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Abstract. The concept of central trees of a graph has attracted our
attention in relation to electrical network theory. Until now, however,
only a few properties of central trees have been clarified. 1In this
paper, in connection with the critical sets of the edge set of a graph,
some new theorems on central trees of the graph are presented. Also,

a few examples are included to illustrate the applications of these
theorems.

1. Introduction

The concept of central trees of a graph was originally introduced
in 1966 by Dec [1] in relation to the reduction of the .amount of labor
involved in Mayeda and Seshu's method of generating all trees of a
graph and subseguently considered in 1968 by Malik [2] and in 1971 by
Amoia and Cottafava [3]. Also, its close relation to the formulation

of a new network equation called "the 2-nd hybrid equation” (which will

* The main part of this paper was presented at the 1l4-th Asilomar con-
ference on Circuits, Systems and Computers held on November 17-19,1980
at Pacific Grove, California, U.S.A.



138

be shown in the appendix) was pvointed out in 1271 by Kishi and Kajitani
[4] and subsequently considered in 1979 by Kajitani [5] in a new con-
text. Until now, however, only a few properties of central trees have
been clarified [3,6,7,8].

In this paper, in connection with the critical sets of the edge
set of a graph, some new theorems on central trees of the gravh are
given as a few extensions of the results obtained already in [6,7].

Throughout this paper, we adopt the usual set-theoretic conven-
tions: set union, set intersection, set inclusion, proper inclusion
and set difference are denoted by the familiar symbols U, N, € , C
and -, respectively. The empty set is denoted by ¢ and the cardinali-

ty of a set A is denoted by |A

2. Critical Sets

Throughout this paper, G is used to denote a nonseparable graph of
rank r{G] and nullity nl[G], and E is used to denote the edge set of G.
¥or any subset S of E, a graph obtained from G by deleting all
edges in E-S is denoted by G+ S, and a graph obtained from G by con-
tracting all edges in E- S is denoted by GXxS. G+ 8 and GXx S are call-
ed a subgraph and a contraction of G, respectively. For RCSCE, a
graph obtained from G by deleting all edges in E- 8§ and then contract-
ing all edges in S-R is denoted by (G + S) xR, which is called a minor
of G. Then, for R¢ SCE, we have the relations:
(G*S) *R =G*R,
(6Xx8) xR = G xR,
(G+8) xR = (Gx (SUR)) * R,
(GxS) *R = (G (SUR)) xR
where S = E- S. The ranks of G- 5, Gx8 and (G + S} xR are denoted by
r{G+* 8], riGxS] and r{{(G+ S) xR], respectively, and the nullities of
G+ 8, GxS and (G+ 8) xR are denoted by n[G -+ 8], n[GxS] and n[(G-S)xR],

(1)

respectively. Then,
(i) for RE S8CE,

r[G-8] = r(G-R}] + r[(G-8) x (§-R}I, (2)
(ii) for R¢SCE,

r[(G+8) xRl + nl[(G-8) xR] = |R], (3)
(iii) ric-g] = 0, (4)

(iv) for ecE,
riG:-{e}ll =1, (5)
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{v) for RCSCE,

r{G*R] < r[G"-sS], (6)
(vi) for R, S5 ¢ E,
r[G*RI+r(G*8]1>r{G* (RUS)]+r[G* (RNS)]. (7)

For any o such that 0 < ¢ < » , and for any subset 5 of E ,

£,(8) = als] - r[G- 8] (8)
is called the deficiency of S with respect to o . A subset Sa of E is
called a critical set of E with respect to a if
£ {8) = max £ _(S). (9)
a'"o scE ©
Then, we can easily prove from (7) that if Si and Sz are two critical

sets of E with respect to o , then Si V] Si and Si N Si are also critical

sets of E with respect to o . Now, let Fa be the family of all the

critical sets of E with respect to o , then we see that Fa has a unique

(0) (=) and also we see

minimal member S and a unigue maximal member S

o a
that for any critical set S of Fy
(0) ()
S, & 5 L8, (10)
is satisfied. Let Bl =50, 20 = g™ _ g0 a5 =5 - s Here,
o o ¢4 o o o o4

such a unique tripartition (E; ,Eg ,E; } of E is called the principal

partition of E with respect to a . In particular, in case of o = 1/2,
+ I . . . . C s . \

