
A Decision Procedure for the Equivalence of Two dpdas

One of Which is Linear

(Extended Abstract)

Yair Itzhaik
Technion, Israel Institute of Technology

and
~miram Yehudai

Tel-Aviv University

i. Introduction

The equivalence problem for deterministic pushdown automata (dpda)

remains open despite extensive research. In recent years, several

~echniques have been used to obtain decision procedures for the equi-

valence problem that work for certain deterministic subfamilies. For

a survey of these results refer to [HHY, 0HI].

In this paper, we show how a technique called parallel stacking,

introduced by Valiant [V2], and refined by Beeri [B], may be used to

obtain an equivalence test for two dpdas, one of which is 1-turn

(sometimes called linear dpda). In [V2, B], the equivalence of two

flnite-turn dpdas is shown to be decidable. Recently Ukkonen [U]

presented a decision procedure, based on alternate stacking, for the

equivalence of two proper dpdas, one of which is finite-turn. Proper

dpdas are a proper subfamily of the dpdas, although Ukkonen conjec-

tures that every deterministic language may be accepted by some proper

dpda. We have recently learnt that 0yamaguchi, Inagaki and Honda have

shown that the equivalence problem for two dpdas, one of which is fin-

ite-turn, is also deeidable. As of this writing, however, we have not

seen their paper [01HI.

Our decision procedure will work as follows. Given a dpda M

and a 1-turn dpda M, we first construct a new dpda M'. M' simulates

M, but it knows whether or not, on the input being considered, M has

made its only turn. After M made its turn M' continues the simu-

lation without increasing its stack. We will show that M is equi-

valent to M if and only if they are both equivalent to M'. Then

we check equivalence of M ~ versus each of the original machines.

It turns out that both these equivalences may be checked using tech-

niques similar to that of IV2], since M' is sufficiently "similar"

to both M and M.

Section 2 lists some of the preliminary definitions needed in

230

our presentation. In section 3 we discuss the construction of M'

Section 4 reviews parallel stacking IV2, B] and the following two

sections describe the two decision procedures for the equivalence of

and M' and of M and M' respectively. Finally, in section 7,

we conclude with our main result and some comments.

2. Preliminaries

We briefly list the definitions of dpdas and finite-turn dpdas.

s denotes the empty word. A dpda is denoted by a 7-tuple

M = (Q,E,F,~,s0,z0,F) where Q, E and F are respectivelY finite

sets of states, input symbols, and stack symbols, s O is the initial

state, z 0 in F is the initial stack symbol, Fm_Qx(FU{s}) is the

set of accepting or final modes and 6:Qx(EU{s})xF ÷ QxF* , the

transition function, is a partial ~ function satisfying the determinism

condition: if 6(s,s,A) is defined then for all a E E, 6(s,a,A) is

not defined. If the determinism condition is not required, then M

is a pushdown automaton (pda).

If 6(s,w,A) = (s',y), we usually write (s,A) ~ (s',y). This

transition rule of M has mode (s,A) and input w. If w = s the

transition rule is called an e-rule, and (s,A) is an s-mode. Other-

wise (s,A) is a reading-mode. We may assume all modes in F to be

reading modes (except those with empty stack). We also assume that

if (s,A) ~ (st,y) then y : s, and if (s,A) ~ (s',y) then lyl ~ 2.

A pair (s,~A)~ s in Q~ A in F, w in F* is a otnfiguration

with mode (s,A) while (s,~) is a configuration with mode (s,~).

Configuration c = (s,~) has state s and stack ~. The stack

height of c is Icl = IwI.

If (s,A) ~ (s',y) is a transition rule, then we write

(s,wA) ~ (s,~y) for any ~ in F* and call it a move of M which

reads ~, and if ~ = s we call it an s-move. A derivation (or

an ~-derivation) o ~ c is a sequence of such moves through succes-

sive configurations where ~ is the concatenation of the input sym-

bols read by the moves. ~ may be omitted if it is irrelevant.

The language L(c) accepted from a configuration c is

L(c) = {~£E*Ic ~ c', mode (e')eF}, and L(M) : L((So,Zo)) is the

language accepted by M; here configuration c s = (sO,z O) is the

initial oonfi~uratioD of M, A configuration is reachable if c s ÷ o

for some ~.

Two configurations c and c' are equivalent (c ~ e T), if

231

L(c) = L(c'), and two dpda's M and M' are equivalent (M z M')~

if L(M) = L(M').

