,-, there is a partial DPDL model for P0

-* there is a partial D model for P0"

We will show that the second implication is actually an equivalence.

4. Cons t ruc t i ng a Part ial DPDL Model from a Partial D Model

We are now ready to state our major theorem:

4.1 Theorem: Let IP0 = n. Then the following are equivalent:

(a) P0 is DPDL satisfiable,

(b) there is a partial D model for P0 of size < 2 n,

(c) there is a partial DPDL model for P0 of size < n2"4 n.

Proof. (a) -, (b) follows immediately from the Fischer-Ladner construction presented in

Theorem 3.4 and the comments in 3.5.

(c) -* (a) follows immediately from Lemma 3.7.

(b) -* (e) will require a little more work. First we need some definitions and lemmas.

4.2 Definition: For a c lg, we define r(a), the set of a-trajectories in M = (S, ~r, p) by

induction on the structure of a (cf. [6, p.328]):

.

2.

3.

4 .

5.

¢(A) = p(A),

r(aVb) = r(a) U r(b),

r(a;b) = r(a)°r(b)

= {(s, ..., u, ..., t)J (s, ..., u) ~ r(a) and (u, ..., t) ~ t'(b)},

r(a x) = [(s)[s ¢ S} u (ui_>l~(ai))},

r(p?) = {(s) I M, s ~ p)},

The length of the trajectory (So, ..., S k) is k.

Note that (s, t) ~ p(a) iff there exists an a-trajectory (So, ..., s k) with

s = s O and t = s k. Such a trajectory is called an a-trajectory from s to t.

Informally, an a-trajectory from s to t describes the path taken by a in getting from the node

labelled s to the node labelled t in the graph corresponding to the structure M.

256

For the balance of this section, let M -- (S, f , p) be a partial PDL model for PO"

The following lemma shows that the structure of a trajectory as a sequence of states joined by

atomic programs is reflected in the elements of the FL closure in each state.

4.3

(SO,...,
exist A

Lemma: Suppose <al>...<ah> p ¢ FL(P0), M, s O l= <al>...<ah> p and M, s k 1= p, and
s k) is an al;...;a h trajectory of length > 0. Then for all i < k, there

¢ ~0(Po), bl, ..., b m ¢ X(p0) (m _> 0), such that

Ca)
(b)

(c)

<AXbl>...<bm> p ¢ FL(P0) (and hence <bl>...(bm> p ¢ FL(P0)),

(s i, si+ 1, ..., s k) ¢ ,(A;bl;...;h m)
(and hence M, s i I= <AXbl>...(bm> p and M, si, 1 ~ <bl>...<bm>P),

(So, ..., si) o •(A;bl;...;bm) c_ ~,(al;...;ah)

(and hence (s 0, s i) ° p(A;bl;...;b m) c_ P(al;...;ah)).

Proof: By a straightforward induction on h, i and the structure of a 1. I

4.4 Definition: If M, s I= q, where q : <al>...<ah> p and p is not of the form <c>r,

then q is fulfilled for s by t if (s, t) ¢ P(al;...;a h) and M, t l = p. We say q is

immediately fulfilled by s if h = 0 or if (s) ¢ ¢(al;...;a h) and M, s t= p.

<AXbl>...<bm> p is a derivative of q for s at t if M, t t= <AXbl>...<hm> p and

{s, 0op(A;bl;...;b m) c_ P(al;...;ahL Note that if q' is a derivative of q for s at

t, and i f q" is a derivative of q' for t at u, then q" is a derivative of q for s at u.

Thus the derivative possesses a kind of transitivity property. Moreover, it follows from the

definition that if q' is a derivative of q for s at t, and q' is fulfilled for t by u, then q

is fulfilled for s by u. Informally this says that if q' is a derivative of q for s at t,

then t is a way station on a trajectory to fulfilling q for s. 1

4.5

M, t I= p, and (s, O ¢ P(al;...;ah), then there exists an al;...;ah-trajectory from

s to t of length _< nN.

