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ABSTRACT 

This paper describes algorithms for detecting and classifying 

objects such as tanks and trucks in forward-looking infrared 

(FLIR) imagery. It summarizes research conducted in the course 

of a two-year project in the areas of image modeling, pre- and 

post-processing, segmentation, feature extraction, and classifi- 

cation. 

1. Image models 

The work on image modeling conducted under this project was 

concentrated in three main areas: 

i) Modeling of the joint (gray level, edge value) statistics 

of FLIR scenes, as a basis for defining threshold selec- 

tion techniques. 

2) Modeling of thresholding and edge detection responses to 

background regions, as a basis for predicting false alarm 

rates. 

3) Modeling edges in images as a basis for defining optimal 

edge detection operations and for evaluating edge detector 

output. 

This work is briefly summarized in the following subsections. 

References are given to earlier project reports [1-4] in which 

detailed treatments can be found. 

i.I Model-based threshold selection 

An approach to modeling FLIR imagery has been developed, based 

on the simplifying assumption that targets appear as homogeneous 

hot regions within a homogeneous cooler surround. This model 

describes the joint probability density of gray level and edge 

strength in such images, for various edge-detecting operations 

[1,2]. In brief, the model predicts that for low edge values 

(corresponding to points in the interiors of objects and back- 

ground), there should be two relatively well separated probability 

peaks, of different sizes, representing the gray levels of object 

and background interiors, respectively. For higher edge values, 

corresponding to points on object/background borders, these peaks 

should merge together and become a single peak representing the 



230 

border range of gray levels. 

The model just described can be used as a guide to segmenting 

FLIR images by thresholding. At low edge values, it should be 

easy to pick a threshold at a gray level in the valley between the 

two probability peaks, since these are relatively well separated. 

At high edge values, the peak gray level value itself, or perhaps 

the mean gray level, should be a good threshold, since this repre- 

sents the "center" of the edges. For intermediate edge values, 

one can compromise between these two thresholds in various ways. 

A comparative study of threshold selection schemes based on this 

approach has been conducted [5]. This work will be discussed 

further in Section 4. 

1.2 Operator response prediction 

a~ ~redictin 9 results of thresholdin~ 

Thresholding images is a common process and much work has been 

directed towards selecting the correct value at which to threshold 

and estimating the expected error. Normally, one thresholds only 

images which contain some signal. Thresholding pure noise is to 

be avoided when possible. Since there may be occasions when 

thresholding noise is unavoidable (e.g., a poor threshold was 

chosen), it is important to predict the expected results. The 

expected number of above-threshold regions that result when noise 

is thresholded is useful in planning for data structure storage 

allocation and in predicting false alarm rates. When a bad 

threshold "breaks up" an object, knowledge of the expected sizes 

and shapes of noise regions can be used to help discriminate 

object fragments from noise. No methods currently exist for pre- 

dicting the number of connected components of thresholded spatially 

correlated signal (or noise). However, it has been found possible 

[6] to estimate the moments of regions, the density of border 

points, and lower bounds on the number of connected components in 

thresholded noise images. The input grayscale image is modeled as 

a two-dimensional random process (stationary random field) charac- 

terized by its mean and power spectrum. Tests with both synthetic 

data (smoothed noise) and actual data were conducted to compare 

the predicted and measured responses. The predictions are worst 

for thresholds at or near the mode of the noise distribution, but 

in general, the comparison showed reasonable agreement between the 
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predicted and measured values. 

b) Prediqtin~ edge detector response 

Statistical response prediction for edge operators can be used 

to determine the nature of further processing of the response. 

If edge detector output is to be thinned or thresholded, the false 

alarm and false dismissal rates depend on the statistics of the 

operator responses. A study has been conducted [7] which dis- 

cusses the statistical properties of the Outputs of some edge 

detectors operating on a general class of images. 

The image model considered is the same as in (a) just above; 

this model is appropriate for predicting the response of edge 

detectors to background noise. The edge detectors analyzed are 

the Laplacian and its absolute value, and the absolute difference 

of averages over adjacent 2x2 and 4x4 neighborhoods. The response 

features which were measured are the mean edge response at each 

point, the variance, the auto-covariance, and the cross-covariance 

of gray level and edge value at a number of displacements. In 

addition, the density of the local maxima of edge values was com- 

puted. Tests using a set of synthetic background images showed 

good conformity to the predicted features. 

1.3 Edge modeling 

a) Optimal edge detection 

Many optimality criteria have been proposed for edge detec- 

tion. Among the most well known is that devised by Hueckel [8,9]. 

It involves fitting an ideal parameterized step edge to the image 

data so as to minimize the mean squared error. A new optimal 

detector has been designed [10] that simplifies several assump- 

tions associated with the Hueckel detector and thereby solves an 

easier optimization problem. Specifically, by assuming that the 

local mean is zero and the local variance is unity, two Hueckel 

parameters can be eliminated. Further simplifications follow if 

the operator can be applied at each point with the edge assumed 

to pass through the center (or not to exist at all). The resulting 

formulation can be tuned to favor edges with known a priori 

probabilities. The computational effort involved in applying the 

operator may be reduced by solving the associated cubic equation 

using a simple iterative approximation, such as Newton's formula. 

Testing on actual data has verified that this approach provides 
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greater sensitivity than a previously proposed Ill] simplification 

of the Hueckel operator. 

b) Evaluation of edge operators 

The Hueckel operator defined in [9] has been found to incor- 

porate a theoretical flaw leading to eccentric behavior in tex- 

tured images. An operator which is conceptually similar but ap- 

parently more dependable has been defined [12]. Comparative tests 

have been made of this and several other operators (including 

Hueckel's [9], its simplification [Ii], and the new optimal oper- 

ator defined in [i0], as well as the very simple Sobel operator), 

to evaluate their adequacy in obtaining the magnitude, direction, 

and reliability of the edge response at some set of image points, 

for both ideal and distorted images. The performances of these 

operators were, in general, closely related to their sizes (and 

hence, to their computational costs). All of the local operators 

were able to detect the directions of distorted edges on small 

(6x6) domains to an accuracy of about I0 ° , and their magnitudes 

to within about 10%. On larger (9x9) domains, angular resolution 

was improved, but ramps became significant as a source of spurious 

responses. The Sobel operator was judged to perform better than 

the operator of [ii]. The operator of [I0] was better able to 

reject ramps on larger domains, but it is more expensive to apply 

than the other local operators. The regional operators of [9] and 

[12] performed similarly; the latter was less affected by the 

presence of imperfections. 

2. Preprocessing 

Preprocessing refers to those transformations applied to the 

raw image data for the purpose of correcting, simplifying, and 

regularizing the imagery. The resulting images should therefore 

be more amenable to further processing and more alike in certain 

properties essential to subsequent algorithms. Thus, for example, 

sampling and windowing reduce the size of the image to be pro- 

cessed. Histogram transformation and requantization convert all 

image quantization levels to a range which facilitates feature 

extraction. Smoothing reinforces regional uniformity and de- 

creases the effects of certain kinds of noise. 

Preprocessing steps are best justified by the problem environ- 

ment itself. A knowledge of the sensor characteristics and 
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geometry will suggest various kinds of radiometric and geometric 

corrections. For example, with FLIR data, the image is best 

understood as an array of thermal measurements. If these measure- 

ments reflect the ground truth, then much more subtle distinctions 

can be made; recognizing that a particular temperature is beyond 

the normal range for a vehicle can, perhaps, indicate that the 

vehicle is on fire. Similarly, a range map converting pixels to 

actual size/area measurements can allow a viewer or a program to 

gauge the size of a particular region and thereby discern its 

identity more reliably. 

In the problem environment at hand it was not possible to 

acquire substantial information concerning the sensor or the 

imaging situation, due to classification problems. Thus the 

"intelligent" corrections of the previous paragraph were impos- 

sible. However, several preprocessing steps do make sense. The 

following subsections describe them. 

2.1 Sampling 

According to the sampling theorem, the spacing of the data 

points should be half the size of the smallest feature to be 

detected. Thus, to detect objects of one meter on a side, pixels 

should correspond to one half meter on a side. In practice, how- 

ever, the presence of noise demands that the data be redundant 

to increase the reliability of the extraction process. A finer 

resolution can often provide this redundancy. Naturally, the 

price must be paid in additional processing time. This tradeoff 

is difficult to model analytically especially since many different 

features are extracted from an image and their relative importance 

is difficult to assess. 

Two processes for region extraction are paramount for our 

work -- thresholding for whole region extraction and edge detec- 

tion for region border verification. Of these two, edge detec- 

tion is more sensitive to noise. The degree of sampling allowable 

for the image data set should therefore not be so great that 

reliable edge extraction is compromised. A 2-to-i size reduction 

(eliminating every other row and column) was found to be compati- 

ble with reliable edge detection. In the unsampled images, the 

average edge ramp cross-section was found to be about 5 pixels 

wide; thus a 2-to-i reduction gave about a 3-pixel edge ramp 
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which was consistent with the need to localize edges fairly 

accurately. 

An alternative approach attempted to reduce high frequency 

noise by extracting windows based on 2x2 averaging rather than 

sampling. Thus, instead of discarding every other row and column, 

each pixel in the sampled image was the average over a (disjoint) 

2x2 neighborhood in the original image. A smooth, less noisy 

image was produced and row dropouts were partially eliminated. 

However, the images seemed to have less constrast. Sampling 

followed by smoothing appears to be better than smoothing followed 

by sampling. 

A major emphasis in the project has been the detection of 

small or faint targets. For this reason, the sampled images were 

also windowed so as to capture the target regions and to further 

reduce the computational load. Naturally, one must avoid tech- 

niques which assume that each window contains exactly one target 

in its central region. This dilemma asserts itself in subtle 

ways. Statistical properties of the window, e.g., histogram, 

central moments, etc. are good predictors of object presence, 

threshold, etc. However, they cannot be employed in practice un- 

less window size is correctly estimated and window border situa- 

tions are handled. Our approach does not depend on window size 

(or frame size) and therefore windowing is an appropriate prepro- 

cessing step. Note, however, that estimates of the false alarm 

rate cannot be reliably derived solely from target windows. For 

this reason, small noise windows (containing no targets) and 

large windows (consisting mainly of background clutter) were also 

processed. 

2.2 Histogram transformations and adaptive ~uantization 

sensor output is related to actual phenomena according to phy- 

sical laws. If this correspondence is well understood beforehand, 

it is possible to correct and transform the data to improve sub- 

sequent processing. Thus if FLIR data could be used to estimate 

reliably the temperature of objects, then quite stringent tests 

could be made to enhance recognition rates. Unfortunately, the 

analytic interpretation of FLIR data at long range is complicated 

by many effects such as sun-angle, wind, smoke, surface composi- 

tion, etc. Furthermore, the sensor hardware itself is subject to 



235 

unpredictable electronic noise, disturbances and failures. Only 

some of these effects can be alleviated and then (due in part to 

the classified nature of the sensor) only statistically. 

Among the conventional gray level modifications considered 

useful for producing more manageable imagery are the rather simple 

histogram mapping techniques. Figure 2.1a illustrates the gray 

level histogram of an unmodified image. The gray level range is 

defined by eight bits--256 gray levels--and can be seen to exhibit 

significant non-uniformities of response. Moreover, from a pro- 

cessing point of view, 256 gray levels do not effectively reflect 

the true gray level range and contrast. A simple 2-bit shift 

operation, converting 8-bit pixels to 6 bits, has the effect seen 

in Figure 2.1b of smoothing the histogram while reducing the gray 

level range to 64 gray levels. This technique if continued for 

further shifts would ultimately combine significant peaks corre- 

sponding to object/background contrast. However, the conversion 

from 8-bit to 6-bit was found to be justified, as it alleviated 

non-uniform sensor response without destroying target discrimina- 

bility. 

If one assumes that a scene consists of the juxtaposition of 

objects of uniform temperature taken from a small number of such 

temperatures, then it is possible to convert the image into one 

with only a few different gray levels present. An attempt at 

adaptive requantization is described in [13]. Briefly, an itera- 

tive process constructs a new histogram from the previous version 

by identifying gray level peaks and having them gain strength 

(i.e., points) from neighboring non-peaks while the non-peak 

areas are thereby depleted. The result is a mapping from the ori- 

ginal gray level domain to a new sparse set of gray levels. The 

resulting quantized images (Figure 2.2) seem not to have lost 

object/background discriminability. 

2.3 Image smoothing 

In the previous section, preprocessing steps were described 

which contributed to the interpretation of a scene as a mosaic of 

uniform sensor responses. The techniques considered t~e gray level 

population only. Proximity was not involved. In this section, 

we discuss attempts to smooth the image spatially so that nearby 

points from the same region will have more nearly identical gray 
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a. 

b. 

c. 

Figure 2.2. Result of four iterations of the 
peak sharpening process using 
neighborhood sizes of 2, 3, and 
4 for (a-b), sizes 2, 4, and 5 
for (c). 
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levels. There are a number of justifications for spatial image 

smoothing. First, by making the image spatially more uniform, 

one increases the probability that points belonging to the same 

region will be treated identically. Thus, the point sets extrac- 

ted by thresholding will appear better defined with fewer pinholes 

and fewer isolated points. This is reasonable since the chosen 

image resolution is intended to cover any object with numbers of 

pixels. The second reason for smoothing is to eliminate insigni- 

ficant local changes of contrast. Otherwise the output of edge 

detection operations based on differencing would contain many tiny 

spurious edges which tend to obscure the proper edge signals. 

Third, the statistical properties of a smoothed image are more 

representative of the true situation. Thus, many decisions based 

on the statistics of the smoothed image are more reliable. 

Two methods of image smoothing were investigated. In a first 

attempt, the mean value of a fixed neighborhood about each point 

replaced the point's value. Figure 2.3a shows the effect of 

replacing each point of a step edge by its mean value (blurring). 

