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i. Introduction 

The equivalence problem for deterministic pushdown automata (dpda) 

remains open despite extensive research. In recent years, several 

~echniques have been used to obtain decision procedures for the equi- 

valence problem that work for certain deterministic subfamilies. For 

a survey of these results refer to [HHY, 0HI]. 

In this paper, we show how a technique called parallel stacking, 

introduced by Valiant [V2], and refined by Beeri [B], may be used to 

obtain an equivalence test for two dpdas, one of which is 1-turn 

(sometimes called linear dpda). In [V2, B], the equivalence of two 

flnite-turn dpdas is shown to be decidable. Recently Ukkonen [U] 

presented a decision procedure, based on alternate stacking, for the 

equivalence of two proper dpdas, one of which is finite-turn. Proper 

dpdas are a proper subfamily of the dpdas, although Ukkonen conjec- 

tures that every deterministic language may be accepted by some proper 

dpda. We have recently learnt that 0yamaguchi, Inagaki and Honda have 

shown that the equivalence problem for two dpdas, one of which is fin- 

ite-turn, is also deeidable. As of this writing, however, we have not 

seen their paper [01HI. 

Our decision procedure will work as follows. Given a dpda M 

and a 1-turn dpda M, we first construct a new dpda M'. M' simulates 

M, but it knows whether or not, on the input being considered, M has 

made its only turn. After M made its turn M' continues the simu- 

lation without increasing its stack. We will show that M is equi- 

valent to M if and only if they are both equivalent to M'. Then 

we check equivalence of M ~ versus each of the original machines. 

It turns out that both these equivalences may be checked using tech- 

niques similar to that of IV2], since M' is sufficiently "similar" 

to both M and M. 

Section 2 lists some of the preliminary definitions needed in 
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our presentation. In section 3 we discuss the construction of M' 

Section 4 reviews parallel stacking IV2, B] and the following two 

sections describe the two decision procedures for the equivalence of 

and M' and of M and M' respectively. Finally, in section 7, 

we conclude with our main result and some comments. 

2. Preliminaries 

We briefly list the definitions of dpdas and finite-turn dpdas. 

s denotes the empty word. A dpda is denoted by a 7-tuple 

M = (Q,E,F,~,s0,z0,F) where Q, E and F are respectivelY finite 

sets of states, input symbols, and stack symbols, s O is the initial 

state, z 0 in F is the initial stack symbol, Fm_Qx(FU{s}) is the 

set of accepting or final modes and 6:Qx(EU{s})xF ÷ QxF* , the 

transition function, is a partial ~ function satisfying the determinism 

condition: if 6(s,s,A) is defined then for all a E E, 6(s,a,A) is 

not defined. If the determinism condition is not required, then M 

is a pushdown automaton (pda). 

If 6(s,w,A) = (s',y), we usually write (s,A) ~ (s',y). This 

transition rule of M has mode (s,A) and input w. If w = s the 

transition rule is called an e-rule, and (s,A) is an s-mode. Other- 

wise (s,A) is a reading-mode. We may assume all modes in F to be 

reading modes (except those with empty stack). We also assume that 

if (s,A) ~ (st,y) then y : s, and if (s,A) ~ (s',y) then lyl ~ 2. 

A pair (s,~A)~ s in Q~ A in F, w in F* is a otnfiguration 

with mode (s,A) while (s,~) is a configuration with mode (s,~). 

Configuration c = (s,~) has state s and stack ~. The stack 

height of c is Icl = IwI. 

If (s,A) ~ (s',y) is a transition rule, then we write 

(s,wA) ~ (s,~y) for any ~ in F* and call it a move of M which 

reads ~, and if ~ = s we call it an s-move. A derivation (or 

an ~-derivation) o ~ c is a sequence of such moves through succes- 

sive configurations where ~ is the concatenation of the input sym- 

bols read by the moves. ~ may be omitted if it is irrelevant. 

The language L(c) accepted from a configuration c is 

L(c) = {~£E*Ic ~ c', mode (e')eF}, and L(M) : L((So,Zo)) is the 

language accepted by M; here configuration c s = (sO,z O) is the 

initial oonfi~uratioD of M, A configuration is reachable if c s ÷ o 

for some ~. 

