ON CENTRAL TREES OF A GRAPH *

S. Shinoda

Department of Electrical Engineering Faculty of Science and Engineering Chuo University 1-13-27, Kasuga, Bunkyo-ku, Tokyo, Japan phone (03) 813-4171 Ext.511

T. Kawamoto

Department of Electrical and Electronic Engineering Faculty of Engineering Tokyo Institute of Technology 2-12-1, O-okayama, Meguro-ku, Tokyo, Japan phone (03) 726-1111 Ext.2565

<u>Abstract.</u> The concept of central trees of a graph has attracted our attention in relation to electrical network theory. Until now, however, only a few properties of central trees have been clarified. In this paper, in connection with the critical sets of the edge set of a graph, some new theorems on central trees of the graph are presented. Also, a few examples are included to illustrate the applications of these theorems.

1. Introduction

The concept of central trees of a graph was originally introduced in 1966 by Deo [1] in relation to the reduction of the amount of labor involved in Mayeda and Seshu's method of generating all trees of a graph and subsequently considered in 1968 by Malik [2] and in 1971 by Amoia and Cottafava [3]. Also, its close relation to the formulation of a new network equation called "the 2-nd hybrid equation" (which will

^{*} The main part of this paper was presented at the 14-th Asilomar conference on Circuits, Systems and Computers held on November 17-19,1980 at Pacific Grove, California, U.S.A.

be shown in the appendix) was pointed out in 1971 by Kishi and Kajitani [4] and subsequently considered in 1979 by Kajitani [5] in a new context. Until now, however, only a few properties of central trees have been clarified [3,6,7,8].

In this paper, in connection with the critical sets of the edge set of a graph, some new theorems on central trees of the graph are given as a few extensions of the results obtained already in [6,7].

Throughout this paper, we adopt the usual set-theoretic conventions: set union, set intersection, set inclusion, proper inclusion and set difference are denoted by the familiar symbols \cup , \cap , \subseteq , \subset and -, respectively. The empty set is denoted by \emptyset and the cardinality of a set A is denoted by |A|.

2. Critical Sets

Throughout this paper, G is used to denote a nonseparable graph of rank r[G] and nullity n[G], and E is used to denote the edge set of G.

For any subset S of E, a graph obtained from G by deleting all edges in E-S is denoted by G·S, and a graph obtained from G by contracting all edges in E-S is denoted by G×S. G·S and G×S are called a subgraph and a contraction of G, respectively. For $R \subseteq S \subseteq E$, a graph obtained from G by deleting all edges in E-S and then contracting all edges in S-R is denoted by (G·S) × R, which is called a minor of G. Then, for $R \subseteq S \subseteq E$, we have the relations:

$$(G \cdot S) \cdot R = G \cdot R,$$

$$(G \times S) \times R = G \times R,$$

$$(G \cdot S) \times R = (G \times (\overline{S} \cup R)) \cdot R,$$

$$(G \times S) \cdot R = (G \cdot (\overline{S} \cup R)) \times R$$
(1)

where $\overline{S} = E - S$. The ranks of $G \cdot S$, $G \times S$ and $(G \cdot S) \times R$ are denoted by $r[G \cdot S]$, $r[G \times S]$ and $r[(G \cdot S) \times R]$, respectively, and the nullities of $G \cdot S$, $G \times S$ and $(G \cdot S) \times R$ are denoted by $n[G \cdot S]$, $n[G \times S]$ and $n[(G \cdot S) \times R]$, respectively. Then,

(i) for $R \subseteq S \subseteq E$,	
$r[G \cdot S] = r[G \cdot R] + r[(G \cdot S) \times (S - R)],$	(2)
(ii) for $R \subseteq S \subseteq E$,	
$r[(G \cdot S) \times R] + n[(G \cdot S) \times R] = R ,$	(3)
(iii) $r[G \cdot \phi] = 0$,	(4)
(iv) for eεE,	
$r[G \cdot \{e\}] = 1,$	(5)

(v) for $R \subseteq S \subseteq E$, $r[G \cdot R] \leq r[G \cdot S]$, (6) (vi) for $R, S \subseteq E$, $r[G \cdot R] + r[G \cdot S] \geq r[G \cdot (R \cup S)] + r[G \cdot (R \cap S)]$. (7)

For any α such that $0 \leq \alpha < \infty$, and for any subset S of E, $f_{\alpha}(S) = \alpha |S| - r[G \cdot S]$ (8)

is called the deficiency of S with respect to α . A subset S_{α} of E is called a <u>critical set</u> of E with respect to α if $f_{\alpha}(S) = \max_{\alpha} f_{\alpha}(S)$ (9)

$$f_{\alpha}(S_{\alpha}) = \max_{S \subseteq E} f_{\alpha}(S).$$
(9)