As is evident, blurring smears edges. Figure 2.4a-d illustrates 

blurring for several target windows, and also shows the histograms 

of these windows before and after blurring. Note that blurring 

tends to blend peaks in histograms, thus making thresholding more 

difficult. Also, small faint objects tend to become less distinct 

A second approach to image smoothing has the property of pre- 

serving edges. At~each point of an image, the median value of the 

gray levels over a kxk neighborhood is computed. The value of k 

depends on the amount of local noise variation. For the original 

images, a 5x5 neighborhood size was chosen. Figure 2.3b illu- 

strates the effects of median filtering on a step edge. Note that 

the median does not increase the ramp width. Thus edges do not 

smear. This is demonstrated in the two-dimensional case in 

Figures 2.5-2.7 for a tank image. Median filtering does, however, 

round off sharp corners. This was not a serious problem in this 

data base. Figure 2.4e-f illustrates a number of median filtered 

windows and their histograms. The general algorithm for median 

computation over k 2 points is of order k 2. However, better 

results may be obtained when evaluating a running median, by 

making use of the high autocorrelation of gray level in most 

images. The cumulative histogram of the k 2 data points is 
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a. Mean filtering b. Median filtering 

Figure 2.3. Effect of filtering on 
step edges using a five 
point neighborhood. 

a. Originals. b. Histograms of (a). 

Image Reference: 3R 4T 6T 24T 
34R 35R 41R 52R 
21A 22A 23A 37A 
14N 20N 26N 38N 

Figure 2.4. Comparison of mean and median 
filtering. 
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c. 3x3 mean filtered 
windows. 

d. Histograms of (c). 

e. 3x3 median filtered 
windows. 

f. Histograms of (e). 

Figure 2.4. (continued) 
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a. b. 

Figure 2.5. 

C. 

Gray level images. 

a. Original FLIR image of a tank. 
Note the noise content and the 
presence of a thin noise line at 
the upper left. 

b. Mean filtered image using a 5x5 
square neighborhood at each 
point. The tank appears blurred, 
as does the border between the 
road (dark) and the grass (light). 
The thin noise line is smeared 
into the background. 

c. Median filtered image using a 5x5 
square neighborhood. The tank 
contours appear sharper, while 
overall the image has been 
smoothed. 
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a. b. 

C. 

Figure 2.6. Results of Edge Detection 

Each of the windows was subjected 
to an edge detection operation which 
detects the most significant edge 
at each point over four orientations. 
Note that edges surround the various 
regions in the image but that the 
edges in the median filtered image 
(c) are sharper and have more con- 
trast than those in the mean filtered 
image (b). 

a . 

b. 

c. 

Edge detection response for the 
original image. 

Same as above for the mean filtered 
image. 

Same as above for the median filtered 
image. 
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ao b° 

c. 

Figure 2.7. Edge Cross Sections 

A single line of the edge detection 
image passing through the tank is 
displayed with height corresponding 
to edge value. Notice that the 
median filtered response exhibits a 
thinner, higher peak corresponding to 
a sharper, more contrasting edge 
than the mean filtered response. 

a. A single line of edge response from 
Figure 2.6a. 

b, Same as above for Figure 2.6b. 

c. Same as above for Figure 2.6c. 
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maintained in a vector of length d (e.g., d=64). The k deletions 

and k insertions are interleaved in pairs. Each (deletion, 

insertion) pair isolates a region of the vector which must be mod- 

ified. The smaller this region on the average, the less work to 

be done. If the deletion and insertion in a given pair affect the 

same bin, no change is necessary. The length of the region of 

change in the cumulative histogram is the expected gray level dif- 

ference of points at distance k. This corresponds to a variogram 

value, v(k). After updating, the vector is binary-searched for 

the median. Thus the number of vector operations is k.v(k), 

followed by log d operations to binary-search the updated vector. 

The sum k-v(k) + log d should be quite small for relatively 

smooth images. 

3. Edge detection 

The extraction of edge features has proved useful in a number 

of project areas. Section 4 will describe threshold selection 

methods which utilize edge information. Edges are also used in 

the critical step of the Superslice algorithm (Section 6). In 

this section, we discuss the variety of edge operations investi~ 

gated and a method of thinning edge response so as to locate the 

apparent edge. 

3.1 Comparison of method s 

Methods for edge detection abound in %he literature (for a 

survey, see [14]). Some of the simplest methods involve convolu- 

tions of templates with an image. A number of these were consi- 

dered in the current work. These include: 

Laplacian: le - (a+b+c+d+f+g+h+i)/81, where the neighborhood 

of e is 

a b c 
deft 
ghiu 

vw 

Roberts Gradient: max{la-e I , Ib-dl}- 

Three-by-three: max{la+b+c-g-h-i I , la+d+g-c-f-i } 

2x2 Difference: 

I/4*max{Id+e+g+h-f-t-i-u I , Ib+c+e+f-h-i-v-wl}. 

(In other words, the value corresponds to the maxlmum of the 

differences between 2x2 averages over adjacent pairs of 
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horizontal and vertical neighborhoods. This scheme extends 

to diagonals also. 

4x4 Difference: This is the same as the 2x2 difference except 

that averages are taken over 4x4 neighborhoods. 

8x8 Difference: The same as the previous except that averages 

are taken over 8x8 neighborhoods. 

Experiments with these operators indicated that the Laplacian 

(which is a second difference), the Roberts Gradient and the 3x3 

Gradient were too sensitive to minute changes in gray level. The 

differences of averages operators produced better output by virtue 

of the increased amount of smoothing on each side of the edge. 

Knowledge that typical edge width in the windows was three pixels 

suggested that the 4x4 operator could span the edge ramp (to give 

the maximum gradient value) while remaining sensitive enough to 

detect the edges of small faint regions. 

3.2 Edge thinning 

In the world of man-made objects, edges correspond to the 

juxtaposition of surfaces and shadows. In a well focused image, 

edges should appear sharp and should extend in some direction for 

some length. (In the natural world, the boundaries of regions are 

not necessarily as sharply defined, e.g., for trees, fields, etc.) 

The output of the operators described in the previous section, 

however, is generally smeared at or near the true edge location. 

Nonetheless, for certain types of image understanding it is neces- 

sary to localize the edge so that it lies along the object boun- 

daries. Given a knowledge of the edge detector, it is possible to 

design a process which accepts the output of the operator and 

which produces a thinned representation of the edge at the loca- 

tion of maximum edge response. 

It is not sufficient to consider simply those points of maxi- 

mum response, since this would force adjacent points in the direc- 

tion of the edge to compete. This problem can be alleviated by 

taking into account the computed local direction of the edge and 

by placing into competition only those points which are normal to 

the direction of the edge. In practice, a directional mask is 

associated with each edge point oriented normal to the direction 

of the maximum edge response at that point. The center point is 

then deleted (assigned zero response) if any point within the 
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mask has a greater response. 

x x x 
x x x 
xx 0 x x , 0 
x x x 

x x x 

There are four masks: 

x x 
x x x x 

, 0 , 0 , 

x x x x 
x x 

one associated with each principal edge direction. The process, 

called "non-maximum suppression," operates simultaneously on all 

edge values to produce a "thinned" edge map. Figure 3.1 

illustrates the process. 

4. Threshold selection 

The properties of a pixel in a single sensor image are its 

position and its gray level. Our knowledge of the imaging envi- 

ronment allows us to predict an object's gray level more accurate- 

ly than its position. In fact, the whole point of cueing is to 

locate a target. Thus one has little a priori information about 

target position; however, inasmuch as gray level is related to 

thermal emission in FLIR data, there are some fairly powerful 

heuristics available to aid in target recognition. For example, 

we may choose to assume that operating vehicles are warmer than 

the immediate background and that they radiate uniformly over 

their surfaces. Naturally, such assumptions are not always pos- 

sible. In cold weather, metal loses heat faster than the ground; 

at close range, fine thermal detail is visible and the uniformity 

assumption fails. Nor are these assumptions meant to be exclu- 

sive, e.g., we do not claim that every object region warmer than 

its surround is a target. The power of these heuristics is to 

suggest approaches which capture essential problem domain know- 

ledge. 

In this project, the force of the heuristics of the previous 

paragraph is to emphasize methods which isolate distinct gray 

level regions from their surrounds. The simplest of such methods 

is thresholding -- the assignment of all points whose gray levels 

are greater than a predetermined level (the threshold) into a 

single class of potential object points. The filtering, aggrega- 

tion and ultimate classification of these points are the subjects 

of subsequent sections. In this section, we discuss our investi- 

gations of numerous methods for single and multiple threshold 

selection. 
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Originals. Edge detector output. 

Thinned edge map. Thinned edge map thresholded 
to display only edge values 
> 2. 

Figure 3.1. Results of edge detection and non-maximum 
suppression on 43 tank windows. 
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Originals. 
Edge detector output. 

Thinned edge map. Thinned edge map thresholded 
to display only edge values 
> 2. 

Figure 3.1. (continued) 
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Originals. 

. . . . . . . . . . .  

Edge detector output. 

Thinned edge map. Thinned edge map thresholded 
to display only edge values 
> 2. 

Figure 3.1. (continued) 
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There is a progression in these methods which corresponds on 

the one hand to the need for increased sensitivity in choosing the 

"right" threshold and, on the other hand, to the deemphasis of the 

commitment to that particular threshold. However, we still retain 

the notion that for each object region in the image there is a 

"best" threshold. In the worst case, every possible threshold 

yields a target region which is invisible (unextractable) at every 

other threshold. One must therefore be prepared to threshold at 

any gray level and within that thresholded image to discern the 

target regions and to ignore the noise regions. These last com- 

ments appear to call for the selection of every gray level as a 

value at which to threshold. Indeed, given sufficient parallel 

hardware and powerful target/noise discrimination criteria, this 

brute force approach could lead to a reliable and sensitive target 

cuer. A further discussion of this option is in Section 6 and 

some relevant experiments are to be found in Section 8. The re- 

mainder of this section describes techniques for finding appropri- 

ate thresholds when hardware and throughput considerations allow 

only a few thresholds to be utilized per frame. 

4.1 Threshold selection based on edHe values 

In Section i.i a model was proposed for images consisting of 

objects and background, each with characteristic gray level dis- 

tributions. If the gray level histogram of the image is markedly 

bimodal, one may choose the threshold at the valley between the 

two peaks (possibly shifted towards the smaller peak when using a 

maximum likelihood estimate). However, the smaller the object, 

the less likely the histogram is to exhibit strong bimodality. 

The background distribution engulfs the object's gray level range 

and tests for bimodality are inconclusive. 

One approach [15] to solving this problem has been to select 

from the original image a set of points that are as likely to fall 

within the object as within the background. If one examines the 

output of operators which respond to edges, then high values 

should correspond to points falling at or near object edges. The 

mathematical model has shown the gray level distribution to be 

unimodal with a peak at the mean. Thus, these points are as like- 

ly to lie on the object as on the background and their mean value 

should correspond to the desired threshold. 
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A brief description of the threshold selection method is as 

follows: Let e(i,j) be the edge value computed at (i,j) and let 

g(i,j) be its gray value. Then the chosen threshold is 

= AVG{g(i,j) le(i,j) ~ t},where t is lowest edge value considered 

significant. Computationally, two arrays are needed. One array, 

TOTAL0,...,TOTAL63 , accumulates the gray level g for each edge 

value e between 0 and 63; i.e., TOTAL e = TOTAL@ + g. The second 

array, N0,...,N63 , tallies the number of points at each edge 

value. The desired average gray level g = ( Z TOTALi)/( ~ Ni). 
i~t i~T 

Two parameters were treated in the experimental work: the 

choice of edge operator and the edge significance level t. Pre- 

vious work with edge operators indicated that the 4x4 difference 

of averages operator was superior to the others as an edge detec- 

tor in FLIR scenes. Experiments in threshold selection showed 

that thresholds chosen based on this operator were better overall 

[i]. 

The proper selection of a value for t is important because 

this parameter controls the size and quality of the sample points 

of high edge value used to compute the gray level threshold. Set- 

ting t too high decreases the statistical reliability of the 

sample; while a small t may admit too many noise values. The 

choice of t depends on the expected amount of object edge. Obvi- 

ously, many assumptions are built into this notion, e.g., that 

the window contains only a single object of known size, shape, 

contrast, resolution, etc. In a tactical situation, one could 

make estimates of these parameters based on situation data. Based 

on estimates of target size, t was chosen as the edge value cor- 

responding to the 95 th percentile. This estimate was shown by 

experiment to provide good thresholds for the windowed data set, 

This is illustrated in Figure 4.1. 

The sensitivity of the chosen gray level threshold to diffe- 

rent choices of t was tested and a graph of the threshold was 

plotted as a function of the gradient cutoff t; see Figure 4.2. 

There is a tendency for this graph to drift toward the mean gray 

value as t is decreased. The chosen threshold is stable for large 

objects. For small objects, the choice is quite sensitive to the 

bin size. 

The approach above and several variations [5] can be viewed as 

methods of decision surface selection in (gray level, edge value) 
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Originals. Image reference numbers. 

2-D Histograms. Thresholded windows 
after shrink/expand 
(see Section 5.1)~ 

Figure 4.1. Results of thresholding and post- 
processing 43 tank windows. 
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Figure 4.1. (continued) 



254 

48T 

53T 

57T 

50T 

54T 

58T 

51T 

55T 

59T 

52T 

56T 

Figure 4.1. (continued) 
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space. This space is visualized as a two dimensional histogram 

with gray level along one axis and edge value along the other. 

Figure 4.3 displays such a 2-D histogram for a hypothetical object 

on a background. Points at A represent background while object 

points (perhaps with some noise) cluster at B. The bottom part 

of the U-shaped region contains high-edge value points. As we 

have pointed out, the average gray level of these points is a good 

threshold. Figure 4.1 illustrated 2-D histograms for several 

target windows. 

One may consider a threshold as a vertical decision surface 

separating object from background. Non-vertical partitions of the 

space have also been investigated [2] and were found to be capable 

of adding more points to the boundaries of object regions without 

substantially increasing the amount of noise. Several other par- 

titioning schemes which were considered are discussed in [5]. 

4.2 Slice range selection 

The methods discussed above predict a single threshold to be 

applied to an image. For images known to contain a single object 

class or for small windows, the use of a single threshold is ap- 

propriate. However, in general, no single threshold will separate 

all objects of interest from the background. It is therefore 

necessary to extend our threshold selection concept to allow the 

choice of multiple thresholds. 