Two configurations c and c' are equivalent (c ~ e T), if 
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L(c) = L(c'), and two dpda's M and M' are equivalent (M z M')~ 

if L(M) = L(M'). 

A dpda is called finite-turn if there is a bound on the number 

of times the direction of the stack movement can change° More pre- 

cisely, a derivation is an upstroke if no single move in it decreases 

the height of the stack and a downstroke if no move increases the 

height of the stack. A dpda is finite-turn if there is an integer k 

such that every derivation in M from the initial configuration can 

be segmented into &k strokes alternating in direction. We associate 

with each configuration e an order which is the number of turns made 

in a derivation c Z c. We will assume a finite-turn dpda to be in 
s 

a normal form such that the order of a configuration is uniquely det- 

ermined by its state (cf[V2, B]). 

We will be particularly interested with 1-turn dpdas, sometimes 

referred to as linear dpdas. It should be noted that not all deter- 

ministic linear context free languages are accepted by such a device. 

The following linear context free language is accepted by a dpda, but 

not by a finite-turn dpda : L = (a+b+) *L0(a+b +)* where 
L 0 = {anbnln>0}. 

3. Construction of M' 

Before we present the construction of M', we need the following 

lemma which is adapted from the work of Valiant on regularity tests [VI] 

L~mma I. 

Let M be a dpda. There exists an integer ~ (depending upon 

M) such that for each pair of configurations c O and e with c 0 ÷ c 

and [c I - le01 > ~ either 

(i) One can eliminate a segment from the top ~ symbols of c 

obtaining a configuration c' such that 

c o ÷o', io'i < {el and o' 

(ii) there is an infinite collection ci,c2,.., of pairwise in- 

equivalent configurations with c O ÷ e..l 

Proof. 

Valiant [VI] proved this result for c O = Cs. The same proof 

holds for any c0~ and in particular the bound ~ is independent of 

c O . (For other variations of this lemma cf [HY,IY].) Q 

Note that if L(e 0) is regular then case (ii) is impossible. 
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Hence the height of configurations in derivations starting from c O 

may be controlled. This fact plays an important role in the follow- 

ing construction. 

Let M be a dpda and M a 1-turn dpda. We define a new dpda 

M' that acts as follows. Given any input string ~, M' simulates 

M while it also remembers the state and stack top of M. This is 

done until M makes its first erase move (i.e. M makes its first and 

only turn). Suppose M is in configuration c = (s,w) now. Then 

L(c) must be regular if M ~ M, since the equivalent configuration 

of M can only start derivations that never increase the stack 

height. Then M' enters a new mode of operation. It simulates M, 

but never increases its stack. Whenever the stack in M grows M' 

stores the extra symbols in the finite state control. Whenever the 

number of extra symbol grows beyond £, M' will consult the top 

symbols and remove a segment of them so that the new configuration is 

equivalent to the old one, provided M ~ M. 

It follows that 

Lemma 2. 

Let M be a dpda, M a 1-turn dpda and let M' be defined 

from M and M as above. M ~ M if and only if M ~ M' and M ~ M'. 

4. Parallel staokin$ 

The decision procedures for M ~ M' and M ~ M' are carried out 

using the parallel stacking technique of Valiant [V2]. We now review 

the technique before showing its applicability to our cases. For 

more details see [V2,B]. 

Valiant [V2] introduced the parallel stacking technique to simu- 

late two dpdas by a single pda. Using this approach, he was able to 

prove the decidability of equivalence for two finite turn dpdas. 

The technique was subsequently improved by Beeri [B], who turned what 

used to be a partial decision procedure into a decision procedure. 