Lemma: If M is of size N, Ip(J -" n, <al>...(ah>P ¢ FL(P0), M, s I= <al)...<ah>P,

Proof. Suppose (s 0, ..., s k) is the shortest al;...;a h trajectory from s to t and k > nN. By
Lemma 4.3, with each si, i (k, we can associate a derivative qi ¢ FL(Po) of the form

<AXbl>...<bm> p such that (si, ..., s k) ¢ *,(A;bl;...;b m) and (So, si)°r(A;bl;...;b m)
c ~(al;...;ah). There are at most n distinct qi's (since]FL(P0) l <_ n) and N

distinct si's. Since k >aN, we must have (si, qi) = (sj, q j) for some i < j. But

then it is easily checked that (So, ..., S i, sj÷ 1, ..., s k) is an al;...;ah-trajectory from
s to t, contradicting the assumption that (s 0, ..., s k) was the shortest such trajectory. I

257

Proof o f Theorem 4.1

Let M be a partial D model for P0 of size <_. 2 n. We would like to construct a

partial DPDL Model for P0 from M. We will in fact construct a tree-like partial DPDL model

in stages. At the root we will put s 0, where s O c S such that M, s o t= P0" Then

we will have to ensure that for each formula <a>p c FL(P0) such that M, s o I= <a)p we

add an a-trajectory leading to some node M, t t= p. We must also do this in a deterministic

way, i.e. for each A ¢ Z(p0) and each node t on the tree, there should only be one

A-successor of t. Then for every new node that we add we must also ensure that every

formula of the form <a>p true at that node is eventually fulfilled.

For each s ¢ S, let D(s) = {<A>p ¢ FL(P0) I M, s ~ <A>p}.

We need just one more technical lemma.

4.6 Lemm~. For each s ¢ S we can construct a tree T s whose nodes are labelled by

elements of S and whose edges are labelled by elements of ~0(P0) such that

(a)

(b)
(c)

(d)
(e)

the root is labelled by s,

if there is an edge labelled by A from s 1 to s2, then (Sl, s 2) ¢ p(A),

for each node s' on the tree and for each A c ~0(Po), there is at most

one edge labelled by A leading from s' (i.e. the tree is deterministic),

every formula of D(s) is fulfilled for s by some node on the tree,

if s' is any node on the tree and q ¢ D(s3, then either

(i) q is fulfilled for s' by t, where t is a descendant of s' on the tree, or

(ii) there is a leaf t' on the tree which is a descendant of s', and a

derivative of q for s' at t'.

Proof'. For ease of exposition we will assume X0(P0) = [A1, A2}. Given s O ¢ S with

D(so) = {ql' " '" qm}" Suppose ql = <AXal>"'<ah>P' where p is not of the form r

(of course A will be either A 1 or A2). By Lemma 4.5, there is an A;al;...;a h trajectory

in M of length < n-2 n, say (SO, ..., Sk) , such that M, s k ~ p. Note that each of

<al>...<ah>P, ..., <ah>P, and p is also satisfied somewhere along this trajectory.

Const ruc t the straight line graph with nodes labelled by So, Sl, ..., s k.

For all i < k label the edge from s i to si÷ 1 with Aj (j : 1 or j -" 2) iff

(si, si÷ 1) ¢ p(Aj). If si÷ 1 is an A 1 successor of s i and not an A 2 successor

o f si, and if s i has A 2 successors in M, add one of the A 2 successors of s i to the

graph, say ti+l, and label the edge from s i to ti÷ 1 with A 2. Similarly if si÷ 1 is

258

an A 2 successor and not an A 1 successor of s i. So, for i < k, s i has an Aj successor on

the tree iff s i has an Aj successor in M (j :] or j : 2). This gives us the following

ra ther "thorny" tree, which we call the thorny tree rooted at s fu l f i l l ing ql:

0 ~ _ . _ ~ tl

S l - ~ .