Our approach is to produce clusters of points corresponding 

to region borders and to associate the average gray level of each 

cluster with a threshold for the corresponding region. Edge de- 

tectors select at each point the maximum difference of averages of 

adjacent neighborhoods over several directions. By suppressing 

non-maximum responses normal to the selected direction (i.e., 

across the edge), thin contours result which appear to surround 

object regions (see Section 6.2). A by-product of this process 

are points with very low edge value, including values which trun- 

cate to zero. Such points correspond to the interiors of homo- 

geneous regions. Figure 4.4 illustrates thinned detector respon- 

ses with region interior maxima included. After thinning, each 

remaining point is plotted using edge value and average gray level 

in a two-dimensional histogram. Figure 4.5 shows examples of 

images together with their 2-D histograms based on thinned edges. 



260 

ao 

Figure 

a. 

W 
e. 

Figure 

4.4a. 
b. 

4.5a. 

b. 

LANDSAT window of Monterey, CA. 
Thinned edge detector response 
(thresholded). 

Jl 
b. c. d. 

T o 

f. g. h. 

Disk (gray level 30) within ring (gray 
level 40) within background (gray 
level 20). 

b. 2-D histogram of (a) with gray level as 
x-axis (increasing left to right) and 
edge value as y-axis (stretched -- in- 
creasing from top to bottom). Interior 
of background is leftmost, topmost 
cluster. 

c. Window containing house. 
d. 2-D histogram of (c). 
e. Window containing tank. 
f. 2-D (stretched) histogram of (e). 
g. LANDSAT window of Monterey. 
h. 2-D histogram (thinned edge vs. average 

gray level). 
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Two types of clusters are produced: interior clusters repre- 

sent the interiors of regions, edge clusters represent boundaries 

between regions. The Size of a cluster (i.e., the number of 

points in it) is closely related to properties of the region it 

describes. Thus interior clusters relate both to the area of the 

region and to the size of the neighborhood over which the local 

operations (edge detection, non-maximum suppression) are defined. 

For small object regions, there may be no points sufficiently far 

from the object boundary to resist suppression. Thus, interior 

clusters may be indistinguishable from noise, or may be nonexis- 

tent. 

Clusters of points at higher edge values are more likely to be 

significant (based on our homogeneity assumptions). The size of 

an edge cluster is therefore related to the perimeter of the 

surrounded region in the image. Since perimeter increases 

(roughly, for digital images) as the square root of area, the edge 

clusters for objects of moderately different areas should, none- 

theless, be of comparable size. A priori estimates of size are 

of use in discriminating true edge clusters from random noise. 

Each edge cluster corresponds (ideally) to these interior 

clusters whose locations can be determined from the location of 

the edge cluster. Thus a threshold derived from the edge cluster 

will separate the interior clusters. However, care must be taken 

not to split an interior cluster at a threshold since this intro- 

duces random noise regions. Figure 4.6 illustrates a compound 

decision surface in the 2-D histogram of a multi-object image. 

For further discussion see [16]. 

4.3 Variable thresholding 

Previous approaches to thresholding apply the same threshold 

to all points of the image. In [17], Nakagawa adapts the work of 

Chow and Kaneko [18] to interpolate a best threshold for each 

point of the image. Briefly, the image is divided into small 

windows (say 32x32) and a test of gray level histogram bimodality 

is made for each window. A best threshold is chosen for each 

bimodal window and thresholds are interpolated to all image pointS. 

A binary image results when each threshold is applied to its cor- 

responding pixel value. Figure 4.7 compares fixed thresholding 

and variable thresholding for several FLIR frames. Nakagawa 
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a .  

2.0 3 o  ~.o 

b. 

ZO 30  ,~o  

c. 

Figure 4.6a° Adjacent object regions on 
background (same as Figure 
4.5a). 

b. 2-D histogram. 
c. 2-D histogram partitioned into 

classification regions. 
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a. 

Figure 4.7. 

a. 

b. 

b. 

Comparison of fixed and variable 
thresholding. 

Two FLIR frames. 
Two-Gaussian approximations to those 
32x32 window histograms that were 
judged to be bimodal. 
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C. 

d. 

Figure 4.7 (continued) 

c. Results of applying the interpolated 
point thresholds to (a)° 

d. Results of applying a fixed threshold 
to (a). 
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extended this method to allow multiple thresholds (for multi- 

object adjacencies). Figure 4.8 illustrates the results. 

5. Noise cleaning and component labeling 

5.1 Shrink/expan d and min/max 

The result of thresholding is a binary valued image. It often 

contains isolated points and small noise regions which are arti- 

facts of the thresholding and may not be readily visible in the 

original image. Smoothed images tend to have fewer (but larger) 

noise regions. One may delete noise regions by postprocessing 

the thresholded image. 

The method consists of multiple applications of two processes: 

"shrink" and "expand." The purpose of the sequence of shrinks is 

to shrink objects in a uniform manner so that small or insubstan- 

tial objects disappear entirely. The sequence of expands is meant 

to regrow the remaining shrunken objects to their original size. 

The result of the shrinks/expands is the elimination of tiny 

regions (presumed to be noise regions). 

Each shrink or expand requires the simultaneous or "parallel" 

application of a local replacement rule at every point of the 

thresholded image. The form of the shrink rule is as follows: 

Eliminate all l's adjacent to O's. Zero values are unchanged. 

Such a rule decreases the number of l's in the thresholded image; 

thus, the image "shrinks." Only l's surrounded by l's will sur- 

vive a shrink. The number of successive shrinks determines the 

mlmimum diameter of a surviving region. 

The expand rule is similar to the shrink rule: rewrite a 0 as 

a 1 if any of its neighbors are l's, but leave l's unchanged. 

Thus points adjacent to l's become l's, thereby increasing the 

number of l's. If we wish to restore objects (that were not eli- 

minated) to about their original sizes, t shrinks should be fol- 

lowed by t expands. Such a shrink/expand sequence produces an 

image whose l's correspond to (a subset of the) l's in the un- 

transformed binary image. Thus, for example, isolated l's are 

eliminated, and objects joined by narrow necks of l's may become 

disconnected. Also, thin protusions from a region of l's will 

disappear. Figure 5.1 illustrates the shrink/expand algorithm 

for both the 4 and 8 neighbor cases and t = 1,2,3 (the numbers of 
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a. b° 
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Figure 4.8. 

do 

Comparison of fixed and variable 
thresholding. 

a. Machine parts image. 
b. Two- and three-Gaussian approximations 

to those window histograms that were 
judged to be bi- and tri-modal. 

c. Three level pictures obtained after 
interpolating the multiple thresholds 
determined from (b) and applied to (a). 

d. Results of applying a fixed threshold 
to (a). 
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6T a. b. c. d. e. f. g. 

e 

@ 

2~ 

6R a. b. c. d. e. f. g. 

Figure 5.1. Effects of iterating SHRINK/EXPANDS (S/E's). 

a. Original images - each column is a single image 
thresholded at four different values. 

b. 4-neighbor rule - one S/E 
c. 4-neighbor rule - two S/E's 
d. 4-neighbor rule - three S/E's 
e. 8-neighbor rule - one S/E 
f. 8-neighbor rule - two S/E's 
g. 8-neighbor rule - three S/E's 
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shrinks and expands used). 

A generalization of the shrink rule was formulated to fill 

pinholes and conserve small region shape as follows: delete a 1 if 

at least k of its neighbors are O's (O's remain unchanged). The 

original shrink rule corresponds to k = I. If k > I, it takes 

more zero evidence to convert a 1 to 0. The generalized expand is 

analogously defined: Rewrite a 0 as 1 if it has at least k l's as 

neighbors (l's remain unchanged). 

However, the generalized expand rule is not quite as generous 

in providing new 1 values, although it does fill pinholes in suf- 

ficently large regions. Figure 5.2 provides a comparison for 

t = i, 2 and k = i, 2, 3. The shrink/expand rule with t = 2 and 

k = 3 applied to each image point and its 8-neighbors provides 

efficient noise cleaning with most noise regions eliminated, pin- 

holes filled, and only a modest amount of target shape distortion. 

One may further generalize this process for application prior 

to thresholding. This technique, called "precleaning", involves 

a sequence of local MIN/MAX operations applied to the gray level 

image (analogous to shrink/expand applied to a binary image). The 

resulting precleaned image may now be thresholded as desired. 

The above threshold regions are as they would have appeared after 

shrink/expand processing. Figure 5.3 illustrates the process. 

This work is described in [19]. 

5.2 Connected component extraction 

The result of thresholding is a binary image. After noise 

cleaning operations filter this image (as needed), it still re- 

mains to aggregate points into identified (labeled) regions. A 

process which labels the individual disjoint regions in the binary 

image, in a single raster scan, is well known in the literature 

[20]. It is described briefly here. 

A set of l's in a binary image is connected if any two points 

in it can be joined by a path (sequence) of pairwise adjacent 

points lying in the set. A maximal connected set is called a 

connected component. The algorithm to be described produces the 

(unique) decomposition into connected components, labels the 

individual components, and constructs for each connected component 

a descriptive feature vector. Although we do not specify the fea- 

tures, it is assumed that they are all extractable from a raster 
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4x4 
DIFF 

3T 

8x8  
D I F F  

4x4 
DIFT 
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a. 

Figure 5.2. 

a, 

b. 
c. 
d. 

Do 

Leniency in SHRINK/EXPAND definitions for 
windows thresholded by two methods. 
4-neighbor rule, one S/E, k=i,2,3 
8-neighbor rule, one S/E, k=i,2,3 
4-neighbor rule, two S/E's, k=i,2,3 
8-neighbor rule, two S/E's, k=i,2,3 
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C. 

d. 

Figure 5.2. (continued) 
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Key: 

4-nbr. 

Original MIN-MAX 

MIN2.MAX 2 

MIN3.MAX 3 

8-nbr. 

MIN-MAX 

MIN2-1~X 2 

MIN3.MAX 3 

(a) 

(b) (c) 

Figure 5.3. 

Results of applying repeated local MIN and re- 
peated local MAX to three FLIR images. In each 
part, the upper-left picture is the original; the 
second column uses 4-neighbor local MINs followed 
by 4-neighbor local MAXes (i, 2, and 3 repetitions, 
in the first, second, and third rows); and the 
third column is analogous, using 8-neighbor oper- 
ations (i.e., including the diagonal neighbors). 
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scan using a 3x3 processing window. Additional storage is avail- 

able to hold the feature values for the components. Section 7.2 

describes the features. 

When a new region is encountered during a raster scan, it is 

assigned a vector of registers to store its feature values. As 

the region is being tracked on the same row or continued on the 

next row, values continue to be accumulated into its feature 

vector. In order to specify the correspondence between a region 

and its register vector, a label is created and assigned to each 

point of the region which has already been visited. The label 

will identify the appropriate register vector, usually by some 

indexing scheme. Region points found to be adjacent to already 

labeled region points inherit that label and contribute their 

feature values to its register vector. 

Often a region encountered for what is thought to be the 

first time may on a later row prove to be connected to a previous- 

ly encountered region. Such regions are called subcomponents. 

Inasmuch as feature values were being maintained separately for 

each subcomponent, it becomes necessary to combine the feature 

values (eventually) and to create a flag that signifies that the 

two subcomponents belong to the same component. These flags re- 

side in the label equivalence table. This table can be stored 

either as a bit matrix or as a list. 

Since region labels propagate from point to point, we must 

also keep the labels of those points in the preceding row that 

are neighbors of unexamined points in the current row, with the 

labels of those examined points in the current row. The amount of 

storage necessary for labels of points is thus only a single row. 

The label assigned to a component should designate whether the 

component is above or below threshold. If the background is not 

partitioned into regions (i.e., is ignored) by the algorithm then 

the data structure becomes simply a list of above-threshold re- 

gions. This is suitable for many applications, e.g., infrared 

target cueing. In general, though, the containment relation 

defines a tree structure. It is evident that if two components 

of a binary image are adjacent then one encloses the other. How- 

ever, if more than one object-background transition has been de- 

tected, one cannot know which encloses which from strictly local 

information at the time of the initial label assignment. The 
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determining condition is "which region terminates first?" The 

region terminating first is enclosed by the adjacent region. Thus 

whenever a region terminates, the data structure is updated to 

reflect the containment relation. When a region is initiated it 

is entered onto an "active" list -- the list of unterminated re- 

gions. At the end of each row, the active list is compared with 

the list of component labels of the current label row. Any active 

component whose label does not appear in the current row is known 

to have terminated. Additionally, when overlapping regions are 

combined, the discarded label is deleted from the active list. 

It is possible to modify the above to create a description of 

each connected component's boundaries. Such a description is 

called a "chain encoding" and is discussed in [20]. 

5.3 Fuzzy thinning 

Objects which are everywhere elongated are often thinned down 

to a "medial line" for the purpose of extracting thickness-invari- 

ant topological features of the objects. The basic strategy for 

thinning is to iteratively delete border points (but not end 

points) of an object which do not locally disconnect it. For 

binary images, various parallel algorithms exist. The recent 

extension of the topological concept of connectedness to fuzzy 

subsets allows us to generalize thinning to gray level images [21]. 

Given thin dark objects on a light background, we define gray 

level thinning to be the successive replacement of points by the 

minimum gray level of their neighbors if those changes do not af- 

fect the local fuzzy connectedness for any pair of neighbors. The 

result of applying such an algorithm is a set of high gray level 

"curves" lying on the ridges and peaks of high gray level in the 

original picture. If the original picture is noisy there will be 

many local peaks; so while thinning is defined for unsegmented 

pictures, a local threshold is necessary to overlook these small 

noise peaks. Unlike binary thinning, however, we no longer need 

to distinguish between border and interior points since thinning 

a homogeneous region will not significantly change the gray level 

of any point; only a slight smoothing results. The results of 

experiments with this technique are described in a technical 

report [22]. See Figure 5.4 for examples of this process. 
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a. 

b. 

Figure 5.4a. 

b. 

Iterations 0-3 of fuzzy thinning 
on LANDSAT window of Monterey. 
Iterations 0-5 of fuzzy thinning 
on the output of an edge detect- 
or. 
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6. Superslice 

The object extraction task is somewhat simpler for FLIR ima- 

gery than for visible-light imagery since the objects of interest 

(military vehicales) are generally compact regions of (more or 

less) uniform thermal intensity. For this reason, thresholding 

has been chosen as an appropriate method of segmenting the scene. 