(Eu ,Eg ’Ea ) is nothing but the principal partition of E defined in

1967 by Kishi and Kajitani [9,10,11]. Next, let us denote all the maxi-

mal critical sets of E with respect to all a satisfying 0 < o < = by

s =g, s, 8, s, s (2B suen that
0 ! 2 k k+1
g = S(w)(: g =) C‘S(m)c R s(m)C: s(m) - B (11)
Og oy Oy oy Oyiq
where 0 < ag < cl, cl L0y < Cyr Gy < agp < c3, cee O < mk < Crg1?
Cr+1 < ak+l < o and
r{G+S] - r[G s\ ]
o.
i-1
c. = min (12}
i
s csce s - s |
o == “o

i-1 i=-1



140

—

= min (13)

5 (=)

s, CSCE [s

i-1 Gie1

Here such numbers c,; are called the critical numbers of E, and a parti-

tion {XG, Xl' XZ' e g Xk )} of E such that
X, = s; Yo (1=0, 1,2, ... , ¥ (14)

i “ie1
is called the principal partition of E with respect to all o such that
0 < a < >, which was given in 1976 by Tomizawa [12].

Here, it should be noted that all the critical sets of E with res-
pect to all o such that 0 < a < = can be obtained by Tomizawa's algo-

rithm{12].

3. Central Trees and Their Properties in Connection with Critical Sets

A tree TS of G is called a central tree of G if
r[G+T,] < rlG-T] (15)
for every tree T of G where T; = E - T and T =5 - T [1].

[Theorem 1]
If, for a critical set Sa of E with respect to oy such that

i
c. < da. < C. , there exists a tree T _ of G such that
i= "1 i+l s
(1-1) Sa_Q TS = F - TS , (16)
i
(1-2) 1 > cils“i - Tl -G S“i)x (S“i - T (17

are satisfied, then TS is a central tree of G.

[Proof]
Since, for a critical set Sai of E (ci < oy < ci+l} and for any
subset S of E,
O‘iisa.l -rle-s 12 ociIS; - r[G- 8] (18}
i i
is always satisfied, we have
ai[saii - riG- sai} 2o |T] - riG+ Tl (19)

for every tree T of G.
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Now, suppose that there exists a tree TS of G such that the condi-
tion (1-1) is satisfied, then we have the relations:
s, | = 1T | +Is, -7, (20)
i i
. = «T 1 + . ! -7
r(G Sai] r[G TS] r[(G Sai) X(Sui TS)] (21)

from which it follows that for every tree T of G we have

o318, - Ts| - rlies, ) x5, =TI
i i i
>r[6-T,] - rlG-T] (22)
because |T_| =| T | . Here, considering ¢, < a, < ¢, ., we have
s i="1i i+l
cil8y, - Tl - rie: Sa,) X By = T
i i i
> rlG-T1 - x[G+T] (23)

for every tree of G. Furthermore, suppose that the condition (1-2) is
satisfied, then for every tree T of G we have
1>r[GeT ] - rlG«T] (24)

from which it follows that for every tree T of G

r(G-T,] > rlG-T] (25)
because both r[G -f;] and r[G - T] are non-negarive integers. Hence we
see that the theorem is true. (END)

[Corollary 1-1]

If, for a critical sets Sd of E with respect to oy such that

i
c. < o, < cC, , there exists a tree T_ of G such that
i = "1 i+l s
(1-1) Sa. > TS ’ (16)
i
(1-3) 1> ci|soti - T (26)

are satisfied, then Ts is a central tree of G.