~ # t 2

Sk-l.~.~

ik "~'~"~'~ tk

All edges are labelled

by either A 1 or A 2

So far we have a tree satisfying (a), (b), and (c) in which ql is fulfilled. We

claim in addition that condition (e) is satisfied. It is trivially satisfied at s k since s k

is a leaf. We show by induction on i that it is also satisfied at Sk_ i. For suppose q ~; D(Sk_ i)

and q is of the form <Aj>p. Then either M, Sk_i. 1 I= p or M, tk_i+ I I= p, depending on

which one is the Aj successor of Sk_ i. (This is precisely where we need the fact that M

is a partial D model. The t's were chosen arbitrarily, but the D model condition ensures tha t

tk_i+ 1 ~ p, no matter what t is chosen as tk_i.l.) Suppose M, Sk_i+ 1 I= p. Then p

is either immediately fulfilled at Sk_i, 1 or some q' ¢ D(Sk_i. l) is a derivative of p

for Sk_i+ 1 at Sk_i+l, and hence a derivative of q for Sk_ i at Sk_id. By the inductive

assumption, (e) holds for q' and hence also for q by the comments at the end of 4.4. If

M, tk_i÷ 1 I= p the same argument holds without the appeal to the induction assumption,

since tk_i+ 1 is already a leaf on the tree. Essentially, derivatives of q keep percolating

their way down the tree until either one gets fulfilled or reaches a leaf of the tree.

We must still arrange to satisfy condition (d). Suppose q2 is not fulfilled on the

tree thus far constructed. Then by the argument above there is a leaf t on the tree and

q ' E D(t) which is a derivative of q2 for s o at t. Now we just repeat the above construction.

We append a thorny tree rooted at t which fulfills q'. It is easy to check that conditions

(a), (b), (c), and (e) are still satisfied, and since q' is fulfilled for t, q2 is fulfilled for s O.

We continue appending thorny trees in this way until all of q l ' "" ' qm are fulfilled.

Note that since m <_ n, and each thorny tree which is appended has < n'2 n interior

nodes, the resultant tree has _< n2"2 n interior nodes. II

259

Proof of Theorem 4.1 (continued): We construct a deterministic tree T in stages. Let

T O be s 0. Let Ti÷ 1 be T i with each leaf s of T i replaced by the tree T s constructed

above, unless T s has already been used previously. In this case, identify s with the root

of T s (i.e. delete the leaf s and draw an edge from the predecessor of s to the root of "Is).

Then let T = UiT i. Let U be the set of nodes on T. There is a natural map o,: U -~ S

such that tr(u) -- s if u ~ U is an instance of s ¢ S. Define p": Ig 0 -, IY~(U × U) via

p"(A~ = {(u, u31 u and u' are connected by an A-edge in T} and r ' : q~ -~ ~(U) via

~-'(p) -- {ul M, ~(u) ~ p},

We extend p" t o p': ~ -, cY~(U x U) in the usual way. It is not hard to see that

M' = (U, ~r', p3 is a partial DPDL model for P0" The oniy condition that must be checked

is 7'. From Lemma 4.6(b), it follows that (u, u3 e a(a) implies (q(u), t~(u'}) c p(a).

Thus, if M', u' ~ p and (u, u) e p'(a), then M', u g <a>p since M, q(u) ~= <a>p.

For the converse, suppose M', u ~ <a>p. If <a>p is not immediately fulfilled by u,

then by Lemma 4.3 there is a derivative of <a>p, say q, in D(s). To show that there is some

u ' such that M', u' ~ p and (u, u') e p'(a), it suffices to show that q is fulfilled for u.

