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Abstract. The concept of central trees of a graph has attracted our 

attention in relation to electrical network theory. Until now, however, 

only a few properties of central trees have been clarified. In this 

paper, in connection with the critical sets of the edge set of a graph, 

some new theorems on central trees of the graph are presented. Also, 

a few examples are included to illustrate the applications of these 

theorems. 

1. Introduction 

The concept of central trees of a graph was originally introduced 

in 1966 by Dee [i] in relation to the reduction of the amount of labor 

involved in Mayeda and Seshu's method of generating all trees of a 

graph and subsequently considered in 1968 by Malik [2] and in 1971 by 

Amoia and Cottafava [3]. Also, its close relation to the formulation 

of a new network equation called "the 2-nd hybrid equation" (which will 

* The main part of this paper was presented at the 14-th Asilomar con- 
ference on Circuits, Systems and Computers held on November 17-19,1980 
at Pacific Grove, California, U.S.A. 
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be shown in the appendix) was pointed out in 1971 by Kishi and Kajitani 

[4] and subsequently considered in 1979 by Kajitani [5] in a new con- 

text. Until now, however, only a few properties of central trees have 

been clarified [3,6,7,8]. 

In this paper, in connection with the critical sets of the edge 

set of a graph, some new theorems on central trees of the graph are 

given as a few extensions of the results obtained already in [6,7]. 

Throughout this paper, we adopt the usual set-theoretic conven- 

tions: set union, set intersection, set inclusion, proper inclusion 

and set difference are denoted by the familiar symbols U , ~ , C , c 

and -, respectively. The empty set is denoted by ~ and the cardinali- 

ty of a set A is denoted by IAI. 

2. Critical Sets 

Throughout this paper, G is used to denote a nonseparable graph of 

rank r[G] and nullity n[G], and E is used to denote the edge set of G. 

For any subset S of E, a graph obtained from G by deleting all 

edges in E- S is denoted by G • S, and a graph obtained from G by con- 

tracting all edges in E-S is denoted by G × S. G • S and G x S are call- 

ed a subgraph and a contraction of G, respectively. For RC S C E, a 

graph obtained from G by deleting all edges in E-S and then contract- 

ing all edges in S - R is denoted by (G • S) x R, which is called a minor 

of G. Then, for R_< S C_E, we have the relations: 

(G • S) " R = G • R, 

(G× S) x R = G x R, 

(G • S) x R = (G x (SuR)) • R, (i) 

(Gx S) • R = (G " (SuR)) x R 

where S = E- S. The ranks of G • S, G x S and (G • S) x R are denoted by 

r[G. S], r[GX S] and r[(G. S)x R], respectively, and the nullities of 

G" S, G x S and (G • S) x R are denoted by n[G • S], n[Gx S] and n[(G-S)xR], 

# 

E, 

= r[G - R] + r[ (G • S) x (S- R) ], 

E, 

× R] + n[(G • S) xR] = IRI, 

= 0, 

respectively. Then 

(i) for R_c S _c 

rig. S] (2) 

(ii) for R CS_C 

r[(G • S) (3) 

(iii) r[G . ~] (4) 

(iv) for e ~ E, 

r[G . '{e}] = i, (5) 
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(V) for RCS C_E, 

r[G • R] _~ r[G • S], (6) 

(vi) for R , S c E, 

r[G • R] +r[G • S] >r[G • (RuS)] +r[G • (RNS)]. (7) 