However, one can criticize threshold selection schemes on a number 

of grounds. First of all, if a window contains no object then 

thresholding it is dangerous, since above-threshold noise regions 

may often produce probable looking "objects." Secondly, if more 

than one object is present in the window then a single threshold 

will not suffice. Thirdly, if an object overlaps several windows 

then there may be no consistent representation of an object (i.e., 

no representation using a single threshold). Attempts to divide 

the scene up into overlapping windows, so that objects of maximal 

size are guaranteed to lie completely within a single window, 

answer this last objection at the cost of greatly increased over- 

head. In any case, the size of the smallest thresholdable 

region -- as well as the particular threshold chosen -- depends on 

the window size, the coarseness of the grid, and the type of sta- 

tistical test used to determine if a region iS thresholdable. One 

would prefer, however, to be able to extract a small region regazd- 

less of the clutter and noise beyond its borders. 

Another objection to pure thresholding is the presence of 

noise regions in addition to object regions. Noise regions may be 

difficult to distinguish when based on size, shape, or gray level 

features. The broader and higher the valleys of the gray level 

histogram, the more likely that the noise regions will be exten- 

sive and numerous. 

A final objection concerns the design of optimal thresholding 

techniques in which the optimality is based on a statistical 

model of the gray level population. In situations where an object 

contrasts strongly with the background, there may be a number of 

thresholds at which the object appears well defined. As the 

threshold decreases through this acceptable range, each object 

exemplar is contained within a slightly larger one. Thus although 

the exemplars may each look reasonable, the optimality criterion 

for the thresholding does not necessarily choose a "best" exem- 

plar. This is because the optimality condition was based on the 
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whole window rather than on the component corresponding to the 

object. 

For these reasons, a segmentation method which does not re- 

quire a commitment to a single threshold in arbitrarily chosen 

regions of an image is preferable. Our method uses thresholding 

as a means of discovering candidate object regions. Candidates 

are then accepted or rejected based on the coincidence of an edge 

map with the region boundary. The surviving object regions are 

compared with the survivors of other thresholds, and those that 

best match the edge map are used to describe the actual objects in 

the image. Thus, while a number of thresholds are used, only the 

one defining the greatest coincidence of thresholded region border 

and (thinned) edge is deemed valid for a particular region. This 

method can be considered as defining a best exemplar for each 

object region. 

6.1 Algorithm 

The algorithm consists of several steps as follows: median 

filtering; extraction of an edge mask by edge detection and thin- 

ning; thresholding; forming connected components; and object vali- 

dity checking. For a given picture, smoothing and edge map ex- 

traction need to be done only once; whereas thresholding and the 

subsequent steps are to be performed over a range of thresholds 

sufficient to extract any objects in the picture. 

Figure 6.1 illustrates the basic concepts involved. Figure 

6.1a shows several object windows along with a number of possible 

thresholds for each. Note that it is not at all obvious which 

threshold is best. However, when the edge map (Figure 6.1b) is 

overlaid on the thresholded picture (Figure 6.1c), we have much 

better guidance. Figure 6.1d shows the object region extracted 

from each window using the method to be described. 

A number of steps of the Superslice algorithm have been dis- 

cussed in previous sections: smoothing (Section 2.3), edge detec- 

tion and thinning (Section 3.2), threshold selection (Section 4.1) 

and connected component extraction (Section 5.2). However, 

several problems associated with threshold selection deserve 

mention: 

a) The omission of a threshold from consideration increases 
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a. 

b. 

Figure 6. la. 

b. 

Four target windows (large tank, 
small tank, truck, APC) thresholded 
at seven different gray levels. 
Edge maps (thresholded for visibility). 
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C. 

d. 

Figure 6 .lc. 

d. 

Edge maps from (b) overlaid on 
(a). 
Object regions extracted by the 
Superslice algorithm. 
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the probability of missing extractable regions. 

b) The gre&ter the number of thresholds considered, the 

greater the false alarm rate. 

c) The speed of the algorithm is approximately linear in the 

number of thresholds used. 

The probability of missing an object region due to the omission of 

a single threshold is the product of the probability that the 

scene contains an object region and the probability that the ob- 

ject region is discernible (by the algorithm) at exactly the omit- 

ted threshold. Although knowledge of the a priori probability is 

dependent on a model for the scene (which does not at present 

exist), experiments have demonstrated that an object region which 

is discernible at all by the algorithm can be extracted over a 

range of thresholds -- dependent, of course, on the steepness and 

homogeneity of the edge region bordering the object. Noise re- 

gions, on the other hand, do not tend to persist over a range of 

gray level thresholds. This tradeoff may therefore be posed as 

follows: By sampling at every kth gray level, we reduce the work- 

load to a fraction (l/k) without appreciably increasing the false 

dismissal rate; however, we lose some redundancy in the extracted 

data which would help us discriminate object regions from false 

alarms. 

The false alarm rate is a function of input window size, as 

well as a function of the number of thresholds and the positions 

of the thresholds in the overall gray level histogram. Certain 

thresholds are worse than others in producing false alarms -- 

specifically, those at or adjacent to peaks in the histogram. 

After thresholding and connected component extraction, each 

component must be validated as to whether the extracted region 

really corresponds to an object in the scene. If one considers 

validity checking to be a classification process, then one can 

compute a large number of potential features and, using standard 

techniques, determine a discriminant function. We have esta- 

blished three heuristics to be of value. One is that objects 

should be "well-defined," i.e., have discernible borders. Note 

that not all real-world regions satisfy this constraint. For 

example, in LANDSAT scenes, forest, urban areas and clouds can 

blend into their surrounds with no discernible edge. The second 
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heuristic is that an object's interior should "contrast" with its 

surround. In this study, contrast is based on gray level dif- 

ference. However, other local features including texture measures 

are worth considering as defining object interior. The third is 

that the region size lie within an acceptable range. The size 

test is applied first, eliminating any region with fewer than 20 

or more than 1,000 points. 

"Well definedness" of a region is measured by the percentage 

of border points which correspond spatially to (match) actual edge 

points in the edge map. "Contrast" is measured by the absolute 

difference of average gray level between the border region of the 

component and its interior. Figure 6.2 shows a scatter plot of 

these two features for the regions extracted from a set of windows. 

A reasonable discriminant based on these two features appears to 

be: match > .5 and contrast > .6 -- i.e., at least 50% of the 

border matches the edge map, and the contrast is at least .6 gray 

levels (out of 64). Note that neither feature is by itself reli- 

able enough to discriminate noise regions from object regions. 

Optimal discriminants may be computed based on several models. 

Regardless of the particular model chosen, the discriminant value 

can be interpreted as a "score" for the component. Components 

with very low scores are discarded as pure noise. In practice, we 

have used the match measure as a score for objects which were 

above the pure noise threshold. 

The score is important in comparing (nested) object regions 

corresponding to the same object. When an object is thresholdable 

at gray levels t I > t 2 >...> tk, this gives rise to k connected 

components, Ctl  ~ Ct2 ~ . . . ~  Ctk. Since each Ct'l r epresen t s  the 

same object, we call each an "exemplar." In general, we wish to 

select a single exemplar as the best representative of an object. 

The score provides a criterion for selecting among exemplars. 

Thus, one could choose the exemplar Ct. with the highest score. 

3 
It is not always easy, however, to determine the nested sequence 

{Ct }. In particular, if one object thresholdable at gray level t 
1 

is contained within another thresholdable at gray level t' < t, 

then regardless of the comparative difference between the two 

scores, we would want to retain C t and Ct,. This situation can be 

handled by assuming that nested components whose areas are 
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Figure 6.2. Scatter diagram plotting 

well-definedness against 

contrast for a set of noise 

regions (plotted as periods) 

and object regions (plotted 

as hash marks). 
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sufficiently different (say, 50% change in size) correspond to 

different (although nested) objects. In thermal images, this 

might correspond to a warm vehicle with a hot engine compartment, 

or to a vehicle on an asphalt road. The results of applying the 

algorithm to a set of 16 APC windows are illustrated in Figure 

6.3. Note that in almost all cases (the negative image was not 

processed), the resulting labelled images contain the target 

regions (as well as other regions). 

In summary, the algorithm for region extraction consists of 

the following steps: 

I. Smooth the image, if necessary (to promote clean 

thresholding). 

2. Extract a thinned edge picture. 

3. Determine a gray level range for thresholding. 

4. For each gray level in the range: 

a. Threshold the smoothed image. 

b. Label all connected regions of above-threshold points. 

c. For each connected region: 

i. Compute the percentage of border points which 

coincide with significant thinned edge points. 

ii° Compute the contrast of the region with the back- 

ground. 

iii. Classify the region as object/non-object based on 

the size, edge match and contrast. 

5. Construct the canonical tree for the set of object regions 

based on containment. 

6° Prune the containment tree by eliminating adjacent nodes 

which are too similar. 

6.2 Conformity - a measure of re~ion definedness 

The Superslice algorithm relies on the heuristic that 

thresholded object regions are distinct from background because 

they contrast with their surround at a well-defined border. The 

coincidence of high contrast and high edge value at the border of 

a thresholded region is an example of the use of convergent evi- 

dence supporting the assertion of the object region. The defined- 

ness of the border may be evaluated as the percentage of the 

border points which coincided with the location of thinned edge 

(locally maximum edge response). Thus a match score of 50% means 
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a b 

Figure 6.3a. 
b. 
c. 

c 

Sixteen APC windows. 
Edge maps (thresholded for visibility). 
Object regions extracted by the 
Superslice algorithm. 
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that half the border points are accounted for as being on the 

edge. However, it does not mean that the matched points adequate- 

ly represent the object. Figure 6.4 illustrates two cases of 50% 

match. (Matched points are indicated by thick strokes.) Clearly, 

the second case is a better representation than the first. 

The traversal of the border of a thresholded region induces an 

ordering on the matched points. Let rl,...,r n be the runs of 

matched points encountered during a border traversal. By connect- 

ing the proximal ends of runs along the traversal, one creates a 

polygonal approximation to the thresholded region. We define 

"conformity" as the measure of match of the polygonal approxima- 

tion to the thresholded region. High conformity means that the 

region is well-represented by its approximation regardless of the 

actual percentage of matched border points. Figure 6.4a illu- 

strates low conformity, while Figure 6.4b shows good conformity. 

Conformity is evaluated as the ratio of the absolute dif- 

ference in area (between the two polygonal representations) to the 

area of the threshold region. Experiments have indicated its 

utility as a feature for discriminating noise from objects. A 

quantitative study of its discrimination value is described in 

Section 8.4.2. 

6.3 Hyperslice - An algorithm for recursive region extraction 

The algorithm (Hyperslice) described here is an amalgam 

embodying the recursive control structure of Ohlander [23] and the 

object extraction techniques of Superslice. Hyperslice consists 

of the following steps [24]: 

i. Preprocessing - image smoothing, thinned edge map extrac- 

tion. 

2. Initialize the extracted region mask (ERM) to the empty 

mask. Initialize the available points mask (APM) to the 

entire mask. 

3. Compute histograms for all feature images based on the 

APM. 

4. Determine a "best" slice range over all current histograms 

and slice the corresponding image. 

5. Generate submasks for regions satsifying the Superslice 

criteria. Add them to the ERM; delete them from the APM. 

6. Apply algorithm steps 3-5 recursively to the background 
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a. 

i~--~-- j 

j 
b. 

Figure 6.4a. 

b. 

Contour whose matched edge points 
(thickened strokes) exhibit poor 
conformity. 

Con£our showing good conformity. 

...... i ~i!? [[ i:%~ ;i 

a. b. 

Co 

Figure 6.5. 

d. e. 

Recursiv~ region extraction on 
Monterey image. 

a. LANDSAT window. 
b. Edge map. 
c. Histogram of (a), with selected slice 

range indicated. 
d. Mask of slice range. Within range 

points are white. 
e. Extracted regions mask. 
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f. g. h. 

i. j. k. 

i. 

Figure 

m. 

6.5 (continued) 

f. Histogram of remaining points after 
deleting extracted regions of (e). 

g. Slice range mask. 
h. Extracted regions mask. 
i. Histogram of remaining points. 
j. Slice range mask. 
k. Extracted regions mask. 
i. Histogram of remaining points. 
m. Mask of remaining points. 
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set (APM). The algorithm should also be applied recur- 

sively to each submask added to the ERM, since the extrac- 

ted region may be a union of regions discriminable by some 

other feature. 

Several comments are in order. First, the slice ranges chosen 

for Hyperslice should be rather liberal (i.e., extending beyond 

valley bottoms in the histogram), since points not correspohding 

to well-defined regions will be returned to the APM. The result- 

ing histograms appear more natural (not "carved-out") for this 

reason. Secondly, the resulting decomposition is order-dependent, 

i.e., different results may be obtained if the order of selection 

of slice ranges is changed. If two adjacent regions in the image 

contribute adjacent peaks in the histogram, then points in the 

intersection of the overlapping slice ranges will generally belong 

to the shared edge region. Whichever region is sliced first will 

tend to accrete more of these points. Since these points lie at 

or near the true edge, they tend to increase the edge match cri- 

terion for that region. Once they are removed from the APM, they 

are not available to the adjacent region. Consequently, the edge 

match criterion of the adjacent region may suffer. This is most 

likely to occur for adjacent regions which lack a strong common 

border. The 2-dimensional histogram approach in [16] can detect 

adjacency along weak borders. In practice, the edge match cri- 

terion is relaxed somewhat from demanding actual coincidence to 

allowing proximity (e.g., a region border point adjacent to a 

thinned edge point is counted as a match). 

The algorithm has been implemented as an interactive system 

of programs. Several examples illustrate its ability to segment 

images based on gray level alone (i.e., no other features were 

used to aid the segmentation). Figure 6.5 depicts a window of an 

ERTS frame of the Monterey area in California. The water area 

contrasts sharply with the land and very little noise is extracted 

and subsequently returned to the APM. The subsequent slices ex- 

tract light and dark fields which contrast with the undifferenti- 

ated background region. 

The second example is derived from Ohlander's house scene. 

The average of the three color bands provides the gray-scale. The 

resulting image has been smoothed by 3x3 median filtering. The 

first slice range extracts the sky regions and the bright crown 
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of a bush. Next the shadow regions appear along with the bushes. 

The somewhat darker grass is extracted in the third slice range. 

Finally, the brick is extracted. Figure 6.6 illustrates this 

sequence. 

Images such as the Monterey and house images are difficult to 

analyze since regions need not be well defined due to the complex- 

ity of light reflections and shadows. Nonetheless, this algorithm 

provides a mechanism for retrieving those regions which are well- 

defined. 