But if u was first added to T when T i was constructed, then by Lemma 4.6(e) q is fulfilled

for u by some node in T i or Ti+ 1,

Finally, note that there are at most 2 n distinct trees T s (since tSI _< 2n), and

each one has at most n'2 n interior (non-leaf) nodes. Thus IUI -< n 2"4n (since leaves on

one tree are always identified with interior nodes of some other tree in the construction),

giving us the desired bound on the size of the partial model. II

5. C o m p l e x i t y

Theorem 4.1 can be applied to give a fast procedure for deciding whether a formula

P0 is DPDL satisfiable. An algorithm which takes nondeterministic time 2 cn for some

constant c is ahnost immediate. Namely, we guess a partial D model M = (S, :r, p) of size ~ 2 •

and some s ~ S, and test if P0 ¢ s. tf so, answer yes. But we can do better than

this, by suitably modifying an algorithm of Pratt ([7]) for deciding PDL satisfiability:

5.1 Theorem: There is a procedure for deciding whether a formula P0 is DPDL

satisfiable which runs in deterministic time 2 cn for some constant c.

Proof: Let S O be the set of subsets of FL(P0).

1. For each s ~ SO, check that each of the following conditions hold:

260

(a)

(b)
(c)

(d)

(e)

if - 'p ¢ FL(Po), -'p ¢ s .* p t s

if <aUb>p ¢ FL(Po) , <aUb>p ¢ s *' <a>p ¢ s or p ¢ s

if <a;b>p ¢ FI-(Po), <a;b>p ¢ s *. <aXb>p ¢ s

if <aX>p ¢ FL(Po), <aX>p ¢ s *. <aXaX>p ¢ ~ or p ¢ s

if <p?>q ¢ FL(Po), <p?>q c s .* p, q ¢ s

If any of the above conditions do not hold, eliminate s from S 0. Let S 1 be the

remaining sets.

2. Consider the elements of S 1 as nodes on a graph. For each A ~ l~0(P0), and s, t ¢ S1,

join s to t by an edge labelled A unless

(a)

(b)

<A>p e s and p ~ t o r

<A>p ~ FL(P0), <A)p ¢ s and p e t

3. Define p on Ig0(P0) so that p(A) = {(s, t)[there is an edge from s to t labelled A}.

Compute 0(a) in the usual way for each program a that appears in P0" Then for each node s

on the graph, if <a>p ¢ FL(P0), check that <a>p ¢ s implies that for some t with (s, t) c p(a)

we have p ¢ t. Eliminate s and all edges leading to and from s if it does not satisfy this

condition, and repeat step 3 until all remaining nodes s do satisfy the condition.

Step 3 will be repeated at most IS1] <_. 2 n times. As well, as noted by Pratt ([TJ),

the computation of p(a) and the necessary checking can be carried out in time polynomial in

the number of nodes remaining in the graph, again _< 2 n.

4. Let S 2 be the remaining subsets. Then P0 is satisfiable iff for some s ¢ S 2

we have P0 ¢ s.

The comments made in step 3 justify the claim that the algorithm runs in deterministic

time o(cn). To see that the algorithm is correct, first suppose that P0 ~ s for some

s ~ S 2. Then we claim that M = (S 2, ¢, p) is a partial D model for P0' where lr

is defined so that s ¢ ¢(p) iff p ¢ s. Step 2 in the algorithm guarantees that for

• <A>p ~ FL(P0), if <A>p ~ s then vt((s, t) ~ p(A) -~ p ~ t). Otherwise, if for any
<A>p ¢ s we have p ~ t, then (a) would have prevented the addition of (s, t) to p(A).

Step 3 implies that for <a>p c FL(P0) , <a>p ¢ s -' 3t((s, t) c p(a) ^ p E t). It

remains to show that if <a>p ¢ FL(P0), p ¢ t, and (s,t) ¢ p(a), then <a>p ¢ s.