For any ~ such that 0 < ~ < co , and for any subset S of E , 

f (S) = alSI - r[G. S] (8) 

is called the deficiency of S with respect to ~ A subset S of E is 

called a critical set of E with respect to ~ if 

f (S) = max f (S) . (9) 
S~ E 

Then, we can easily prove from (7) that if S 1 and S 2 are two critical 

sets of E with respect to a then S 1 S 2 and S 1 ~ S 2 , ~ ~ ~ ~ ~ are also critical 

sets of E with respect to ~ . Now, let F be the family of all the 

critical sets of E with respect to ~ , then we see that F has a unique 

minimal member S (0) and a unique maximal member S (~)~ , and also we see 

that for any critical set S of F 

(0) C S C S (°°) (i0) S _ -- a 

is satisfied. Let E + = S (0) E ° = S (~) - S (0) and E- = E - S (~) Here, 

E ° ,E~ ) of E is called the principal such a unique tripartition (E + , 

partition of E with respect to ~ In particular, in case of ~ = 1/2, 

(E + ,E Oa ,E~ ) is nothing but the principal partition of E defined in 

1967 by Kishi and Kajitani [9,10,11]. Next, let us denote all the maxi- 

mal critical sets of E with respect to all ~ satisfying 0 < a < ~ by 

S (~) ( = ~) S (~) S (~) S (~) S (~) ( = E ) such that 
c~o ' ~I ' a 2  ' "'" ' ~k ' ~k+l 

s (~) s (~) s (~) s (~) s (~) = s0 C ~I ~ a2 C .-. C ~k C ~k+l = E (Ii) 

where 0 ~ s0 < c I, c I ~ el < c 2, c 2 ~ e2 < c 3 ..... Ck ~ ~k < Ck+l' 

Ck+l ~ ~k+l < ~ and 

r[G • S] - r[G • S (~) ] 
ai-i 

c. = min 
i (co) 

s CSC_E is - s (~) i 
ai-i ~i-i 

(i2) 
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r[(G× S (~)) • (S (~) _ S)] 
ei-i ~i-i 

= rain (13) 

s (~) c S_CE Is (~) -sl 
ei-i ~i-i 

Here such numbers c. are called the critical numbers of E, and a parti- 
1 

tion (X 0, X I, X 2 ..... X k ) of E such that 

X. = S (~) - S (~) (i = 0, i, 2 ..... k) (14) 
1 ei ei-I 

is called the principal partition of E with respect to all ~ such that 

0 ~ e < ~ , which was given in 1976 by Tomizawa [12]. 

Here, it should be noted that all the critical sets of E with res- 

pect to all e such that 0 ~ ~ < ~ can be obtained by Tomizawa's algo- 

rithm[12]. 

3. Central Trees and Their Properties in Connection with Critical Sets 

of G is called a central tree of G if 

= E - T and T = E - T [i]. 
s 

A tree T 
s 

r[S • T~ s] ~ r[S • T] 

for every tree T of G where T 
s 

[ T h e o r e m  1] 

If, for a critical set S 
1 

c i  ~ a i  < C i + l  ' t h e r e  e x i s t s  a t r e e  T s 

(i-i) S ] T = E - T , 
~. s s 
l 

(1-2) 1 > cilS~i - Tsl - r[(G. S i) x (S i - Ts) ] 

are satisfied, then T is a central tree of G. 
s 

[Proof] 

of E with respect to ~ 
1 

of G such that 

Since, for a critical set S of E (ci ~ ~i < Ci+l) 
1 

subset S of E, 

~ilS@. I - rEG-S~. ] => ~ilSi - r[G-S] 
1 1 

is a l w a y s  s a t i s f i e d ,  we h a v e  

ellS ~. I - r[G-S~ ] => eilTl - r[G.T] 
1 l 

for every tree T of G. 

(15) 

such that 

(16) 

(17) 

and for any 

(18) 

(19) 
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Now, suppose that there exists a tree T of G such that the condi- 
S 

tion (i-i) is satisfied, then we have the relations: 

Is~ I = l~sl + Is~-~sl , (20) 
1 1 

r[G • S i] = r[G • T s] + r[(G" S~i) x (S~i - Ts)] (21) 

from which it follows that for every tree T of G we have 

- - ) × (S . - Ts)] ~ilS~i T-sl r[(G" S~i l 

_ _  i 

> r[G- Ts] - r[G • T] (22) 

= . . < a. < c we have because 1 i T i Here, considering c I : l i+l' 