A dpda is called finite-turn if there is a bound on the number

of times the direction of the stack movement can change° More pre-

cisely, a derivation is an upstroke if no single move in it decreases

the height of the stack and a downstroke if no move increases the

height of the stack. A dpda is finite-turn if there is an integer k

such that every derivation in M from the initial configuration can

be segmented into &k strokes alternating in direction. We associate

with each configuration e an order which is the number of turns made

in a derivation c Z c. We will assume a finite-turn dpda to be in
s

a normal form such that the order of a configuration is uniquely det-

ermined by its state (cf[V2, B]).

We will be particularly interested with 1-turn dpdas, sometimes

referred to as linear dpdas. It should be noted that not all deter-

ministic linear context free languages are accepted by such a device.

The following linear context free language is accepted by a dpda, but

not by a finite-turn dpda : L = (a+b+) *L0(a+b +)* where
L 0 = {anbnln>0}.

3. Construction of M'

Before we present the construction of M', we need the following

lemma which is adapted from the work of Valiant on regularity tests [VI]

L~mma I.

Let M be a dpda. There exists an integer ~ (depending upon

M) such that for each pair of configurations c O and e with c 0 ÷ c

and [c I - le01 > ~ either

(i) One can eliminate a segment from the top ~ symbols of c

obtaining a configuration c' such that

c o ÷o', io'i < {el and o'

(ii) there is an infinite collection ci,c2,.., of pairwise in-

equivalent configurations with c O ÷ e..l

Proof.

Valiant [VI] proved this result for c O = Cs. The same proof

holds for any c0~ and in particular the bound ~ is independent of

c O . (For other variations of this lemma cf [HY,IY].) Q

Note that if L(e 0) is regular then case (ii) is impossible.

232

Hence the height of configurations in derivations starting from c O

may be controlled. This fact plays an important role in the follow-

ing construction.

Let M be a dpda and M a 1-turn dpda. We define a new dpda

M' that acts as follows. Given any input string ~, M' simulates

M while it also remembers the state and stack top of M. This is

done until M makes its first erase move (i.e. M makes its first and

only turn). Suppose M is in configuration c = (s,w) now. Then

L(c) must be regular if M ~ M, since the equivalent configuration

of M can only start derivations that never increase the stack

height. Then M' enters a new mode of operation. It simulates M,

but never increases its stack. Whenever the stack in M grows M'

stores the extra symbols in the finite state control. Whenever the

number of extra symbol grows beyond £, M' will consult the top

symbols and remove a segment of them so that the new configuration is

equivalent to the old one, provided M ~ M.

It follows that

Lemma 2.

Let M be a dpda, M a 1-turn dpda and let M' be defined

from M and M as above. M ~ M if and only if M ~ M' and M ~ M'.

4. Parallel staokin$

The decision procedures for M ~ M' and M ~ M' are carried out

using the parallel stacking technique of Valiant [V2]. We now review

the technique before showing its applicability to our cases. For

more details see [V2,B].

Valiant [V2] introduced the parallel stacking technique to simu-

late two dpdas by a single pda. Using this approach, he was able to

prove the decidability of equivalence for two finite turn dpdas.

The technique was subsequently improved by Beeri [B], who turned what

used to be a partial decision procedure into a decision procedure.

Parallel stacking works as follows. Given dpdas M 1 and M 2 we

first form their disjoint union M = (Q,E,F,~s0,Z0,F). Now we des-

eribe a new pda N to simulate M 1 and M 2. In general, each con-

figuration of N simulates two configurations of M. The stack of

N has two tracks and there is a state of M associated with each of

them. The stack is also divided into segments of bounded size sep-

arated by ceilings. Each ceiling occupies both tracks and contains

a pair of modes, which are the modes of the two tracks at the time

the ceiling was created, and a pair of indicators (X,Y) £ {L,R} 2.

233

The indicator X specifies that the left track above the ceiling is

to be assooiated with the X track below (where L stands for left

and R for right). Similarly for Y and the right track. The in-

dicators may be used to uniquely reconstruct, from N's configura-

tion, the two configurations of M being simulated. N can manipu-

late, in one move, the top segment of the stack. This can be done

since the segments are bounded in length.