{Proof]

This is obvious from the theorem 1 and the non-negative integrali-
ty of r[(G - Sai)x (Sdi - Ts)]. (END)
[Example 1]

Let G be a graph shown in Fig. 1(a). Then E ={1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15} and all the critical sets of E with

respect to all a such that 0 < o < = are

sl =g,

S
Qo Gy
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solH ={6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
s2 =™ _ 14, 5,6, 7,8, 9, 10, 11, 12, 13, 14, 15}
Oy oy
I o (=) _
8y, = Sy, = {1, 2, 3} ¢ Sy, =E

where 0 < o, < Cir Gy Lo < ¢

o, S 0y < ®, cy = 1/2 and c, = 2/3

Fig. 1 Graphs for Example 1,

Now, if we choose TS = {1, 2, 3, 4, 5, 6, 7, 8} as a tree of G, then

for the critical set Sél we have the relations:

st o T = {9, 10, 11, 12, 13, 14, 15} ,
(¢ %} s
181 -7 | =1]1{6, 7, 8} =3
(Xl S 14 ¥ i I4
. ol I = -
r{(G Sd1) "(SOL1 Ts)] 1
where (G 'Sél) X(Sil - E;) is shown in Fig. 1(b), and consequently we
have
1>c st T | -r[(Grstyx(s:t -T)] = (1/2)x3-1=1/2
170, s oy 23} s -

Hence we see from the theorem 1 that TS is a central tree of G.
(END)
[Example 2]
Let G be a graph shown in Fig. 2. Then E = {1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14} and all the critical sets of E with respect
to all o such that 0 £ a < » are
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Fig. 2 A Graph for Example 2

(=)

S(}.o = SOLO = QS [
s =8 216, 7,8, 9, 10, 11, 12, 13, 14} ,
Ty [¢3]
e G (=)
sm2 = sm2 = {4, 5} u sOtl ,
N O (=) _
su3 = Sas = {1, 2, 3} u sOL2 = E
where 0 < ag < ¢y, ¢ < a3 € Cy, €y € 0y < Cgy Cy SOy <@, O = 4/9,
c, = 1/2 and cy = 2/3. Now, if we choose T, = {1, 2, 3, 4, 5, 6, 7} as

a tree of G, then for the critical sets Sa we have the relations:
1
s o> T = {8, 9, 10, 11, 12, 13, 14} ,

s
lsOLI -'i*‘sl = [{6, 7}] = 2,

from which it follows that

1> °1|Sa1 - Ts| = (4/9) x 2 = 8/9.

Hence we see from the corollary 1-2 that TS is a central tree of G.
(END)
[Theorem 2]

If, for a critical set Sa of E with respect to oy such that

i
¢, <o, < ¢, , there exists a tree T _of G such that
i= "1 i+l s
(2-1) Sq3 € Ty = E - TS p (27)
(2-2) 1> (1-a;) | T - S"‘il - nl(G-T ) x (T, - So‘i)] (28)

are satisfied, then TS is a central tree of G.
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[Proof]
As in the proof of the theorem 1, for a critical set Sa of E and
for every tree T of G, there holds *
I - . > . e
ozilsa [ -rices 12 ai{te] r[G - T]. {19)

i i
Now, suppose that there exists a tree TS of G such that the con-
dition (2-1) is satisfied, then we have the relations:
Tl = fs, |+ I1, - s, |, (29)
i i

r[G-TS] = r[G:- So‘i] + r[(G-?s) x (?S - S"‘i)]

from which it follows that for every tree T of G we have
- T - + o T -
otl]TS sai] r[(G.T ) x (T, -8 )]

1
> r[6+T] - rl6-T] (30)
because |§g| = |T| . Since
|Ts - sai| = rl(G-T) x (T, - sdi)] + (G- T ) x (T - So‘i)] (31)

is satisfied, we have
(1 - O‘i”Ts - Soc.z - nf(G-T) x (T =S )]
i i
> rl(G-T]] - r[6-T] (32)
for every tree T of G. Furthermore, suppose that the condition (2-2)
is satisfied, then for every tree T of G we have
1>rlc-T] - r[G - T] (33)

from which it follows that for every tree T of G
r[G-'TS] < riG+T] (34)

because both r(G -E;} and r[G - T] are non-negative integers. Hence we

see that the theorem is true. {END)

[Corollary 2-1]
If, for a critical set Sa of E with respect to oy such that
i

c, < o, < there exists a tree Ts of G such that

i i Cis1 f
- [«
(2-1) Sai__ TS , (27)

(2-2) 1> (1 - o)) {TS -5 | (35)

o,
i
are satisfied, then TS is a central tree of G.