Parallel stacking works as follows. Given dpdas M 1 and M 2 we 

first form their disjoint union M = (Q,E,F,~s0,Z0,F). Now we des- 

eribe a new pda N to simulate M 1 and M 2. In general, each con- 

figuration of N simulates two configurations of M. The stack of 

N has two tracks and there is a state of M associated with each of 

them. The stack is also divided into segments of bounded size sep- 

arated by ceilings. Each ceiling occupies both tracks and contains 

a pair of modes, which are the modes of the two tracks at the time 

the ceiling was created, and a pair of indicators (X,Y) £ {L,R} 2. 
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The indicator X specifies that the left track above the ceiling is 

to be assooiated with the X track below (where L stands for left 

and R for right). Similarly for Y and the right track. The in- 

dicators may be used to uniquely reconstruct, from N's configura- 

tion, the two configurations of M being simulated. N can manipu- 

late, in one move, the top segment of the stack. This can be done 

since the segments are bounded in length. 

Usually, M conducts a simultaneous simulation of the steps 

M would have performed in each of the two configurations now repre- 

sented. The simulation may leave one configuration unchanged if it 

has a reading mode while the other one is in ~-mode. In this case 

the simulation consumes no input, and a e-move is applied to the 

s-mode. To insure bounded segment sizes N will occasionally per- 

form the following steps, depending on the contents of the top seg- 

ment: 

(a) If one track of the top segment becomes empty, the ceiling below 

it is removed and the two topmost segments fused. The indicator pair 

(X,Y) of that ceiling is consulted to decide how to associate the seg- 

ments, and the indicator pair of the ceiling below is changed to 

(X,Y). It is easy to verify that this step does not alter the two 

configurations of M now being simulated. 

(b) If each track in the top segment is of length larger than I, 

then a new ceiling is placed just below the top symbol of each track 

with indicator pair (L,R). (Again, the configurations remain un- 

changed.) 

(c) If in the top segment one track contains exactly one symbol while 

the other is "long" N will nondeterministically move as follows. 

A shorter stack segment (whose length is at most a constant 0) with 

the same mode and indicator is chosen, and N nondeterministically 

continues to simulate this new configuration (obtained when only the 

top segment is replaced as described) against either of the old con- 

figurations. Valiant [V2] showed the existence of such a replacement 

configuration and Beeri [B] showed how the shorter replacement seg- 

ment is computed from the current modes and the top ceiling. The two 

old configurations are equivalent if and only if they are equivalent 

to the replacement oonfiguration. We refer to this nondeterministie 

step as c-transformation. 

N accepts when both segments are in reading modes exactly one of 

which is accepting. 

If this can be made to work, then N will accept the empty set 

if and only if the two original configurations are equivalent. The 
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only thing that remains to be shown, is that the lengths of stack 

segments are bounded. 

Valiant shows IV2] that there are two cases where a segment may 

grow out of bound (also see [B]) 

(i) A decreasing track is emptied causing two segments (in the 

other track) to merge. 

(it) One track is increasing (quickly) while the other is decreas- 

ing'too slowly to allow a e-transformation. 

It is shown in [V2,B] that only a bounded amount of growth can 

occur before the minimal order of the two configurations is increased 

(both machines make turns, or a similar effect is achieved by a c- 

transformation). Thus, for two finite-turn configurations, the sim- 

ulation may be carried out. 

We would like to tune this technique to other situations, in 

which the two dpdas are not known to be finite-turn. 

S. Equivalence of M and M' 

We use parallel stacking with the following modifications. As 

long as M is in an upstroke, we add ceilings whenever necessary. 

Whenever M's stack grows too fast, we car~y out the c-transforma- 

tion as usual. A c-transformation yields one pair of M configura- 

tions (which causes no problem as M is finite turn) or a pair with 

one configuration of M and one of M' (similar to the original). 

Whenever M''s stack grows faster, we pad the stack in M by plac- 

ing a dummy symbol just below the top symbol of the stack. These 

dummy symbols will be erased when exposed, leaving the state of 

unaltered. This does not change the 1-turn property of M. 

When M makes a turn, M' also makes its last turn. From now on, 

both machines are in a downstroke. We can now continue the simula- 

tion as usual, making c-transformations when necessary. (Note that 

these do not change the modes of the machines, which control the dir- 

ection of the stack). 