This can be shown by induction on the structure of a. Step 2 guarantees that the statement

is t rue for <A>p. (The proviso <A>p ~ FL(P0) is used in the case, say, that Pl ' P2 ¢ t,

<A>p I ¢ s, but <A>P2 g FL(P0) and thus not in any state of S 1. That should not

26t

prevent adding (s, 0 to p(A) to fulfill <A>p.) Using the conditions checked in step 1 we

can show that the statement remains true for <aUb>p, <a;b>p, and <p?>q. Now suppose

(s, 0 ¢ p(a *) and p ¢ t. Let (s0,.. . , s k) be an a*-trajectory from s to t. Then we

can show by induction on i that <a*>p c Sk_ i for 0 < i _< k, using the main induction

hypothesis and the condition (checked in step 1) that <a~>p c s iff <aXaX>p ~ s or p ¢ s.

Finally, since there is a partial D model for PC) of size <_. 2 n, by Theorem 4.1 P0 is

DPDL satisfiable.

For the converse, suppose P0 is DPDL satisfiable. Then by Theorem 4.1, there is a

partial D model for P0 of size < 2 n, say M' : (S', ~r', p'). Let f: S' -~ S I via

ffs') = {p ~ FL(P0) [s' c r'(p)}. Since for some s' c S', s' c ,r'(p0) ~ we

must have that for some s' ¢ S', P0 ¢ f(s~. Then it is easily checked that after

labelling the edges in step 2, we have for all Sl, s 2 ¢ S'

(s 1, s 2) ¢ p'(A) ~ (f(sl), f(s2)) ~ p(A)

It then follows that if s' ¢ S', fIs3 will not be eliminated at step 3. Hence for some

s ¢ S 2, PO¢ s. 1

IJ.2 Remarks:. 1. If P0 is DPDL satisfiable, the constructions in Theorems 4.1 and 5.1

actually give us an effective method for construc'ting a partial DPDL model for P0 in time

2 c'n for some constant c'.

2. Parikh has shown ([4]) that the problem of deciding if a formula is PDL satisfiable is

at least as hard as that of deciding if a formula is DPDL satisfiable. And by results of

Fischer and Ladner (['t]), we know that there is some constant d) 1 such that no procedure

can decide if an arbitrary formula of length n is PDL satisfiable in deterministic time < 2 dn.

(Actually, Fischer and Ladner only seem to show that the formula cannot be decided in

deterministic time < 2dn/l°g n But here they are measuring the length of the formula in

bits rather than in terms of the symbols of .Z/. If, as we have been doing in this paper, we

measure the length of the formula in terms of symbols of .~, we get the 2 dn lower bound).

Putt ing these two results together with Theorem 5.1, we see that we have tight bounds on the

decision procedure for DPDL satisfiability.

5.3 Algorithm: The algorithm presented in 5.1 has, as noted in 5.2, the best possible

worst case running time of 2 cn. However, its average case performance must also be 2 cn,

since the first step involves creating all the subsets of FL(P0). We can construct a more

"practical" algorithm that seems likely to do much better in most cases. It uses a

"bot tom-up" approach, building only as much of the partial D model for P0 as it needs. We

l eave details to the full paper.

262

6. A Comple t e Axiomat iza t ion for DPDL

6.1 Consider the following deductive system for DPDL:

Axiom Scheme~ 1. All tautologies of propositional calculus.

2. <aUb>p *~ <a>p V <b;,p.

3. (a>(p v q) ,-, (a>p V (a>q.

4. <a;b>p ,* <a><b;,p.

5. <a~>p ,* p V <aNa*>p.

6. <a*>p -* p V (a*;,("p V <a>p).

7. <A>p -* [A]p, for A c l~ 0.

Inference Rules: 8. p, p-,q (modus ponens)

q

9. p (generalization)

[alp

Axioms schemes 1-6 and rules 8, 9 constitute the Segerberg axioms for PDL and are

known to give a complete axiomatization for PDL (see [2] for the easiest proof).