Usually, M conducts a simultaneous simulation of the steps

M would have performed in each of the two configurations now repre-

sented. The simulation may leave one configuration unchanged if it

has a reading mode while the other one is in ~-mode. In this case

the simulation consumes no input, and a e-move is applied to the

s-mode. To insure bounded segment sizes N will occasionally per-

form the following steps, depending on the contents of the top seg-

ment:

(a) If one track of the top segment becomes empty, the ceiling below

it is removed and the two topmost segments fused. The indicator pair

(X,Y) of that ceiling is consulted to decide how to associate the seg-

ments, and the indicator pair of the ceiling below is changed to

(X,Y). It is easy to verify that this step does not alter the two

configurations of M now being simulated.

(b) If each track in the top segment is of length larger than I,

then a new ceiling is placed just below the top symbol of each track

with indicator pair (L,R). (Again, the configurations remain un-

changed.)

(c) If in the top segment one track contains exactly one symbol while

the other is "long" N will nondeterministically move as follows.

A shorter stack segment (whose length is at most a constant 0) with

the same mode and indicator is chosen, and N nondeterministically

continues to simulate this new configuration (obtained when only the

top segment is replaced as described) against either of the old con-

figurations. Valiant [V2] showed the existence of such a replacement

configuration and Beeri [B] showed how the shorter replacement seg-

ment is computed from the current modes and the top ceiling. The two

old configurations are equivalent if and only if they are equivalent

to the replacement oonfiguration. We refer to this nondeterministie

step as c-transformation.

N accepts when both segments are in reading modes exactly one of

which is accepting.

If this can be made to work, then N will accept the empty set

if and only if the two original configurations are equivalent. The

234

only thing that remains to be shown, is that the lengths of stack

segments are bounded.

Valiant shows IV2] that there are two cases where a segment may

grow out of bound (also see [B])

(i) A decreasing track is emptied causing two segments (in the

other track) to merge.

(it) One track is increasing (quickly) while the other is decreas-

ing'too slowly to allow a e-transformation.

It is shown in [V2,B] that only a bounded amount of growth can

occur before the minimal order of the two configurations is increased

(both machines make turns, or a similar effect is achieved by a c-

transformation). Thus, for two finite-turn configurations, the sim-

ulation may be carried out.

We would like to tune this technique to other situations, in

which the two dpdas are not known to be finite-turn.

S. Equivalence of M and M'

We use parallel stacking with the following modifications. As

long as M is in an upstroke, we add ceilings whenever necessary.

Whenever M's stack grows too fast, we car~y out the c-transforma-

tion as usual. A c-transformation yields one pair of M configura-

tions (which causes no problem as M is finite turn) or a pair with

one configuration of M and one of M' (similar to the original).

Whenever M''s stack grows faster, we pad the stack in M by plac-

ing a dummy symbol just below the top symbol of the stack. These

dummy symbols will be erased when exposed, leaving the state of

unaltered. This does not change the 1-turn property of M.

When M makes a turn, M' also makes its last turn. From now on,

both machines are in a downstroke. We can now continue the simula-

tion as usual, making c-transformations when necessary. (Note that

these do not change the modes of the machines, which control the dir-

ection of the stack).

We have to show that segments cannot grow without bound when the

configurations being simulated are - an M configuration in an upstroke

and an M' configuration. (The other cases involve two finite turn

configurations and are thus covered by IV2, B]). In our case, it is

easy to show, by induction, that segments in the M' stack being sim-

ulated are of size I throughout. Therefore, anytime the M top seg-

ment grows beyond p, a c-transformation will be applicable and there-

235

fore segments of the M stack are bounded.

We have thus proved the following result.

Lemma 3.

Equivalenee of M and M ~ is decidable by parallel stacking.

6 E uivalence of M and M ~

We use parallel stacking. At first, M' acts just like M so

the stacks grow together (and all segments are of size I). When M'

departs from M, it is in its final downstroke. For any M oonfigura-

tion c, let h(e) denote the M' configuration obtained from it by

leaving the stack intact and letting the top portion stored in the

finite state control be empty. Clearly, if L(c) is regular, then

c ~ h(e) (e.g. M' can successfully simulate c). We use this idea

to devise a new transformation that will be used after every single

step of simulation when M' is in its final downstroke. If the con-

figurations we simulate are c against c', we nondeterministieally

continue with c against h(c) and e' against h(c). Since L(e')

is indeed regular, this is a valid transformation. Simulation of c'

against h(c) causes no problem, since they are both finite turn (we

may use c-transformation when needed, eto.). On the other hand,

Icl = lh(c)I so that applying this as described, insures that the

pairs of M and M' configurations we simulate will never have differ-

ent height.