, i s  - s. i - rE(G s ) × - sT- - )1  C i 
1 1 1 

> r[G. T s] - r[G • T] (23) 

for every tree of G. Furthermore, suppose that the condition (1-2) is 

satisfied, then for every tree T of G we have 

1 > r[G. T s] - r[G. T] (24) 

from which it follows that for every tree T of G 

r[G .T ] > r[G -T] (25) 
s 

because both riG. T L] and r[G .~] are non-negarive integers. Hence we 

see that the theorem is true. (END) 

[Corollary i-i] 

If, for a critical sets S of E with respect to e. such that 
<Z. 1 
l 

c±. =< ~'l < ci+ 1 , there exists a tree Ts of G such that 

(i-i) S D_ L ' (16) 
1 

(1-3) 1 > cilS i -<i (26) 

are satisfied, then T is a central tree of G. 
S 

[Proof] 

This is obvious from the theorem i and the non-negative integrali- 

ty of r[(G. S ) x (S . - Ts)]. (END) 
1 l 

[Example I] 

Let G be a graph shown in Fig. l(a) . Then E = { i, 2, 3, 4, 5, 6, 

7, 8, 9, i0, ii, 12, 13, 14, 15 } and all the critical sets of E with 

respect to all a such that 0 < ~ < ~ are 

S~0 = S (~) = ¢ , 
S0 



142 

S 1 = {6, 7, 8, 9, i0, ii, 12, 13, 14, 15} 
061 

S 2 (~) = {4 5, 6, 7, 8, 9 i0, ii, 12 13, 14, 15} 
061 = $061 ' ' ' 

~(~) = E ~(~) = {i, 2 3} U b061 S06 2 = b06 2 r 

where 0 ~ s0 < c I, c I ~ ~i < c 2, c 2 ~ ~2 < ~, c I = 1/2 and c 2 = 2/3 . 

5 

, 4 1 

2 1 

15 

(b) 

Fig. i Graphs for Example i. 

NOW, if we choose T = {i, 2, 3, 4, 5, 6, 7, 8} as a tree of G, then 
s 

1 we have the relations: for the critical set $06 1 

S 1 D T = {9, i0, ii, 12, 13, 14, 15} , 
061 -- S 

Is 1 al-¥s I =I{6, 7, a}!= 3, 

r[ (G • S 1 ) x (S 1 -T-) ] = 1 
061 C~I S 

1 ] 
where (G • Sel) × (S~I - T s) is shown in Fig. l(b), and consequently we 

have 

1 > c I 1 S1 1 1 -- 061 -T-s I - r[(S " S0611 × ($061 - Tsl] = (i/2)X 3-1 = 1/2. 

Hence we see from the theorem 1 that T is a central tree of G. 
S 

(END) 

[Example 2] 

Let G be a graph shown in Fig. 2. Then E = {i, 2, 3, 4, 5, 6, 7r 

8, 9, 10, Ii, 12, 13, 14} and all the critical sets of E with respect 

to all 06 such that 0 < e < ~ are = 
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Fig. 2 A Graph for Example 2 

=s (~) =~ S~o ~ 0  r 

= S (=) = {6 71 81 9, i0 111 12• 13, 14} S~l ~I • r • 

= S (=) = {4 5} u S (~) S~2 ~2 • ~1 t 

S = S (~) = {i, 2, 3} u S (~) = E 
~3 ~3 ~2 

where 0 ~ s0 < c I, c I ~ ~z < c 2, c 2 ~ ~z < c 3, c 3 ~ ~3 < ~ , c I = 4/9• 

c 2 = 1/2 and C3 = 2/3. Now, if we choose T s = {i, 2, 3, 4, 5, 6, 7} as 

a tree of G, then for the critical sets S~I we have the relations: 

S ~ T- = {8, 9, i0, Ii, 12, 13, 14} , 

Is 1 - = I{6, 7}I = 2, 

from which it follows that 

1 > ellS I - Tsi = (4/9) × 2 = 8/9. 