[Proof] This is obvious from the theorem 2. {END)
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[Example 3]
Let G be a graph shown in Fig., 3. Then E = {1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16} and all the critical sets of E with

respect to all o such that 0 < o < » are

= e {(®) _

Se, = S, =8 .

s =8 = (14, 15, 16}

(xl ul r r ’

1 ~ ()

55, = 12, 13} u 57,

52 = {10, 11, 12, 13} u s

az F4 tH 7 al 14

3

55 = {8, 9, 12, 13} U sé":) ,

4 _ (=) _ (=)

Sy, = Se.) = (8,9, 10, 11, 12, 13} U 57,

s =8 - 11,2, 3, 4,5 6, 77us™ =g

0’3 us r I r I r r az
where 0 < a, < S Loy < Cyr Cy < a; < Cyr Cg <oy < w, ¢y = 1/3,
¢, = 1/2 and ey = 4/7.

Fig. 3 A Graph for Example 3.

Now, if we choose T(l) = {1, 2, 3, 5, 6, 7, 8, 9} as a tree of G, then

s
for the critical set Si we have the relations
2
2 (Ly _
Sa2 C Ts = {4, 10, 11, 12, 13, 14, 15, 16} ,
(1) _ o2 -
ITg saz]—|{4}|—1

from which it follows that
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1> (1 - u2)|Tél) 2 ]

Oczz(l_d-z)xl=l"0t2
Thus, a, > 0. Here, since there exists «, such that o, > 0 and

{1}

c, = 1/2 £ o, < cy = 4/7, we see from the corollary 2-1 that T is a
central tree of G.
On the other hand, if we choose T(Z) ={1, 2, 4, 5, 6, 7, 10, 11}

S

as a tree of G, then for the critical set Sj we have the relations:
2

3 ¢ 1@ - (3, 8, 9, 12, 13, 14, 15, 16} ,
(s ) =)
(2)_ .3 _ _
I sa2§ =|{3}]=1
from which it follows that

3

15 (1 - ocz)lTs(Z)— s

=1 - ay .

Accordingly, we get a, > 0. Since there exists o, such that o, > 0 and

cy = 1/2 < a, < ¢y = 4/7, we also see from the corollary 2-1 that Téz)
is a central tree of G.
(END)
Now, considering that the condition (2-1) is equivalent to
¥ o = -— -—
(2'-1) T_C S, E -8, (36)

i i
we have the relations
T, = S, =8, ~ T (37)

(G+T )x(T_. -8 ) =(Gx8 )« (8 —Ts) (38)

from which it follows that the theorem 2 and its corollary 2-1 can be
rewritten as follows:
[Theorem 2']

If, for a critical set Su of E with respect to ai such that
i

c. Lo, < ¢c, , there existg a tree T _ of G such that
i="1 i+l s
(2'-1) T _C S, (36)
i
(2'-2) 1> (l—ui)ISa_ - T, - nl(Gxs ). (5, - TJI (39)
i i i
are satisfied, then TS is a central tree of G. {END)

[Corollary 2'-1]
1f, for a critical set Sa of E with respect to ai such that
i

c., < o, < C. , there exists a tree T_ of G such that
i = "1 i+l s
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. —
{(2'-1) TS c Sa. P (36)
i
¥ _ —_ a -
{(2*-3y 1> (1 “i”sa. Tsj {40)
i
are satisfied, then TS is a central tree of G. (END)

Also, as a special case of the theorem 1 and 2, the following
known theorem and corollary can be derived:
[Theorem 3]

1f, for a critical set Sa of E with respect to o, such that
i

cy 2 ey < Ciyq o there exists a tree T, of G such that
(3-1) T, = S,. (41)
1
is satisfied, then Ty is a central tree of G. (END)

[Corollary 3-1]
If there exists a tree Ts of G such that for a critical set 81/2

of E with respect to 1/2 there holds

(3-2} Ts = (42)

S1/2 ¢
then TS is a central tree of G. (END)

This corollary was given and proved in 1977 by Kawamoto, Kajitani
and Shinocda [6]. 1In 1980, as an extension of the corollary, the theo-
rem 3 was proved in an elegant way by Shinoda, Kitano and Ishida [7}.
Indeed it was the proof technique of the theorem 3 shown in [7] that

suggested the present investigation.