Then, we can easily prove from (7) that if S^1_{α} and S^2_{α} are two critical sets of E with respect to α , then $S^1_{\alpha} \cup S^2_{\alpha}$ and $S^1_{\alpha} \cap S^2_{\alpha}$ are also critical sets of E with respect to α . Now, let F_{α} be the family of all the critical sets of E with respect to α , then we see that F_{α} has a unique minimal member $S^{(0)}_{\alpha}$ and a unique maximal member $S^{(\infty)}_{\alpha}$, and also we see that for any critical set S of F_{α}

$$\mathbf{S}_{\alpha}^{(0)} \leq \mathbf{S} \leq \mathbf{S}_{\alpha}^{(\infty)} \tag{10}$$

is satisfied. Let $E_{\alpha}^{+} = S_{\alpha}^{(0)}$, $E_{\alpha}^{0} = S_{\alpha}^{(\infty)} - S_{\alpha}^{(0)}$ and $E_{\alpha}^{-} = E - S_{\alpha}^{(\infty)}$. Here, such a unique tripartition $(E_{\alpha}^{+}, E_{\alpha}^{0}, E_{\alpha}^{-})$ of E is called the principal partition of E with respect to α . In particular, in case of $\alpha = 1/2$, $(E_{\alpha}^{+}, E_{\alpha}^{0}, E_{\alpha}^{-})$ is nothing but the principal partition of E defined in 1967 by Kishi and Kajitani [9,10,11]. Next, let us denote all the maximal critical sets of E with respect to all α satisfying $0 \leq \alpha < \infty$ by $S_{\alpha_{0}}^{(\infty)}(= \emptyset), S_{\alpha_{1}}^{(\infty)}, S_{\alpha_{2}}^{(\infty)}, \ldots, S_{\alpha_{k}}^{(\infty)}, S_{\alpha_{k+1}}^{(\infty)}(= E)$ such that $\emptyset = S_{\alpha_{0}}^{(\infty)} \subset S_{\alpha_{1}}^{(\infty)} \subset S_{\alpha_{2}}^{(\infty)} \subset \cdots \subset S_{\alpha_{k}}^{(\infty)} \subset S_{\alpha_{k+1}}^{(\infty)} = E$ (11)

where $0 \leq \alpha_0 < c_1$, $c_1 \leq \alpha_1 < c_2$, $c_2 \leq \alpha_2 < c_3$, ..., $c_k \leq \alpha_k < c_{k+1}$, $c_{k+1} \leq \alpha_{k+1} < \infty$ and

$$c_{i} = \min_{\substack{\alpha_{i-1} \\ \alpha_{i-1} \\ \beta_{\alpha_{i-1}}^{(\infty)} \subset S \subseteq E} \frac{r[G \cdot S] - r[G \cdot S_{\alpha_{i-1}}^{(\infty)}]}{|S - S_{\alpha_{i-1}}^{(\infty)}|}$$
(12)

$$= \min \frac{r[(G \times \overline{s_{\alpha_{i-1}}^{(\infty)}}) \cdot (\overline{s_{\alpha_{i-1}}^{(\infty)}} - \overline{s})]}{|\overline{s_{\alpha_{i-1}}^{(\infty)}} - \overline{s}|}$$
(13)

Here such numbers c_i are called the critical numbers of E, and a partition $(x_0, x_1, x_2, \dots, x_k)$ of E such that

$$X_{i} = S_{\alpha_{i}}^{(\infty)} - S_{\alpha_{i-1}}^{(\infty)}$$
 (i = 0, 1, 2, ..., k) (14)

is called the principal partition of E with respect to all α such that $0\leq\alpha<\infty$, which was given in 1976 by Tomizawa [12].

Here, it should be noted that all the critical sets of E with respect to all α such that $0 \leq \alpha < \infty$ can be obtained by Tomizawa's algorithm[12].

3. Central Trees and Their Properties in Connection with Critical Sets

A tree
$$T_s$$
 of G is called a central tree of G if
 $r[G \cdot \overline{T}_s] \leq r[G \cdot \overline{T}]$ (15)

for every tree T of G where $\overline{T}_{S} = E - T_{S}$ and $\overline{T} = E - T$ [1]. [Theorem 1]

If, for a critical set S $_{\alpha_{i}}$ of E with respect to α_{i} such that

 $\texttt{c}_{i} \stackrel{<}{=} \alpha_{i} < \texttt{c}_{i+1}$, there exists a tree \texttt{T}_{s} of <code>G</code> such that

$$(1-1) \quad S_{\alpha_{\underline{i}}} \supseteq \quad \overline{T}_{\underline{s}} = E - T_{\underline{s}} , \qquad (16)$$

$$(1-2) \quad 1 > c_{i} | S_{\alpha_{i}} - \overline{T}_{s} | - r[(G \cdot S_{\alpha_{i}}) \times (S_{\alpha_{i}} - \overline{T}_{s})]$$
(17)

are satisfied, then ${\tt T}_{\rm S}$ is a central tree of G. [Proof]