Hence we see from the corollary 1-2 that T is a central tree of G. 
s 

(END) 

[Theorem 2] 

If, for a critical set S of E with respect to e. such that 
l 

ci ~ ~i < Ci+l ' there exists a tree T s of G such that 

(2-1) S~i C Ts = E - T s , (27) 

- - I - n[(G- T s) x (T s - S i)] (28) (2-2) 1 > (i ~i ) I L S i 

are satisfied• then T is a central tree of G. 
s 
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[Proof] 

As in the proof of the theorem i, for a critical set S of E and 

for every tree T of G, there holds 1 

~iIS~. I - r[G • S ] ~ ~ilTl - r[G • T]. (19) 
1 ! 

Now, suppose that there exists a tree T s of G such that the con- 

dition (2-1) is satisfied, then we have the relations: 

I sl = Is l + s I , (29) 
1 1 

r[G.~s] = r[G.ss ] + r[(G.T s) × (T-- s - m S )] 
1 l 

from which it follows that for every tree T of G we have 

- ~iIT% - ms. I + r[(G- T~ s) × (~ - ms )] 
1 1 

r[G • T s] - r[G • T] (30) 

because ITs] = IT] Since 

I< - S~il = r[ (G • T~) × (T~ - S~.)] + n[(G °-Ts) × (% - S i)] (31) 
1 

is satisfied, we have 

(i - ~i) I< - S~, I - n[(G" T s) × (T-- s - S )] 
1 1 

£ r[(G- T%] - r[G-T] (92) 

for every tree T of G. Furthermore, suppose that the condition (2-2) 

is satisfied, then for every tree T of G we have 

1 > rig .T-s ] - r[G- T] (33) 

from which it follows that for every tree T of G 

r[G • Ts ] £ r[G • T--] (34) 

because both r[G. T s] and r[G • T] are non-negative integers. Hence we 

(END) see that the theorem is true. 

[Corollary 2-1] 

If, for a critical set S of E with respect to ~ such that 
l 

• < ~. < c. , there exists a tree T of G such that 
Cl = l l+l s 

(2-1) S _c T , 
S, S 
1 

(2-2) 1 > (i - ~i ) I<  - Ss, I 
l 

are satisfied, then T is a central tree of G. 
s 

[Proof] This is obvious from the theorem 2. 

(27) 

(35) 

(END) 



145 

[Example 3] 

Let G be a graph shown in Fig. 3. Then E = {i, 2, 3, 4, 5, 6, 7, 

8, 9, i0, ii, 12, 13, 14, 15, 16} and all the critical sets of E with 

respect to all e such that 0 ~ e < ~ are 

S~ = S (~) = ~ 

S = S (~) = {14, 15, 16} , 

S ! = {12• 13} U S (~) • 
~2 ~I 

S 2 = {10, ii, 12 13} O S (~) 
~2 • ~I • 

S 3 = {8, 9 12, 13} U S (~) 

S 4 = S (~) = {8, 9 i0, ii, 12, 13} O S (~) 
~2 ~2 ~i 

= S (~) = {i, 2, 3, 4, 5, 6, 7} O S (~) = E S~3 ~3 ~2 

where 0 £ s 0 < Cl, c I £ a I < c2, c 2 £ a~ < c3, c 3 £ ~3 < ~ , c I = 1/3, 

c 2 = 1/2 and c 3 = 4/7. 

ii 

9 

3 k/2 

Fig. 3 A Graph for Example 3. 

Now, if we choose T (I) = {i, 2, 3, 5, 6, 7, 8, 9} as a tree of G, then 
s 

for the critical set S 2 we have the relations 
~2 

S 2 C T (I) = {4, 10, ii, 12, 13, 14, 15, 16} , 
~2 s 

T (1) - S 2 ]--I{4}I= 1 
s ~2 

from which it follows that 
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i > (i - e2)IT (1) - $2 I = (i - ~2) × I = i - ~2 
S d2 

Thus, e2 > 0. Here, since there exists e2 such that e2 > 0 and 

c 2 = 1/2 =< ~z < c 3 = 4/7, we see from the corollary 2-1 that T (1)s is a 

central tree of G. 