7. Feature extraction 

7.1 Feature design 

In this section, as in most work dealing with pattern classi- 

fication, a "feature" is taken to be some numerical quantity which 

can be calculated for each object to be classified. ("Shape" is 

not a feature, since many features, such as height/width, measure 

characteristics of the shape.) To be consistent with a high pro- 

cessing rate throughout, all features used in this study are based 

on accumulatable quantities. That is, a number of crude features 

have been chosen (listed in Table 7.1a) which are defined at each 

pixel. The value of any of these features for a region is just 

the sum of the values over all the pixels of the region. These 

crude features can be accumulated as the image is being segmented, 

and are therefore immediately available for any region as soon as 

it has been completely extracted. The descriptive features actu- 

ally used are simple functions of these accumulatable quantities, 

so that once any region has been extracted, brief calculations 

produce all the information required for classification of that 

region, with no further reference to the original image. One ad- 

ditional feature, "conformity," has been obtained for many of the 

images. This feature requires rather more postprocessing after 

region extraction, and is included as a nearly optimum measure of 

one region characteristic which should be of importance in target 

detection: cooccurrence of the region perimeter and points of high 

brightness gradient. This gives a useful standard for measuring 

the adequacy of the rapidly calculated feature (E&P, in Table 7.1c) 

which is used as a measure of the same property. 

A decision rule is effectively a mapping from the feature space 
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Figure 6.6. 

a. 
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c,f,i,l,o. 
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Recursive region extraction on house 
image. 

House window. 
Edge map. 

Histograms after successive deletion 
of extracted regions. New slice ranges 
are indicated. 
Slice range masks. 
Extracted region masks. 
Mask of remaining points. 
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a. Accumulatable features per connected component 

Symbol 

1. N 

2-3. SX,SY 

4-6. SX2,Sy2,sxY 

7. P 

8. E 

9. SPE 

I0. SIG 

ii. SPG 

12-13. SG,SG 2 

Meaning 

Area 

ZX,ZY - first moments 

ZX2,Zy2,~XY - second moments 

Perimeter point count 

High edge point count 

Total edge value on the perimeter 

Total interior gray value 

Total perimeter gray value 

Total gray level, total sauared 
gray level 

b. Intermediate quantities 

i. XAVE 

4*~SY 2 
2. YAVE 

3. R 2 SX 2 + SY 2 

4. V SG2/N - (SG) 2/N 2 

Table 7.1. Features. 



c. 

d. 

Recognition features 

i. h/w 

2. (h/w) ' 

3. (h*w)/A 

4. (h+w)/P 

5. diff 

6. skewness 

7. asymmetry 

8. SDEV 

9. Gray level 
difference 

i0. E & P 

ii. Ep 

Special features 

i. conformity 
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YAvE/XAvE 

IXAvE--8*YAvEI/~XAvE~YAvE 

XAvE~YAvE/N 

(XAvE+YAvE-4)/P 

(SX2-Sy2)/R 2 

IsxYl/R 2 

(SXy)2-SX2Sy2)/R 4 

SIG/(N-P) - SPG/P 

(Number of perimeter points 
at high edge local maxima)/P 

SPE/P 

(See Section 6.2) 

~shape 

brightness 

Table 7.1, continued 
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to a lower-dimensional space (the decision space) in which each 

point is associated with a fixed class. While this structure is 

very general, commonly used decision rules are very severe speci- 

alizations of this general scheme. Usually the initial mapping 

is produced by a set of polynomial functions on the features, one 

function for each dimension of the decision space. Within this 

space, the class regions are usually separated by planar bounda- 

ries. Thus, the Fisher method utilizes a single linear mapping 

onto the line, which is bisected by a point (at the Fisher 

"threshold") to establish the two class domains. Specialization 

of decision rules places sharp restrictions on what constitutes an 

appropriate feature. 

To discriminate tanks from trucks, a naive observer might 

point out that one need only examine the shapes. One more fami- 

liar with computational measures would recognize that the shape 

of an object involves a great many features, but might suggest 

that the height-to-width ratio would be one useful feature. How- 

ever, height-to-width, width-to-height, log(height-to-width), etc. 

are all quite distinct features, one of which may be highly effec- 

tive in the desired decision while others may be totally useless. 

Useful features must thus satisfy a number of conditions, some of 

which are general, the others being imposed when particular simple 

decision rules are to be applied. The present classification 

study has considered linear and quadratic classifiers, a decision 

space with no more dimensions than the number of classes, and 

simple boundaries for each class within the decision space. 

Several levels of restriction on the features to be used with such 

a classifier can be stated: 

i. Each feature must exhibit a different distribution for 

each of at least two classes. 

2. The classes should tend to fall in different value ranges 

for each feature, since class assignments in the decision 

space will be to connected regions. 

3. When the classifier utilizes sample means and variances to 

estimate parameters for the mapping (as those used here 

do), the true feature distributions of each class should 

be unimodal, approximately symmetric about the mode, and 

with a minority of points contained in the wings of the 

distribution. 
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4. For use with linear classifiers, each feature should have 

a distinctly different mean for at least two classes. For 

use with quadratic classifiers, it is only necessary that 

some range of values tend to characterize one class, while 

the other class predominates on the complement. 

Despite these "rules" for good features, it should be noted 

that for a multi-feature decision scheme, none of these rules is 

essential. However, only when some of the features are very 

strongly correlated can the above principles be violated without 

destroying the classification, and while this situation is not 

necessarily to be avoided, it makes interpretation of decision 

rules much more difficult. Moreover, as a practical matter, 

features which fail to have the above properties normally turn out 

to be ineffective (or worse, countereffective) when employed in 

automatic classification. Since one is not really restricted in 

the particular form of the features to be used (but only in the 

underlying characteristic being represented) one may as well as- 

sure that the features being considered are, as far as possible, 

individually effective means of class discrimination. 

Finally, one more restriction should be stated. 

5. The features should not reflect characteristics which 

effectively delineate the sample classes, rather than the 

true classes. 

This, of course, is the familiar failing of "small" samples, 

but may appear even in apparently large enough samples. In our 

data base (Section 8.1), several such "extraneous differentiationS' 

did arise. In cases where a large number of features are employed 

in a classifier, there must always be doubt about whether condi- 

tion 5 will hold. It is this condition, more than any other, 

which restrains the number of features which can usefully be in- 

cluded in a classifier. If an arbitrarily large number of fea- 

tures are measured for a particular set of classified samples, it 

is virtually certain that spurious characteristics will allow 

them to be well separated by a decision function based on those 

features, but there is no reason to expect anything other than 

random classification of new samples. The problem is sufficiently 

pervasive that a simple means of dealing with it could almost be 

elevated to a principle: 

5' Features should be included in a classifier only if they 
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identify true differences between the classes more than 

they do spurious differences between the samples. 

While the above rule may seem obvious, it is important to rea- 

lize that including additional features that do not discriminate 

between classes makes the classifier worse, as the features may 

very well distinguish the class samples, even though they do not 

distinguish the classes. (Self-classification of the training set 

improves, while classification of independent test sets degrades.) 

Class differences must be effectively reflected in the feature 

to make it safe to use. "Height-to-wdith" ratio is a dangerous 

feature to include in a linear classifier for target vs. non- 

target since its mean values for target and non-target classes may 

not be greatly different (though the distributions may differ 

greatly), so that small spurious differences in sample means may 

produce most of the "strength" of the feature. In a quadratic 

classifier, however, the problem would be much less severe, since 

the discrimination provided by the feature more nearly matches 

the requirements of the decision function employed. 

7.2 Computation 

The principal attributes of image regions which can be used 

to identify them are shape and relative brightness. Corresponding 

locally accumulatable properties are pixel coordinates, and 

functions of them, and gray level, and functions of it. Addi- 

tional information can be obtained from the contrast between the 

region and its surround at the region boundary. One can know as 

one examines each image point whether it is in the interior of a 

region, on the region boundary, or in the background. Statistics 

of interest can therefore be accumulated separately for these 

classes. Finally, the pre-computed edge value (gray-level 

gradient) is associated with each point, and these values may be 

accumulated or may be used to index subsets of points (e.g., "high 

edge" points) for which other quantities may be accumulated sepa- 

rately. The accumulated features actually used are all of one or 

the other of the above types, and were listed in Table 7.1a. 

The features calculated for use in classification studies are 

given in Table 7.1c-d. They are further divided into two 

groups -- those that are purely shape measures, and those that 

depend in some way on the brightness of the region (or some part 
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of it). Many of the functions appear to be straightforward mea- 

sures of significant characteristics, but others seem less 

straightforward. The criteria for choosing the specific func- 

tional forms used are discussed in Section 8.4. A discussion of 

the relative utility of the features appears in that same section. 

8. Region Classification and Experimenta ! Results 

8.1 Data base description 

For a description of the complete "NVL" data base and its 

ground truth see [i]. From it a set of 174 128x128 windows were 

selected, extracted, requantized, median filtered and sampled 2 

to i. The set consists of 164 target windows (75 tanks, 34 truck~ 

55 APC's) and i0 non-target (noise) windows. Figure 8.1 displays 

this set of windows and their identifiers. 

8.2 Overview of classification 

There are two general approaches to classification of objects 

into a preassigned set of mutually exclusive categories. The 

first might be called "semantic" classification. Each category 

is examined for particular characteristics which distinguish its 

members from those of every other category being considered. These 

characteristics are used to identify each object submitted for 

classification. (Difficulties, of course, occur if an object has 

none of the "key" characteristics, or has "key" characteristics 

suggesting more than one classification. Such an occurrence in- 

dicates that the classes suggested simply do not include every- 

thing within the domain of interest, or are not truly mutually 

exclusive -- at least as defined by the set of "key" features.) 

This is a form of classification which is ubiquitous in human 

experience. Unfortunately, in many cases of practical importance, 

the objects to be classified cannot be characterized by properties 

which will always be observed within one class, and never in any 

other class. If the classes really are well-defined, this diffi- 

culty may arise because of the need to classify using noisy or 

poorly resolved data. It may also occur because characteristics 

quite plain to human observers may defy expression as calculatable 

quantities (one vehicle may be "sleek and speedy looking", another 

"squat and out-of-date"). For whatever reason, when such incom- 
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pletely characterized problems arise, a method is required which 

provides a computable "best guess" classification. All such 

methods accept a number of (usually numerical) features which are 

assumed to be relevant to the classification intended. The dis- 

tribution of these features for a large number of objects whose 

identity is already known is then used to provide a rule which 

assigns a class to an object given the n-tuple of features mea- 

sured for that object. Typical rules of this sort are simple 

polynomials over the features, whose values are used to determine 

the class assignments. 

"Statistical" classification finds the best rules for a fixed 

class under some (usually very restrictive) assumptions about the 

way the features ought to be distributed. Since the data avail- 

able in this study appear not to provide enough resolution to pro- 

duce a semantic classification, we have utilized a procedure which 

includes a statistical classification component. A completely 

statistical classifier was not used, however. The full procedure 

consists of a semantic pre-classification of regions which could 

not represent targets, followed by a statistical classification of 

the "reasonable" regions. This approach was chosen primarily to 

ensure greater robustness in the resulting classification scheme, 

as will be discussed more fully below. 

Finally, it is important to analyze the types of errors made 

by a classifier. For example, a well-behaved classifier should be 

wrong more often on distorted images than on undistorted ones. 

This type of performance may be tested by training a classifier of 

the same type on a "training set" of half the samples, distributed 

evenly through the classes. The resultant classifier can then be 

used to reclassify the whole data set. If the "training" and 

"test" results are similar, then the classifier is judged fairly 

stable. If the results are good, then the classifier can be con- 

sidered fairly powerful. 

It is important to distinguish between human interaction in 

classifier design and human interaction in the operation of the 

classifier. The former is permissible since the classifier is 

fixed once it has been effectively designed and trained. No 

further human assistance is allowed and the classifier is applied 

in an automatic fashion to the test set. 
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8.3 Detailed classification description 

The objects to be classified in this study are connected 

regions of an input picture, extracted by thresholding the image. 

More than one threshold may have been used on any given picture, 

so the regions need not be disjoint; rather, one may be entirely 

contained in another. For each region, a feature vector contain- 

ing information about shape and brightness (as described in 

Section 7) is used as the sole source of information about the 

region for classification. The extraction procedure has somewhat 

preselected these regions, so that every region examined has at 

least minimal (20%) correspondence between its perimeter and the 

high-edge points, has at least minimal contrast (.2 gray level) 

and is of roughly appropriate size (between 20 and i000 pixels). 

8.3.1 Stage i: pre-classification 

If the classification is thought of as a two-stage process 

(shown schematically as Figure 8.2), the first stage is a crude 

"semantic" classifier which identifies some regions as having 

properties which indicate that they are not targets. Thus, all 

targets have similar height and width, seen at any aspect angle. 

Any region with h/w greater than 3 or less than 1/3, then, may be 

confidently rejected from further consideration. Similarly, 

targets "should" show some minimal contrast at their perimeters, 

a good edge-perimeter overlap, and small targets should be of 

nearly uniform brightness. All these criteria are set by esta- 

blishing numerical thresholds such that at least 95% of the sample 

targets satisfy the criteria. 

This is called "semantic" classification, rather than a very 

crude statistical classification, because the particular criteria 

used have been chosen to distinguish the targest on the basis of 

physical characteristics of true target images. A statistical 

classifier, even if it arrived at the same scheme, would be asses- 

sing discriminatory ability on the sample of classified regions 

provided for training, and could reflect any peculiarities which 

happened to distinguish the categories in that sample. (In the 

NVL data, APC's often exhibit an asymmetry which is due to the 

fact that most of those in the sample appear in only a single 

aspect. An apparently good statistical classifier could be formed 

which would unhesitatingly identify any APC in some other aspect 



305 

Image 

l 
Thresholding 
and connected 
component 
labelling 

Image regions-----Iv 
...... 
I Superslice ~ 

Candidate I 
object 
regions ¼ 

I Semantic ~ 
Stage 1 ~pre-classifierl 

~Noise regions 

~Non-targets 

Candidate 
target 
regions 

Stage 2 

Small 
targets 

i .... ,, 
Statistical "[ =Non-targets 
C lassifier I 

I ..... Targets 

Tanks Trucks APC's 

Figure 8.2a. The classification process. 
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as a tank.) 