We must show that a simulation step, followed by our transforma-

tion, cannot lead to a loop due to s-moves (i.e. generate the same

pair of configurationS). We only need to insure that c and h(c)

are distinct from the pair of configuration that where represented

prior to the application of the simulation step that led to o and

c' (The other pair c' and h(c) is of two M' configurations.)

But e and h(c) have identical modes. If they were the configura-

tions prior to the simulation step then both would have been changed

by it.

This completes the proof of our remaining lemma.

Lemma 3.

Equivalence of M and M ~ is decidable by parallel stacking.

Note that the simulation of M and M' may be carried out using

just one stack, which holds M's stack. Any time M' starts to grow

its "buffer", which is kept in the finite state control, the top sym-

bol of the stack is marked. When the buffer is emptied, the simula-

236

tion continues (using just the stack) provided the top of the stack

is marked (and the mark is then removed.) If the stack has some sym-

bols above the mark when the buffer is emptied, then the simulation

fails. The simulation also fails if the mark is reached when the

buffer is not empty.

7. Conclusions

The main result now follows.

Theorem I.

It is decidable whether two dpda's, one of which is linear

(i.e. 1-turn) are equivalent.

Proof.

Follows from lemmas 2,3 and 4. m

Note that we could get a single simulating machine to work as

follows. First, simulate M and M as described by the algorithm

to decide equivalence of M' and M. When M makes its turn~ and the

configurations are c and ~, nondeterministically continue to

check equivalence of c and h(c) and of ~ and h(c) according to

the appropriate algorithm.

Subclass containment Problems (SCP) are well known problems re-

lated to the equivalence problem [FG]. The SCP for 1-turn languages

is: g~ven a dpda M, does M accept a language that can also be

accepted by a 1-turn dpda? From [FG] it follows that if the SCP for

1-turn languages is decidable then so is the equivalence problem for

two dpdas one of which is known to accept a 1-turn language. (This

is slightly stronger than our result.) We conjecture that the SCP

for 1-turn languages is decidable. Note that this problem, as well

as the following two variations on it~ become polinomia!ly decidable,

when M is a real time dpda accepting by empty store. Is the lan-

guage accepted by M a finite-turn language? [II,I2], is it linear

context free? [G].

Another possible extension of our result is to obtain a decision

procedure for the equivalence of two dpdas, one of which is finite-

turn. We have learnt that this problem was recently solved by Oyama-

guchi, Inagaki and Honda [0IH]. We do not know, however, how their

decision procedure works.

237

References

[B] C. Beeri, An improvement on Valiant's decision procedure for equi-
valence of deterministic finite-turn pushdown automata, TCS
3(1976) 305-320.

[FG] E.P. Friedman and S.A. Greibach, On equivalence and subclass con-
tainment problems for deterministic context-free languages,
Info. Proc. Let. 7 (1978) 287 - 290.

[G] S.A. Greibach,""Linearity is po!ynomial!y decidable for rea!time
pushdown store automata, 42(1979), 27-37.

[HHY] M.A. Harrison, I.M. Havel and A. Yehudai, On equivalence of
grammars through transformation trees, TCS 9(1979), 173-205.

[HY] M.A. Harrison and A. Yehudai, A hierarchy Of deterministic
languages, JCSS 19(1979), 63-78.

[II] Y. Itzhaik, Deterministic pushdown automata, Master Thesis,
Technion, IIT, June 1978, (In Hebrew.)

[I2] Y. Itzhaik, On containment problems for finite-turn languages,
in preparation, 1981.

[IY] Y. Itzhaik and A. Yehudai, Checking deterministic languages
for the real time strict property, Submitted for publication
(198o) .

[0HI] M. 0yamaguchi, N. Honda and Y. !nagaki, The equivalence problem
for real-time strict deterministic languages, Info. Contr.
45(1980), 90-115.

[0IH] M. Oyamaguchi, Y. Inagaki and N. Honda, The extended equivalence
problems for some subclasses of deterministic pushdown automata,
1980.

[U] E. Ukkonen, The equivalence problem for some non-real-time deter-
ministic pushdown automata, Proceedings of the 12th STOC Confer-
ence (1980), 29-38.

[Vi] L.G. Valiant, Regularity and related problems for deterministic
pushdown automata, JACM 22(1975), i-I0.

[V2] L.G. Valiant, The eq-~alenee problem for deterministic finite-
turn pushdown automata, Info. Contr. 25, (1974), 123-133.