On the other h a n d ,  i f  we c h o o s e  T (2) = [ 1 ,  2 ,  4 ,  5,  6 ,  7 ,  10 ,  11} 
s 

as a tree of G, then for the critical set S 3 we have the relations: 
~2 

S 3 C T (2) = {3, 8, 9, 12, 13, 14, 15, 16} , 
~2 -- S 

T (~)- S3 } =I{3}I= 1 
S ~2 

from which it follows that 

1 > (i - ~2)IT (2) $3 I = 1 - az 
S -- ~2 

Accordingly, we get ~2 > 0. Since there exists ~2 such that ~2 > 0 and 

c 2 = 1/2 =< ~2 < c 3 = 4/7, we also see from the corollary 2-i that T (2)s 

is a central tree of G. 

(END) 

Now, c o n s i d e r i n g  t h a t  t h e  c o n d i t i o n  ( 2 - 1 )  i s  e q u i v a l e n t  t o  

(2'-i) T C S = E - S (36) 
1 1 

we have the relations 

T - S = S - T , (37) 
s ~. ~. s 

1 1 

• - ) = (G x S i) • (S i T ) (38) (G Ts) x (T s S i - s 

from which it follows that the theorem 2 and its corollary 2-1 can be 

rewritten as follows: 

[Theorem 2'] 

If, for a critical set S of E with respect to e. such that 
1 

c i  ~ a i  < C i + l  ' t h e r e  e x i s t s  a t r e e  T s o f  G s u c h  t h a t  

( 2 ' - 1 )  T s C S . , (36)  
1 

(2'-2) 1 > (i-ai)I< ' - TSl - n[(G× S (S - Ts) ] (39) 
1 1 1 

are satisfied, then T is a central tree of G. (END) 
s 

[Corollary 2'-I] 

If, for a critical set S of E with respect to ~. such that 

1 

c i  ~ ~ i  < C i + l  ' t h e r e  e x i s t s  a t r e e  T s o f  G s u c h  t h a t  
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(2'-1) T C S ~ (36) 
S -- ~, 

1 

(2'-3) 1 > (i - ~i )I~ - TsJ (4o) 
1 

are satisfied, then T is a central tree of G. (END) 
s 

A l s o ,  a s  a s p e c i a l  c a s e  o f  t h e  t h e o r e m  1 a n d  2,  t h e  f o l l o w i n g  

known theorem and corollary can be derived: 

[Theorem 3] 

• such that If, for a critical set S of E with respect to a l 
1 

c i  ~ ~ i  < C i + l  ' t h e r e  e x i s t s  a t r e e  T s o f  G s u c h  t h a t  

(3-1) T = S (41) 
8 @. 

1 

is satisfied, then T is a central tree of G. (END) 
s 

[Corollary 3-i] 

If there exists a tree T s of G such that for a critical set SI/2 

Of E with respect to 1/2 there holds 

(3-2) T s = S1/2 , (42) 

then T is a central tree of G. (END) 
s 

This corollary was given and proved in 1977 by Kawamoto, Kajitani 

and Shinoda [6]. In 1980, as an extension of the corollary, the theo- 

rem 3 was proved in an elegant way by Shinoda, Kitano and Ishida [7]. 

Indeed it was the proof technique of the theorem 3 shown in [7] that 

suggested the present investigation. 

4. Conclusions 

In this paper, in connection with the critical sets of the edge 

set of a nonseparable graph, some new theorems on central trees of the 

graph have been given as a few extensions of the results obtained al- 

ready in [6, 7]. 