6.2 Theorem: Axiom schemes and rules 1-9 above give a complete axiomatization for DPDL.

Proof. We say that a formula p is provable, and write 1- p, if there exists a finite

sequence of formulas, the last one being p, such that each formula is an instance of an axiom

scheme or follows from previous formulas by one of the inference rules. A formula p is

consistent if not I- -,p, i.e. if - 'p is not provable in this system. We want to show that

any valid DPDL formula is provable. It suffices to show that if P0 is consistent, then P0

is D P D L satisfiable.

So suppose P0 is consistent. Let FIJPo) = {ql' ""' qk} (k _< Ip0). If s is a subset

of FMP0), let Ps' the atom associated with s, be the formula (^qi~sqi) A (Aqi¢s-~qi).

Le t S = Is c FL(Po) I Ps is consistent]. For s, t ¢ S, define p': Ig 0 -, 5¢~(S x S) via (s, t) ~ o '(A)

iff Ps ^ <A>Pt is consistent. Define it': ~0 " (Y~S) via s e ~'(p) iff I- Ps "~ P (iff P is one

o f the conjuncts in ps). Extend p', ~', in the usual way to 0: N -~ r~(S x S), r : I ' -* ~ S) .

In [2], Kozen and Parikh show that M : (S, ~r, p) is a partial PDL model for P0 of

size 2 n. The proof only depends on the fact that PC) is consistent with the Segerberg

axioms. Then using Axiom 7, we can show that M is in fact a partial D model for P0" By

Theorem 4.1 it follows that P0 is DPDL satisfiable. We leave details to the full paper. II

263

Acknowledgments

We would like to thank Rohit Parikh and Jonathan Stavi for many stimulating

discussions on DPDL, and Vaughan Pratt for pointing out an error in the original proof of

Theorem 5.1. Jonathan Stavi independently noted that the finite model property could be

proved separately from the decision procedure.

This research was partially supported by grants from the National Science and

Engineering Research Council of Canada, the Israeli Academy of Sciences and Humanities, the

Basic Research Foundation, and NSF Grants MCS 7719754 and MCS 8010707.

References

1. M.J . Fischer and R. E. Ladner, Propositional modal logic of programs, in

"Proceedings of the Ninth Annual ACM Symposium on Theory of Computing", 286-294,

Association for Computing Machinery, New York, N. Y., 1977, A revised version appears as:

Propositional dynamic logic of regular programs, Journal of Computer and System Science

18 (1979), 194-211.

2. D. Kozen and R. Parikh, An elementary proof of the completeness of PDL,

to appear in Theoretical Computer Science.

3. R. Parikh, "A decidability result for Second Order Process Logic", Technical Report

MIT/LCS/TM-I 12, M.I.T., 1978.

4. R. Parikh, Propositional logics of programs: systems, models, and complexity, in

°'Seventh Annual ACM Symposium on Principles of Programming Languages", t86-192, 1980.

5. V.R. Pratt, Semantical considerations of Ftoyd-Hoare logic, in "t7th IEEE Symposium
on the Foundations of Computer Science", 109-121, 1976.

6. V.R. Pratt, A practical decision method for propositional dynamic logic, in "lOth

ACM Symposium on the Theory of Computation", 326-337, 1977. A revised version appears as:

A near optimal method for reasoning about action, Journal of Computer and Systems
Science 20 (1980), 231-254.

7. V.R. Pratt, Models of program logics, in "20th IEEE Symposium on the Foundations
of Computer Science", 115-122, 1979.

8. K. Segerberg, A completeness theorem in the modal logic of programs, Preliminary
report, Notices o f the American Mathematics Society 24 (1977), A552.

9. M.K. Valiev, On axiomatization of deterministic propositional dynamic logic, in
"Symposium on the Mathematical Foundations of Computer Science, 1979", 482-491.

I0. M.K. Valley, Decision complexity of variants of propositional dynamic logic, in

"Symposium on the Mathematical Foundations of Computer Science, 1980", 656-664.