This pre-classification examines individual features to deter- 

mine whether they could be reasonably associated with true targets, 

and discards "ridiculous" cases. A side-effect of this sorting is 

to assure that feature values seen by the subsequent statistical 

classifier are never very far from their characteristic values. 

This makes the classifier much better-behaved than one which ac- 

cepts non-normally distributed features (as most do) that have 

not been "critiqued." 

8.3.2 Stage 2: statistical classification 

Once the set of extracted regions has been reduced to a set 

of bright, compact, reasonably uniform regions, statistical clas- 

sification is used to assign a class to each particular combina- 

tion of features (or rather, to its associated region). A great 

many kinds of statistical decision rules exist. Access to the 

MIPACS [25] interactive system allowed us to design a decision 

tree (each node of which is a standard classifier) for efficient 

classification. The system allows individual decision functions 

to be either linear (e.g., Fisher), quadratic, or maximum likeli- 

hood, and provided a convenient mechanism for selecting which 

decisions to make, and just which features to use at each decision 

point. 

The basic structure selected was shown in Figure 8.2c. The 

first node actually represents a non-statistical selection. Be- 

cause of the wide range of apparent sizes of the target images 

(from 25 to i000 pixels) and the consequent wide range in visible 

complexity of detail, it was quickly determined that statistical 

classifiers would not provide good discrimination over the entire 

size range. (Almost every feature measured showed substantial 

correlation with apparent size, and since the various sample 

classes happened to have rather different image size distribu- 

tions, our earliest classifiers used that factor as a main clas- 

sification indicator.) Therefore, the first step in the classifi- 

cation is a simple split on image area -- with all regions of less 

than 95 pixels going to the "small" subtree, and the remainder 

passing into the "large" subtrees. For several reasons, princi- 

pally a presumed lesser urgency for detailed identification of 

small or distant objects and the fact that in the smallest images 
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no significant differences between the various target classes are 

apparent, the small regions are simply sent to a node which clas- 

sifies them as (small) "target" or "non-target" -- the specific 

type of target is left unspecified. For the large regions, a two- 

stage process followed. As neither APC's nor trucks are parti- 

cularly well characterized by the features used and their distri- 

butions are very similar, they were merged into a composite 

"truck-like" class. Any region found to be in this class is then 

assigned as APC or truck by a Fisher discriminant. (A major 

reason for this breakdown is that it permits fairly large samples 

to be used at an important decision point and relegates use of the 

sparsely sampled truck class to a relatively inconsequential 

discrimination.) The principal decision was therefore between the 

"tank" and "truck-like" classes and the "non-target" class. Two 

different approaches were tried for making this decision, both 

based on a quadratic maximum-likelihood discriminant. These are 

described more fully in Section 8.4. One approach ("fixed 

classes") applied the maximum likelihood criteria directly to the 

tank, truck-like, and non-target classes. The second approach 

included two "reject" possibilities as well -- non-target, and un- 

classified target. (Notice that the non-target label is applied 

either if a region looks sufficiently like a "typical" non-target 

or if the best label implies too unlikely a value for the features 

measured.) The latter approach was included to further minimize 

reliance on characterizing non-targets in detail. 

Given the tree structure for the classification, the kind of 

classifier and the set of features at each node were determined. 

The number of features which can reliably be used depends on the 

size of the sample set used for training. Assuming that the 

features are chosen so as to avoid apparent vagaries in the set of 

exemplars, one can confidently use an additional feature for each 

ten samples in the smallest group, and sometimes may use up to 

one-third the sample number (for a linear classifier). As qua- 

dratic classifiers utilize more detail of the presumed distribu- 

tion one is restricted to the conservative end of that range. 

These rules of thumb, while not universally valid, are nonetheless 

useful guides. 

By merging the truck and APC classes, we allow comfortable use 

of a quadratic classifier on five or six features at the main 
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decision node, while the smaller samples make a linear classifier 

or a three or four feature quadratic classifier more reasonable 

at the lower node. The "small" node could utilize five or six 

features -- but one is hard-pressed to find even that many which 

provide any discriminatory power at all. (However, one feature, 

E&P, is very powerful indeed.) 

8.4 ExperimentAl results 

8.4.1 Feature selection 

As in any classification problem, much of the initial feature 

selection for the vehicle recognition task was carried out infor- 

mally. This phase is largely introspective, determining charac- 

teristics of the images that seem helpful for human judgement, then 

identifying some features that suitably reflect these characteris- 

tics. This initial feature set (conveying "shape" and "relative 

brightness") is listed in Table 7.1, Section 7. All of these 

features seem appropriate for use with linear or quadratic classi- 

fiers. 

The features were examined in several ways. First, histograms 

for each feature were produced for every sample class. These 

histograms were examined to see whether the sample distributions 

satisfied the criteria noted in the last section. The differen- 

tiation that appeared was interpreted as to whether it was a true 

difference between classes, or simply a sampling anomaly. (At 

this stage too, particular features might be replaced by similar 

features of slightly different functional form, to better satisfy 

the requirements of automatic classification.) Second, those 

features that seemed to have some merit were ranked for classifi- 

cation power at each node of the decision tree. The "Automask" 

method, available within MIPACS, was used ([25]). Briefly, Auto- 

mask finds, for each feature, its "share" of the total dispersion 

both between and within sets, and finds the single feature which 

produced the greatest comparative variance between sets. This 

feature is then deleted from consideration, and the other features 

reexamined to find the next best feature, and so on. The relative 

merits of the features for each node are shown below. 
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Node 

Small 

Large 

Trucklike 

Shape features: 

Good features 

E&P 

E&P, diff 

Ep, asymmetry 

Usable features 

(h/w) ', (h*w)/A, (h+w)/P,diff, 
skewness, asymmetry 

(h/w) ' , (h'w)/A, skewness, 
asymmetry, E 

P 
(h/w)', (h+w)/P,skewness, E&P 

In the first stage, the (h/w)' height-to-width feature was 

useful in identifying small bright streaks as non-targets. In the 

statistical classifier for small targets, shape features were in- 

dividually very weak in distinguishing targets from non-targets. 

For large targets, diff was the best shape feature at node LARGE; 

all the others but asymmetry were also of some use. At node 

TRUCK-LIKE, on the other hand, asymmetry was the best shape fea- 

ture, with the remainder of no value. 

Brightness-related features: 

Edge-border coincidence (E&P) was by far the strongest single 

feature for both nodes involving target/non-target discrimination 

(OBJ and LARGE). For small targets, it provides nearly all the 

discrimination in the second stage. For large targets, it pro- 

vides evidence which is well complemented by shape information-- 

both must be included for adequate performance. Also very useful, 

particularly at stage I, is Ep, which provides substantially dif- 

ferent information from E&P. Gray level variance is used to some 

effect in the first classifier stage, but is not effective in the 

second stage. Perimeter contrast information appears to be much 

more effectively conveyed through E than dgl. 
P 

These rankings, while not dependable when taken alone, have 

been very helpful in suggesting which features could usefully be 

included in decisions at each node and which should be omitted. 

This was especially helpful in the case of the shape features, 

for which estimates of relative merit were not obtainable. 

The final stage of feature testing was experimental. Features 

suggested either by Automask or by the problem definition were 

included in decision functions, and self-classification attempted. 

In many cases, the results were not satisfactory and one or more 

features were added or deleted until "good" results were obtained. 

If too many features were present in this classifier, features 

were removed until the best classification obtained with an 
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acceptable number of features was found. 

8.4.2 Classification 

The NVL data base as windowed for classification purposes con- 

sists of: 

75 Tanks 

34 Trucks 

55 APC's 

164 Target windows 

10 Non-target windows 

174 Total windows 

Associated with each window was a liberal threshold range ex- 

tending from the shoulder of the background peak gray level to the 

highest gray level at which there was significant sensor response. 

Although these ranges were manually selected, this is not a signi- 

ficant intereference with the automatic nature of the algorithm 

since the gray level ranges can be chosen by a simple scheme which 

identifies the background peak and proposes every threshold above 

the peak. (If a coarse temperature calibration is available, this 

task is even simpler.) See Section 8.4.3 for further discussion. 

The Superslice algorithm was run on these windows using the 

selected gray level ranges. Connected components whose contrast, 

edge-perimeter match score and size were within tolerance were 

retained. The resulting sets of regions are described by the 

containment forests in Table 8.1. Within each containment tree, 

Superslice selects the best exemplar(s) for the candidate object 

region based on edge match. Thus, every tree has one or more 

best exemplars associated with it. All other (non-exemplar) 

regions are suppressed since the algorithm has proposed better 

representatives for classification. 

Each containment tree is manually labelled as either "target- 

related" (containing regions associated with the target) or noise 

(spatially apart from a target region) so that false dismissals 

can be determined. 

Of the 164 target windows, two windows (64T, 86A) had contain- 

ment forests with no target-related regions present. At this 

stage, the false dismissal rate is 2/164 ~ 1% for Superslice. 

Determination of a false alarm rate is inappropriate since the 

discrimination performed by Superslice is "object vs. non-object," 
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Window 
Reference Lowest 
Number Threshold 

Containment Forests 

IT 23 X(N,TTT(PPPPPP,PP),NNN,N(N,NN),NN);NN 
2T 23 TTTTTTTT 
3T 25 TTTTTTT(PP,P) ;NN;NN 
4T 30 TTTTTT 
6T 25 TTTTTT 
8T 26 TTTTT 
9T 24 TTTTTT(P,P) 

10T 25 TTTTTT 
lIT 25 TTTTTTTT;NN 
12~ 22 X(PPPPP(P,P(P,P)) ,N) 
13T 20 XX(N,TTTT) ;N 
14T 22 TTTTTTT 
15T 30 TTTTT 
16T 24 TTTTTTT 
17T 26 TTTTT 
21T 26 TTTTT 
22T 25 TTTTTT 
24T 29 TTTTT 
26T 26 TTTTT 
28T 27 TT~ 
31T 27 TTT 
32T 21 XTTTTT,N,N) 
33T 23 VTTTT;N 
34T 26 TTT 
35T 24 TTTT;N 
38T 24 TTTTTTT 
40T 23 TT ;NN; N 
42T 24 TTTTT (P,P (PP,PP)) 

Table 8.1. Containment forests of regions extracted by 
Superslice(Tanks). "AB" means that region A contains 
region B. "A(B,C)" means that region A contains the 
disjoint regions B and C. "A;B" means that A and B are 
disjoint regions in the window. Underlined letters denote 
"best" exemplars of the target region. Target trees begin 
at lowest threshold. 

Legend: T target 
P partial target 
X target with additional noise 
O target invisible in noise 
N noise region 
F fiducial mark 
V target region not present at this threshold 
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43T 26 
45T 25 
46T 26 
48T 24 
50T 22 
51T 24 
52T 23 
53T 23 
54T 23 
55T 23 
56T 22 

57T 22 
58T 2O 
59T 21 
61T 43 
62T 24 
63T 24 
64T 28 
65T 46 
66T 47 
68T 26 
69T 26 
73T 43 
74T 45 
75T 22 
76T 23 
78T 27 
79T 24 
80T 22 
89T 23 
92T 22 
95T 24 
99T 21 

105T 24 
109T 28 
IIOT 24 
II4T 25 
122T 20 
123T 22 
124T 21 
125T 24 
126T 23 
127T 24 
128T 23 
129T 24 
130T 25 
131T 26 

TTTTT 
TTTTTT 
TTTT-TT 
TTTTTTTTT 
OTTTT-- 
TTTTT 
TTT~-T 
TTTTT 
TTT-TT 
TTTTT 
T;N;N 

TTT;NN;N 
X~NN, NN, TT ) 
X (TT,NN) ;N;N 
TTTTTT 
TTTT; N 
TTT;N 
FFFFF;N;N (no target region 
T 
TT 
TTTT ; N 
TTTT ; NN 
TTTTTTT 
TTTTT 
TTTTTT (P (P,P) ,P) 
TTTTTTTTTTTT 
TTTTTTTTP, P ) 
TTT (PPPP, PPP) 
TTTT (P,PPPPP (P (P,P) ,PP) ) 
TTTTTTTTTT 
TTTTTTTTTTTT 
TTTTTTTTTT 
TTTTTTTTTTTT 
TTTTTTTTTT (P, P, P ) 
TT (PPPP,PPPPP ,P (PPPP,PP)) 
TTTTTTT 
TTTTTTTTTT 
TTTTT 
TTTTTTT 
TTTTTTTT 
TTTTT-- 
T~-TT 
TTTTTTTT 
TTTTTTT 
TTTTTTTT 
TTTT-TT 
T~TTT 

found) 

Table 8.1. Continued. 
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Window 
Reference Lowest 
Number Threshold 

Containment Forests 

3R 23 X(TTT,NNN(NNNN,NNNNN)) ;N 
4R 22 TTTTTT;N;N;NNN 
6R 23 OTTTTTT;NN 
9R 23 X(TTTT,N(NN,N),NN,N,N) 

18R 26 VTTT;N 
22R 24 TTTTTT 
24R 28 X(X~TTT(PP,P),N)) 
26R 27 TTT;N 
31R 26 OTTTT 
32R 21 X(PP,N,N,N) ;NN 
33R 23 X(X(TTT,N),N 
34R 24 VVTTT;N;N;N 
35R 23 TTT;N;N;N 
41R 25 TTTTTTTTTTT 
47R 25 TTTTTTTTTTT 
51R 25 TTT;N;N 
52R 23 T~T 
53R 24 TT 
54R 23 T~;N 
55R 23 VTTT;N;N 
56R 24 TTTTTT;NNN 
57R 24 TTTT;NNN;N;NN 
58R 24 TTTT;NN 
59R 23 TTTT;NN;N;N 
71R 44 TT~TT 
72R 46 TTT;NN;N 
77R 27 TTTTTT(P,P) 

100R 23 TTTTTTT 
104R 27 TTTTTTT 
109R 27 TTT~P,PPP) 
123R 27 X(TT(P,P),N) 
133R 27 TTTT 
134R 27 XTTT(P,P) 
135R 26 TTTT 

Table 8.1. Continued. (Truck windows) 
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Window 
Reference 
Number 