We have to show that segments cannot grow without bound when the 

configurations being simulated are - an M configuration in an upstroke 

and an M' configuration. (The other cases involve two finite turn 

configurations and are thus covered by IV2, B]). In our case, it is 

easy to show, by induction, that segments in the M' stack being sim- 

ulated are of size I throughout. Therefore, anytime the M top seg- 

ment grows beyond p, a c-transformation will be applicable and there- 
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fore segments of the M stack are bounded. 

We have thus proved the following result. 

Lemma 3. 

Equivalenee of M and M ~ is decidable by parallel stacking. 

6 E uivalence of M and M ~ 

We use parallel stacking. At first, M' acts just like M so 

the stacks grow together (and all segments are of size I). When M' 

departs from M, it is in its final downstroke. For any M oonfigura- 

tion c, let h(e) denote the M' configuration obtained from it by 

leaving the stack intact and letting the top portion stored in the 

finite state control be empty. Clearly, if L(c) is regular, then 

c ~ h(e) (e.g. M' can successfully simulate c). We use this idea 

to devise a new transformation that will be used after every single 

step of simulation when M' is in its final downstroke. If the con- 

figurations we simulate are c against c', we nondeterministieally 

continue with c against h(c) and e' against h(c). Since L(e') 

is indeed regular, this is a valid transformation. Simulation of c' 

against h(c) causes no problem, since they are both finite turn (we 

may use c-transformation when needed, eto.). On the other hand, 

Icl = lh(c)I so that applying this as described, insures that the 

pairs of M and M' configurations we simulate will never have differ- 

ent height. 

We must show that a simulation step, followed by our transforma- 

tion, cannot lead to a loop due to s-moves (i.e. generate the same 

pair of configurationS). We only need to insure that c and h(c) 

are distinct from the pair of configuration that where represented 

prior to the application of the simulation step that led to o and 

c' (The other pair c' and h(c) is of two M' configurations.) 

But e and h(c) have identical modes. If they were the configura- 

tions prior to the simulation step then both would have been changed 

by it. 

This completes the proof of our remaining lemma. 

Lemma 3. 

Equivalence of M and M ~ is decidable by parallel stacking. 

Note that the simulation of M and M' may be carried out using 

just one stack, which holds M's stack. Any time M' starts to grow 

its "buffer", which is kept in the finite state control, the top sym- 

bol of the stack is marked. When the buffer is emptied, the simula- 



236 

tion continues (using just the stack) provided the top of the stack 

is marked (and the mark is then removed.) If the stack has some sym- 

bols above the mark when the buffer is emptied, then the simulation 

fails. The simulation also fails if the mark is reached when the 

buffer is not empty. 

7. Conclusions 

The main result now follows. 

Theorem I. 

It is decidable whether two dpda's, one of which is linear 

(i.e. 1-turn) are equivalent. 

Proof. 

Follows from lemmas 2,3 and 4. m 

Note that we could get a single simulating machine to work as 

follows. First, simulate M and M as described by the algorithm 

to decide equivalence of M' and M. When M makes its turn~ and the 

configurations are c and ~, nondeterministically continue to 

check equivalence of c and h(c) and of ~ and h(c) according to 

the appropriate algorithm. 

Subclass containment Problems (SCP) are well known problems re- 

lated to the equivalence problem [FG]. The SCP for 1-turn languages 

is: g~ven a dpda M, does M accept a language that can also be 

accepted by a 1-turn dpda? From [FG] it follows that if the SCP for 

1-turn languages is decidable then so is the equivalence problem for 

two dpdas one of which is known to accept a 1-turn language. (This 

is slightly stronger than our result.) We conjecture that the SCP 

for 1-turn languages is decidable. Note that this problem, as well 

as the following two variations on it~ become polinomia!ly decidable, 

when M is a real time dpda accepting by empty store. Is the lan- 

guage accepted by M a finite-turn language? [II,I2], is it linear 

context free? [G]. 

Another possible extension of our result is to obtain a decision 

procedure for the equivalence of two dpdas, one of which is finite- 

turn. We have learnt that this problem was recently solved by Oyama- 

guchi, Inagaki and Honda [0IH]. We do not know, however, how their 

decision procedure works. 
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