4. Conclusions

In this paper, in connection with the critical sets of the edge
set of a nonseparable graph, some new theorems on central trees of the
graph have been given as a few extensions of the results obtained al-
ready in [6, 7].

Since all the critical sets of the edge set of a nonseparable
graph can be easily obtained by Tomizawa's algorithm [12], the theorems

and their corollaries presented in this paper may be very useful.
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[12] N. Tomizawa: Strongly irreducible matroids and principal parti-

tions of a matroid into strongly irreducible minors, Trans. Inst.
Elec. comm. Eng. Japan, Vol. J59~A, pp.83-91, 1976.

Appendix The 2-nd hybrid equation and a central tree

Let N(G) be an electrical network whose underlying graph is G and
whose edge-immittance matrix is a non-singular diagonal matrix. Each

edge ¥ in N(G) is represented by either (a) or (b} of Fig. A where

S : complex variable in the Laplace transformation;

vK(s) : voltage of edge «k ;

iK(s) : current of edge K ;

eK(s) : voltage of voltage source in edge k ;

jK(s) : current of current source in edge «k ;

zK(s) :  edge-impedance of edge k ; and

yK(s) :  edge-admittance of edge «
Amo§? v.is), e (s}, 1 (s}, j (s}, z (s) and v, (s) there holds either

vels) =z (s) - (i (s) + . (s)) - e (s) (a-1)
or

i.(8) =y (s) - (v (s) + e (s)) -] (s). (A-2)

Here, (A-1l) or {A-2) are called the v~i relations of edge ¥

For a tree t of G, t* is a tree of G which is at the maximal dis-
tance from the tree t. t and t* are the cotrees of t and t*, respec=
tively. Since each edge in Ezﬁ%*, together with some (or all) edges
in E{at*, defines the fundamental tieset with respect to t*, it follows
from Kirchhoff's voltage law that the voltages of the edges in E(WE*
can be uniquely expressed as the linear combinations of the voltages of
the edges in Efwt*.

Now, applying the v-i relations to the edges in t, we see that the
currents of the edges in t can be uniquely expressed as the linear com-
binations of the voltages of the edges in tnt*. Also, since each edge
in t defines the fundamental cutset with respect to t, it follows from
Kirchhoff's current law that the currents of the edges in t can be
uniquely expressed as the linear combinations of the voltages of the
edges in Tt ntx,
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orientation of edge «

ZK(S) or yK(s) eK(s)
N J
N
+ v (s) -
(a)

orientation of edge «

J(s)
L (") ——=0
M
i.0s)
zK(s) or yK{s) eK(S}
\ ~— s
-+ VK(S) -
(b)

Fig. A& An edge x in N (G},
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Moreover, applving the v-i relations to the edges in t, we see
that the voltages of the edges in t can be uniquely expressed as the
linear combinations of the voltages of the edges in T, Namely, we
see from the above that the voltages and the currents of all edges of
N(G) can be uniquely expressed as the linear combinations of the volt-
ages of the edges in tAtx,

Here, substituting the voltages of all edges of N(G) expressed as
the linear combinations of the voltages of the edges in tnt* into a
system of Kirchhoff's voltage equations based on the fundamental tie-
sets in G which are defined by the edges in t Nt* with respect to t,
we obtain a system of equations whose variables are the voltages of the
edges in E;ﬁt*. Such a system of eguations is called the 2-nd hybrid
equation of N(G), since the elements in the coefficient matrix of the
2-nd hybrid equation are expressed in gquadratic polynomials of edge~
immittances.

The order of the 2-nd hybrid eguations is d(t) = [tnat*l . d(t)
varies under the choice of t. Since d(t) is the distance between t and
t*, and since t is called a central tree of G if d(t) £ d(t') for every
tree t' of G, we see that the 2-nd hybrid equation of minimum order can
be obtained by choosing a central tree of G as t.

The above was originally pointed out in 1971 by Kishi and Kijitani
[4] and subseqguently considered in 1979 by Kajitani in a new context

[5].