Lowe s t 
Threshold 

Containment Forests 

21A 
22A 
24A 
27A 
32A 
33A 
34A 
35A 
37A 
38A 
42A 
44A 
45A 
46A 
48A 
50A 
51A 
52A 
53A 
54A 
55A 
56A 
57A 
58A 
59A 
61A 
73A 
74A 
75A 
76A 
78A 
79A 
80A 
86A 
90A 
91A 
93A 
94A 
96A 
97A 
98A 

101A 
102A 
IlIA 
II2A 
II3A 
II4A 
II5A 
122A 
123A 
125A 
127A 
129A 
130A 

26 
22 
28 
27 
25 
25 
26 
25 
27 
23 
24 
28 
26 
26 
26 
24 
25 
25 
24 
25 
26 
25 
24 
25 
24 
41 
43 
43 
25 
26 
31 
25 
24 
24 
25 
26 
26 
26 
27 
24 
24 

44 
44 
24 
24 
23 
29 
24 
23 
24 
24 
24 
26 
23 

Table 

TTTTTT 
TTTTTT 
TTTTT 
VTTT;N 
TT 
T;N;N 
TTT 
~T 
TTTTTTTT 
TTTTT 
TTTT(PP,PP) 
TTTTTTTT 
TTTT;N;N 
TTTTTT 
TTTTTTT 
TT 
TTTT;N;N 
TT;N;N 
TTT;N;N;NN 
TTT 

TTTT 
TT~T 
TTTTT 
TTTTTTT 
TTTTTTT 
TTTTTT 
TTTTTTT 
TTTTTTT~N 
TTTTTTTTT 
P(PP,P) 
TTT(PPPP,PPP) 
TTTTTTT 
FFFFF;NN;N;N 
TTTTTTTTTT 
TTTTTTTTT 
TTTTTTTT(P,P) 
TTTTTTTT 
TTTTTT 
TTTTTTTT;N 
TTTTT 

TTTTT 
TTTTT;N 
TTTTTTTTT 
TTTTTTTTT 
TTTTTTTT 
X~TT(P,P),NN) 
TTTTTTTTT (P, P) 
TTT 
TTTTTT 
TTTT 
TTTT 
~TTT 
TTTTTT 

8.1. Continued. 

(no target related region found) 

(APC windows) 
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not "target vs. non-target," and there is no ground truth for the 

number of objects (including targets, hot rocks, trees, etc.) in 

the frames. 

The next stage - preclassification - performs possible-target 

vs. non-target screening. [For the purpose of building the screen- 

ing criteria and subsequent classifier, a single exemplar per tar- 

get was hand-chosen. No other target-related regions were con- 

sidered; all noise regions, however, were retained.] Of the 162 

target windows, the preclassifier retained 161 for a false dismis- 

sal rate of 1%. In addition, 44 noise exemplars also survived as 

possible targets. The false dismissal was 66T (small, very faint). 

After preclassification, 150 selected target exemplars and all 

44 noise exemplars were split into a training set (74 targets and 

22 noise regions) and a test set (76 targets and 22 noise regions). 

The training set was used to design the optimum decision rule. It 

was felt that similar results in classifying both sets would then 

indicate that the classifier had utilized robust characteristics 

of the target class and thus could be expected to give similar re- 

sults on further data of the same type. 

A linear discriminant was used at the trucklike node while a 

maximum liklihood discriminant was used at the small target/non- 

target node. Five features were used at both nodes, of which four 

were the same: (h*w)/A, (h+w)/P, asymmetry, E&P. The fifth fea- 

ture was diff for the small target discriminant and skewness for 

the truck/APC discriminant. The large targets are divided into 

three classes (tank, truck/APC, other) by a quadratic maximum 

likelihood discriminant using six features: (h/w)', (h*w)/A, diff, 

skewness, E&P and Ep. Two different procedures for classifying 

large regions (> 94 pixels) were tested. One procedure attempted 

to discriminate between four fixed classes (tank, APC, truck, 

other); the other procedure used three classes (tank, APC, truck) 

and two "reject" categories (non-target, unidentified target). 

Both used identical polynomial maps into decision space. In the 

latter classifier, however, the maximum likelihood class assign- 

ment of a region had to be significantly better than for random 

noise regions (otherwise, the non-target class was assigned) and 

significantly better than the next best target class assignment 

(otherwise, it was called an unidentified target). 

The detection results using the fixed class classifier on the 
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150 selected target exemplars are summarized by: 

Train Test Total 

Large 53/53 53/55 106/108 

Small 20/21 20/21 40/42 

Total 73/74 73/76 146/150 

where "M/N" means "M successes out of N tries." This classifier 

thus appeared to be robust. 

Table 8.2 displays the results of this classifier for all ex- 

tracted regions, including all target and noise exemplars. A 

false dismissal for a window containing a target occurs when no 

target exemplar (at any of the thresholds) is classified as a 

target (i.e., classified as tank, truck, or APC). Similarly, a 

false alarm is any noise exemplar (i.e., not associated spatially 

with a target region) classified as a target. However, multiple 

exemplars for the same noise region are counted only once. 

In effect, we are counting the image regions (as opposed to exem- 

plars) which are classified as target regions by at least one 

exemplar. If a region is, in fact, a target region and some exem- 

plar of it is called a target, that is a success. If no exemplar 

is so called, then a false dismissal has occurred. Finally, if 

the so-called target region does not, in fact, contain a target, 

then a false alarm has occurred. 

The classifier results consist of 6 false alarms and 3 false 

dismissals from the 162 target windows and 2 more false alarms 

from i0 non-target windows. No window contained more than one 

false alarm cue. Details are as follows: 

False Dismissals 

32R 

35R 

33A 

False Alarms 

3T 

liT 

3R 

56R 

59R 

86A 

2N 

8N 
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Figure 8.3a displays the 6 (total) false dismissals. Masks of 

the 8 false alarms along with their gray level windows are shown 

in Figure 8.3b. 

The question of how target identifications can be made in this 

environment of multiple exemplars, while secondary to the task of 

detection, is an interesting one. Since each exemplar in a con- 

tainment tree can be classified independently, there are many ways 

of arriving at a final region label. Section 8.5 discusses the 

use of context and considers the identification of object regions 

from the classifications in their containment trees as an example 

of context. We discuss the issue here simply from the point of 

view of critiquing the classifier performance. For each contain- 

ment tree containing at least one exemplar as a target, we chose 

the target type of the exemplar with the best edge-match (E&P) 

score in the tree and used that target type to designate the 

region. In the event that the "best" exemplar was not described 

as a target, we labelled the object region "unknown target". Only 

large targets were considered, since small targets while detectable 

were not considered identifiable. 

In a test which classified all best exemplars of large targets 

(55 tanks, 21 trucks, 36 APC's) the between-types confusion matrix 

was: 

classified as 
~A 

T Tr A UT I . . . .  • 40 5 6 4 

A priori T_[r 6 8 7 0 

A 9 5 20 2 

where "UT" is the "unknown-target" type. The 8 false alarms were 

classified as 1 truck, 2 APC's, and 5 small targets. Between- 

class confusion is high, with tanks being the most successful 

class. Trucks and APC's were often confused with tanks. A number 

of reasons can be advanced for this performance. First, tanks 

were the most numerous target and therefore could be identified 

most confidently. Second, large APC's appeared with the wooden 

wave deflection board in view, producing a characteristic "c" 

shape. No attempt was made to utilize this special knowledge. 
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64T 

36A 

66T 

86A 

32R 35R 

a. 

3T 

3R 

59R 

2N 

llT 

56R 

86A 

8N 

b. 

Figure 8 .3. 

a. 

b. 

Classification results for NVL 
data base. 

Six false dismissals. 
Eight false alarm region masks 
with their gray level windows. 
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Third, the large targets appeared in only a single aspect and no 

generalized shape descriptors separating the different types could 

be extracted reliably. It seems most sensible to model the target 

types as three-dimensional objects and to derive discriminators 

from their inherent shape and size differences from all aspects. 

The second classifier (which applied a threshold to reduce the 

false-alarm rate) did not improve classification as might have 

been expected. Any threshold which would have reduced the number 

of false alarms also caused a number of false dismissals. Thus 

while the method might be of use, its utility could not be judged 

on the limited data set available especially since there is no 

model relating the false alarm rate to the false dismissal rate. 

We may summarize the principal classification results as fol- 

lows: the false dismissal rate of the system is less than 4%, 

giving a system detection rate of 96%. The false alarm rate, 

based on the number of false alarm regions per unit area, is 8 

false alarms in 174 (128x128) windows. Assuming there are 

500x800 pixels per frame and that a target occupies about 1/10 of 

a window, we conclude that the total processed area corresponds 

to about 6 frames. Thus the false alarm rate is 8/6 or 1.3 per 

frame. A separate test of the false alarm rate was made using a 

set of four 512x512 pixel frames (Figure 8.4). All available 

targets were detected. In addition, 4 large false alarms and 8 

small false alarms were detected (see Figure 8.5). However, 5 of 

the 8 small false alarms corresponded to fiducial marks. More- 

over, one large false alarm (in FI) appears to be a target. In 

any case, 7 false alarms in 4 frames agrees well with the previous 

estimate of the false alarm rate. 

8.4.3 Threshold selection evaluation 

Our method of threshold range selection was described pre- 

viously. However, it bears repetition in this section. Using 

the histogram of gray levels (perhaps of the previous image), 

choose as a range the sequence of gray levels from the mode to the 

highest gray level with appreciable response (e.g., more than 5 

points). The previous subsection demonstrated that this brute 

force approach gave excellent system detection efficiency. Natu- 

rally, the liberal range of thresholds has important effects on 

system architecture. 
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Figure 8.4. Four 256x256 frames (after median 
filtering and sampling). 
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Figure 8.5. Cued regions in the four frames 
of Figure 8.4. All targets 
were detected (masks indicated 
with arrows), along with 12 false 
alarms (5 corresponding to 
fiducial marks). 
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Since the number of thresholds used determines the time cost 

(in a sequential implementation) or the hardware replication cost 

(in a parallel implementation), it is appropriate to consider 

methods which can accommodate a limited number of thresholds. 

"Intelligent" methods of threshold selection are discussed in 

Sections 4 and 9. We wish to consider "brute force" methods 

which select thresholds at every gray level, at every third gray 

level, etc. 

As may be seen from Table 8.2, correct target detections for 

single windows tend to occur in extended runs. Table 8.3 provides 

a histogram of run lengths. In general, large targets had better 

constrast and their detections were stable over long runs. Small 

targets were fainter and were detectable over only a few 

thresholds at most. Table 8.3 shows what percentage of the tar- 

gets were detected within runs of I or longer for I = 1,2,... 

Thus the false dismissal rate would be 11% if every other 

threshold in the range were omitted. Since there were so few 

false alarms, it is not possible to give comparable statistics of 

any reliability, but any scheme which considers fewer exemplars 

is bound to detect fewer false alarms. 

From a slightly different point of view, we might consider 

how to allocate a fixed number of thresholds within a given gray 

level range. Suppose that five thresholds are implemented in 

parallel hardware. Thus, for a gray level range of i0, thresholds 

would occur at every other gray level; for a range of 20, 

thresholds would occur at every fourth gray level. If we use the 

gray level ranges indicated by brackets in Table 8.2 and distri- 

bute N (=1,2,3 .... ) thresholds equally spaced (where feasible) 

throughout the range, we compute the following results: 

N # False Dismissals # False Alarms 

1 25 1 

2 14 3 

3 7 7 

4 and above 5 8 

Thus, for four or more thresholds equally spaced throughout the 

available gray level range of each window, no additional false 

dismissals occurred beyond those already dismissed using the whole 
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Cumulative 
count 

0 5 164 

1 17 159 

2 25 142 

3 29 117 

4 27 88 

5 19 61 

6 12 42 

7 10 30 

8 8 20 

9 7 12 

10 3 5 

ii 2 2 

% of 164 
windows 

i00 

97 

87 

71 

54 

37 

26 

18 

12 

7 

3 

1 

Table 8.3. Statistics of longest runs of 
correct target detections in 
164 target windows. 
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range. Interestingly, for small N the increase in false dismissal 

is just about compensated by the decrease in false alarms. One is 

doubled as the other is halved. 

Naturally, the threshold ranges depend both on window size and 

on window content. It is therefore not likely that three 

thresholds will be sufficient in practice. The best choice of N, 

the number of thresholds, will result from estimating the probabi- 

lity/cost tradeoff for faint targets. Given a range of x gray 

levels for target regions, N should be about x/2 or x/3, which 

for the current data base suggests that N should lie between 5 and 

i0. For an extension to image sequences, see Section 9.1. 

8.4.4 Classifier extension 

An attempt was made to apply the classifier derived from the 

NVL data base to a different set of thermal images. The Alabama 

data base is a set of imagery taken with a thermoscope. The 

actual sensor data are classified; radiometric noise was added to 

mask the source. Figure 8.6 exemplifies the type of imagery in- 

volved. The gray level histograms are not smooth and in some 

cases runs of gray level bins contain no points. Median filter- 

ing (using odd sizes) cannot be used to smooth such images since 

it preserves false contours. Median filtering using even sizes 

provides a small degree of smoothing. We elected to smooth by 

locally averaging over a 2x2 neighborhood just to introduce suffi- 

cient gray level variation so that 5x5 median filtering would be 

effective. 

The resultant images were windowed and threshold ranges were 

selected. The Superslice algorithm was then applied in order to 

extract candidate object regions. It was necessary to increase 

the contrast threshold since the inherent contrast (including 

false contours was higher than in the NVL data base. With this 

adjustment, the Superslice algorithm extracted regions corre- 

sponding to 64 out of 65 targets. After classification, 60 out of 

65 were detected. In addition, there were 3 false alarms in the 

48 64x64 windows considered (although one of the false alarms 

appears to be a target missing from the ground truth). 

8.5 Classification and context 

Our approach to the target cueing problem has been to extract 
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Figure ~.6. Alabama data base (selected frames). 
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Figure 8.6 (continued) 
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and classify object regions independently of one another. That 

is, segmentation is based on the assumption that the object regions 

are individually thresholdable, though not necessarily by the same 

threshold. Classification is based on information derived from 

measurements on the individual components but does not take into 

account the intra- and inter-frame context of a region. 

The Gestalt laws of grouping (see [26]) are of interest in 

this respect since they refer to factors that cause some parts to 

be seen as belonging more closely together than others. These 

rules are applications of the basic principles of similarity which 

assert that region association is partly defined by region resem- 

blance. 