Since all the critical sets of the edge set of a nonseparable 

graph can be easily obtained by Tomizawa's algorithm [12], the theorems 

and their corollaries presented in this paper may be very useful. 
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N. Tomizawa: Strongly irreducible matroids and principal parti- 

tions of a matroid into strongly irreducible minors, Trans. Inst. 

Elec. comm. Eng. Japan, Vol. J59-A, pp.83-91, 1976. 

Appendix The 2-nd hybrid equation and a central tree 

Let N(G) be an electrical network whose underlying graph is G and 

whose edge-immittance matrix is a non-singular diagonal matrix. Each 

edge < in N(G) is represented by either (a) or (b) of Fig. A where 

s : complex variable in the Laplace transformation; 

v<(s) : voltage of edge < ; 

i<(s) : current of edge K ; 

e<(s) : voltage of voltage source in edge K ; 

JK(S) : current of current source in edge < ; 

zK(s) : edge-impedance of edge < ; and 

y<(s) : edge-admittance of edge < 

Among v<(s), e<(s), i<(s), JK(s) , z<(s) and y< (s) there holds either 
i 

v (s) = z<(s) " (i K(s) + j<(s)) - e<(s) (A-l) 

or 

i N(s) = y<(s) • (v<(s) + e<(s)) -j<(s) . (A-2) 

Here, (A-l) or (A-2) are called the v-i relations of edge < 

For a tree t of G, t* is a tree of G which is at the maximal dis- 

tance from the tree t. ~ and t* are the cotrees of t and t*, respec- 

tively. Since each edge in t n t*, together with some (or all) edges 

in ~ t*, defines the fundamental tieset with respect to t*, it follows 

from Kirchhoff's voltage law that the voltages of the edges in t Nt* 

can be uniquely expressed as the linear combinations of the voltages of 

the edges in tat*. 

Now, applying the v-i relations to the edges in t, we see that the 

currents of the edges in ~ can be uniquely expressed as the linear com- 

binations of the voltages of the edges in t ~ t*. Also, since each edge 

in t defines the fundamental cutset with respect to t, it follows from 

Kirchhoff's current law that the currents of the edges in t can be 

uniquely expressed as the linear combinations of the voltages of the 

edges in t ~t*. 
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© 

orientation of edge < 

j<(s) 

z<(s) or y<(s) e<(s) 
i<(s) 

V . . . . . . . . . . . . . . . . . .  

+ %(s) 
J 

(a) 

© 

orientation of edge < 

" I I - 

z<(s) or y<(s) 

_@ 
%(s) 

÷ i<(s) 

+ v (s) 
K 

(b) 

Fig. A An edge < in N(G). 
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Moreover, applying the v-i relations to the edges in t, we see 

that the voltages of the edges in t can be uniquely expressed as the 

linear combinations of the voltages of the edges in ~ N t*. Namely, we 

see from the above that the voltages and the currents of all edges of 

N(G) can be uniquely expressed as the linear combinations of the volt- 

ages of the edges in t Nt*. 

Here, substituting the voltages of all edges of N(G) expressed as 

the linear combinations of the voltages of the edges in tNt* into a 

system of Kirchhoff's voltage equations based on the fundamental tie- 

sets in G which are defined by the edges in t At* with respect to t, 

we obtain a system of equations whose variables are the voltages of the 

edges in ~ N t*. Such a system of equations is called the 2-nd hybrid 

equation of N(G), since the elements in the coefficient matrix of the 

2-rid hybrid equation are expressed in quadratic polynomials of edge- 

immittances. 

The order of the 2-nd hybrid equations is d(t) = iTN t*I d(t) 

varies under the choice of t. Since d(t) is the distance between t and 

t*, and since t is called a central tree of G if d(t) ~ d(t') for every 

tree t' of G, we see that the 2-nd hybrid equation of minimum order can 

be obtained by choosing a central tree of G as t. 

The above was originally pointed out in 1971 by Kishi and Kijitani 

[4] and subsequently considered in 1979 by Kajitani in a new context 

[5]. 