There are several types of similarity which could be used with 

FLIR imagery, e.g. similarity of appearance (size, shape, bright- 

ness, etc.), similarity of location or proximity, similarity of 

spatial arrangement, and temporal similarity (multiple views of 

the same object in different frames). 

Whenever one can confidently group a set of N objects as 

being similar (based on one or more of the types of context dis- 

cussed above), it may be advantageous to classify them collective- 

ly (The Compound Decision problem) rather than independently 

(The Simple Decision problem). 

The compound decision problem can be stated briefly as follows: 

There are a set of states of nature ~ = {l,2,...y} and a set 

of actions A = {l,2,...s}, associated with an rxs loss matrix L. 
13 

being defined for every i E ~ and j E A. When the same decision 

is confronted N times, there exists a vector ~N problem 

{01,e2,...eN} of states of nature where 0 6 a N and a corresponding 

vector X N = {Xl,X2,...x N} of random variables. @k denotes the 

state in the kth problem and the distribution of x k is P(Xkl@k). 

For a given ek, x k is independent of other x's and 8's. In other 

words 

N 

P(~NI~N) = j=l~ P(xj lej) 

We do not assume that the @'s are necessarily independent. 

The loss in the compound decision problem is taken to be the 

average of the losses incurred at each of the N decisions and the 

compound risk is defined correspondingly. 
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If all the observations X N are at hand before the individual 

decisions must be made, one can use a compound decision rule 

= {tl,t 2 .... t N} where t k = tk(JIXN) for each X N is a distribu- t N 

tion over A, according to which the kth action is chosen. Also 

one can define a sequential compound decision rule if only the 

observations x k are at hand before the kth decision is made. 

It is possible to work out a decision procedure which is com- 

pound Bayes against the distribution G(~ N) where ~N E ~N (for the 

details see Abend [27]). 

It would be desirable, in principle, to make effective 

use of context in general and of the compound decision rule in 

particular as a way of combining related observations. Naturally, 

this would require a data base which is sufficiently structured to 

provide the necessary context. However, a recasting of the pro- 

blem makes another type of context available. 

Consider a set of nested regions (exemplars) produced by the 

Superslice algorithm. We wish to investigate how these regions 

can be treated in ensemble as defining (perhaps) a target region. 

This suggests the following experiment: Given a set of object 

regions generated by Superslice, classify them independently. 

Choose a nested region of significance: namely, a subtree in the 

containment forest (corresponding to a given window or frame) all 

of whose paths from the root to the terminal nodes are of length 

nt where 0 ~ t & 1 and n is the number of thresholds used by 

Superslice. This insures that for a proper choice of t we only 

consider nested regions which keep appearing for a large fraction 

of the total number of thresholds. 

For each such nested region (subtree), suppose that there is a 

class, say, w (tank, APC, truck, or noise) such that M of the N 

objects in the subtree have been assigned to w and M ~ tl where 1 

is the length of the longest path in the subtree. (This rule in- 

sures that for a proper choice of t the chosen class w really do- 

minates the subtree.) We then assign class w to all N objects in 

the subtree. Otherwise, we leave the classifications unaltered. 

in an experiment using the NVL data base, 315 objects genera- 

ted by Superslice from 52 windows were considered. The objects 

were hand picked to belong to the a priori classes tank, APC, 

truck and noise, and were then classified into five classes, viz. 

Tank, APC, Truck, Small target, and Noise. The corresponding 
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confusion matrix is shown in Table 8.4a. 

We then applied the majority logic context rule on all the 

containment forests (52 of them) for t = .5; the resulting confu- 

sion matrix is shown in Table 8.4b. 

A comparison between the two matrices shows an improvement in 

the false dismissal rate. The false alarm rate is left unchanged, 

since no significant nested regions (for t = .5) could be found 

where the noise class dominated the target class. Within the tar- 

get classes we find a marked improvement in the self-classifica- 

tion of tanks and APC's. However, more trucks in the second case 

have been misclassified into APC's. This is presumably not due to 

an error in the majority logic rule, but rather due to the inabi- 

lity of the classifier to discriminate trucks from APC's. 

The majority logic context rule is not necessarily a superior 

classification procedure, since Superslice considers only the best 

exemplars and may therefore produce a better classification. How- 

ever, the present study does support the relevance of low-level 

context for classification validation. 

9. The Dynamic Environment 

The work described heretofore has considered the analysis of 

single frames. However, inasmuch as the sensor is capable of 

generating 30 frames per second and the hardware is capable of 

analyzing about 3 frames per second, it is worthwhile to investi- 

gate how information culled from sequences of frames can improve 

the performance of the system. There are two ways in which se- 

quence data can be helpful. First, a high scanning rate allows a 

succession of views of the same scene with only a small amount of 

change (dependent on platform motion). Thus, image statistics 

should be relatively stable and multiple measurements may allow a 

reduction of the standard deviation of feature values. Second, 

the use of motion information can provide a better description of 

the object regions in a scene. For this project only a small data 

base of ten sequential frames was available (Figure 9.1). The image 

content and quality are similar to those of the NVL data base. 

The sequence corresponds to every other frame from the FLIR sensor 

over a span of 2/3 of a second. The images show a tank against a 

background of trees, and fade away more with each frame. While 

this data base was not large enough to permit meaningful tests, it 
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Classified as 

Small 
Tank APC Truck Target Noise 

Tank 28 1 2 4 19 

o APC i0 26 15 35 22 

Truck 6 i0 I0 27 23 

< Noise 6 1 1 7 62 

Table 8.4a. Independent classification confusion matrix 

o 

Classified as 

Small 
Tank APC Truck Target Noise 

Tank 40 1 0 0 13 

APC 13 38 ii 30 16 

Truck 6 15 6 27 22 

Noise 6 1 1 7 62 

Table 8.4b. Majority logic classification confusion matrix 
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Figure 9.1.(continued) 
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did allow some exploratory work. 

9.1 Threshold selection 

One does not expect (time-) adjacent frames to differ radical- 

ly and therefore it should be possible to use good thresholds from 

the previous frame to segment the current frame or at least to 

guide the selection of thresholds in the current frame. A se- 

quence of i0 windows was extracted and smoothed (Figure 9.2) and 

a best threshold was chosen for each. Figure 9.3 shows the effect 

of choosing a lower threshold or a higher threshold. As may be 

noted, the adjacent thresholds have a fairly negligible effect on 

the target region although there is a sizable change in the amount 

of noise (which can be eliminated by shrink/expand noise cleaning.) 

However, if one considers the sequence of best thresholds as 

determined by the border/edge match score (Table 9.1), there is a 

large shift (from gray level 27 to 17) even in this short sequence 

of frames. Thus no single threshold is appropriate for the whole 

sequence. Nonetheless, the previous threshold when used on the 

current frame is a fairly good choice. This suggests the follow- 

ing approach: In a single pass over the frame, segment the cur- 

rent frame using the best threshold(s) from the previous frame and 

simultaneously compute the best threshold(s) for this frame (to be 

applied to the next frame in sequence). The advantage of this 

scheme is that the frame is not stored, thereby realizing a con- 

siderable saving in chip size and complexity. 

A somewhat different approach attempts to distribute N 

thresholds across the threshold range dynamically. Suppose the 

threshold range is X gray levels. It would take X/N frames to in- 

vestigate each threshold in the range. However, as mentioned 

earlier, X/N is likely to be & 3. Thus the entire gray level 

range capable of harboring targets can be sampled every 3 frames. 

At a projected processing rate of 3 frames per second, the range 

would be sampled once per second. A hybrid approach is also ap- 

propriate, devoting K of N thresholds to the most likely gray 

levels and letting N-K thresholds "rove" over the rest of the 

applicable gray scale. 

9.2 Region tracking 

The Superslice algorithm builds a forest-like structure of 
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a. 

b. 

Figure 9.2a. 

b. 

Ten 64x64 windows from the sequential 
data base. 

5x5 median filtered windows of 128x128 
originals, then sampled 2 to i. 
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T-I T T+I T+2 

1 

2 

3 

4 

7 

8 

i0 

Figure 9.3. Effect of choosing lower or higher thresholds. 
The column labeled T shows the result of applying 
the chosen threshold to each window in the 
sequence. Columns T-l, T+I, T+2 show the results 
of using thresholds 1 lower, 1 higher, and 2 
higher, respectively. 
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Sequential Window # 
#i #2 #3 #4 #5 #6 #7 #8 #9 #io 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

26 29 34 47 35 49 54 74 

34 29 42 35 43 48 54 88 

52 35 48 49 43 64 72 88 

60 43 52 51 57 74 81 84 

53 51 72 58 72 72 90 90* 

54 53 76 67 70 76* 93* 87 

59 60 85 75 72 59 89 66 

67 67 87* 85 72 59 88 66 

67 66 87* I00" 75* 50 80 63 

67 70 87* i00" 68 42 80 63 

67 72 87* 97 68 39 80 63 

71 70 79 97 73 33 83 61 

76 76 81 85 69 

79* 79* 62 58 68 

76 77 64 54 68 

75 75 62 43 52 

68 69 

82 79 

83 72 

82 81" 

84* 69 

71 65 

75 65 

62 

50 

Tab le 9.1. Percentage border/edge match as a function of 
threshold for the sequence data (maxima indi- 
cated with "*"). 
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regions from each frame. Within each structure, a sequence of 

nested regions which are roughly similar in size (but arising from 

different thresholds) constitutes a set of exemplars of a possible 

object. In addition, a certain number of accidents tend to be 

present. Regions of either type are called "candidate object 

regions". The frame to frame tracking process attempts to dis- 

cover consistent temporal sequences of candidate object regions 

by selecting one exemplar per candidate object per frame, accord- 

ing to a dynamic programming model (see [28]). 

Two evaluation functions, S and D, are used. The static eva- 

luation function S(c) defines a figure of merit for each candidate 

object region c. The Superslice algorithm provides such a figure 

of merit based on contrast and well-definedness. The assumption 

is that the best exemplar for an object region is identified by 

having the greatest figure of merit. The dynamic evaluation func- 

tion D(c,c') defines the similarity of one candidate object region 

(c) to another (c'). This is evaluated by considering the scaled 

differences between the feature vector of c and that of c'. If c 

is a perfect exemplar then S(c) = 0 and D(c,c) = 0. 

Let {cij; j = I,...,N i} be the set of candidate regions in 

the ith frame, i = I,...,M. We define the dynamic programming 

problem as: find {ci~';1 i = I,M} such that T(CM~ M) is minimum over 

all selection functions, ~. The solution is achieved by the 

following: 

Basis step: T(Clj) = S(Clj); j = i, .... N i 

Iterative step: T(Ci+l,j) = 

N i 

S(Ci+l, j) + min {T(Cik) + D(Cik,Ci+l,j)} 
K=I 

for j = 1 ..... Ni+ 1 

The above procedure finds the minimum cost sequence of candidate 

object re~ions. Candidate regions which are accidental are 

unlikely to persist from frame to frame; thus their D terms are 

likely to be large, thereby increasing the total cost of any 

sequence which includes them. Note that there will be many se- 

quences which are only slightly more costly than the minimum. 

These suboptimal sequences will be based on other exemplars for 

the same object. The optimal sequence is thus optimal for the 
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particular formulations of S and D. Giving more weight to S and 

less to D will tend to select best exemplars; while the reverse 

weighting will tend to favor frame to frame consistency. A seman- 

tic model can provide guidance. 

In general, the image sequence may contain more than one ob- 

ject. The scheme described above identifies the "best" object 

region sequence. In order to extract region sequences correspond- 

ing to other objects in the image sequence, we must delete all 

candidate object regions accounted for by the optimal sequence. 

The inherent data structure specifies which regions are exemplars 

for each object. By deleting all candidate object regions in each 

frame which are similar to the selected region of the optimal 

sequence (i.e., contain it or are contained in it), we can set the 

stage for another application of dynamic programming. This pro- 

cess is repeated until only very poor (high cost) sequences are 

obtained. Presumably at this point all objects have been account~ 

ed for. 

Occasionally, a deletion step may leave a particular frame 

empty of candidate object regions. This may occur for two reasons: 

All objects were accounted for by the last dynamic programming 

step, or the candidate region proposer failed to elicit an exem- 

plar for an actual object. In the former case, the process will 

have terminated. The latter case can be handled by associating 

a fixed "empty frame" cost which is the price paid for skipping a 

frame. Of course, one can't know which case applied. The conser- 

vative approach is always to assume the second case and apply the 

empty frame cost. The termination criterion will then be based 

on a threshold for the total cost. 

The problem of an object leaving the field of view can be 

handled in a different manner by flagging candidate object regions 

which lie on the border of the image. A partial sequence whose 

last element is flagged but which overall has low cost can be ac- 

cepted as depicting an object which has moved off the image. 

The dynamic progra~ing algorithm described above has been 

implemented and tested on a sequence of ten windows of FLIR data 

containing a tank (Figure 9.4). These windows were already 

smoothed by a 3x3 median filter to provide better response to 

thresholding. The Superslice algorithm extracted a modest number 

of candidate object regions. Figure 9.5 displays these regions 
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Figure 9.4. A sequence of i0 median filtered 
windows of a tank. 

Figure 9.5. Output of the Superslice algorithm. 

Figure 9.6. Optimal sequenced regions using 
dynamic programming. 
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(although for nested sequences only the best static exemplar is 

displayed). The solution to the dynamic programming problem was 

computed and the exemplars which correspond to the solution are 

shown in Figure 9.6. There are of course many suboptimal solu- 

tions which are quite similar to this one. Their cost is not 

significantly greater than the minimal cost. When the indicated 

regions were deleted along with all other similar candidates, the 

only remaining regions corresponded to noise and any minimal cost 

path attempting to span several frames was substantially more 

costly than the optimal path or any of its similar suboptimal 

paths. It seems reasonable therefore to establish thresholds for 

static and dynamic cost in order to prune the search space. 

i0. Concluding remarks 

The work described in this paper resulted from the considera- 

tion of a specific problem environment, that of object detection 

in FLIR imagery. Nonetheless, our intent was not to produce a 

"special purpose" solution having limited generality. Rather, it 

has been our goal to develop concepts and approaches which would 

be of use in a wide variety of applications and would contribute 

to more successful image understanding. 
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