Since, for a critical set S $_{\alpha_{1}}$ of E (c $_{i} \leq \alpha_{i}$ < c $_{i+1}$) and for any subset S of E,

$$\alpha_{i} | S_{\alpha_{i}} | - r[G \cdot S_{\alpha_{i}}] \ge \alpha_{i} | S | - r[G \cdot S]$$
(18)

is always satisfied, we have

$$\alpha_{i}|S_{\alpha_{i}}| - r[G \cdot S_{\alpha_{i}}] \ge \alpha_{i}|\overline{T}| - r[G \cdot \overline{T}]$$
(19)

for every tree T of G.

Now, suppose that there exists a tree ${\tt T}_{\rm S}$ of G such that the condition (1-1) is satisfied, then we have the relations:

$$|\mathbf{S}_{\alpha_{\mathbf{i}}}| = |\overline{\mathbf{T}}_{\mathbf{S}}| + |\mathbf{S}_{\alpha_{\mathbf{i}}} - \overline{\mathbf{T}}_{\mathbf{S}}| , \qquad (20)$$

$$r[G \cdot S_{\alpha_{i}}] = r[G \cdot \overline{T}_{s}] + r[(G \cdot S_{\alpha_{i}}) \times (S_{\alpha_{i}} - \overline{T}_{s})]$$
(21)

from which it follows that for every tree T of G we have

$$\alpha_{i} | S_{\alpha_{i}} - \overline{T}_{s}| - r[(G \cdot S_{\alpha_{i}}) \times (S_{\alpha_{i}} - \overline{T}_{s})]$$

$$\geq r[G \cdot \overline{T}_{s}] - r[G \cdot \overline{T}]$$
(22)

because $|\overline{T}_{s}| = |\overline{T}|$. Here, considering $c_{i} \leq \alpha_{i} < c_{i+1}$, we have $c_{i}|s_{\alpha_{i}} - \overline{T}_{s}| - r[(G \cdot s_{\alpha_{i}}) \times (s_{\alpha_{i}} - \overline{T}_{s})]$ $\geq r[G \cdot \overline{T}_{s}] - r[G \cdot \overline{T}]$ (23)

for every tree of G. Furthermore, suppose that the condition (1-2) is satisfied, then for every tree T of G we have

$$1 > r[G \cdot \overline{T}_{g}] - r[G \cdot \overline{T}]$$
(24)

from which it follows that for every tree T of G $r[G \cdot \overline{T}_{g}] \ge r[G \cdot \overline{T}]$ (25) because both $r[G \cdot \overline{T}_{g}]$ and $r[G \cdot \overline{T}]$ are non-negarive integers. Hence w

because both $r[G \cdot T_S]$ and $r[G \cdot T]$ are non-negarive integers. Hence we see that the theorem is true. (END) [Corollary 1-1]

$$c_{i} \leq \alpha_{i} < c_{i+1}$$
, there exists a tree T_{s} of G such that
(1-1) $S_{\alpha_{i}} \geq \overline{T}_{s}$, (16)

$$(1-3) \quad 1 > c_{i} | S_{\alpha_{i}} - \overline{T}_{s} |$$

$$(26)$$

are satisfied, then T_{c} is a central tree of G.

[Proof]

This is obvious from the theorem 1 and the non-negative integrality of $r[(G \cdot S_{\alpha_i}) \times (S_{\alpha_i} - \overline{T}_s)]$. (END)

[Example 1]

Let G be a graph shown in Fig. 1(a). Then $E = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$ and all the critical sets of E with respect to all α such that $0 \le \alpha < \infty$ are

$$S_{\alpha_0} = S_{\alpha_0}^{(\infty)} = \emptyset ,$$

$$s_{\alpha_{1}}^{1} = \{6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$$

$$s_{\alpha_{1}}^{2} = s_{\alpha_{1}}^{(\infty)} = \{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$$

$$s_{\alpha_{2}}^{} = s_{\alpha_{2}}^{(\infty)} = \{1, 2, 3\} \cup s_{\alpha_{1}}^{(\infty)} = E$$

where $0 \leq \alpha_0 < c_1$, $c_1 \leq \alpha_1 < c_2$, $c_2 \leq \alpha_2 < \infty$, $c_1 = 1/2$ and $c_2 = 2/3$.

Fig. 1 Graphs for Example 1.

Now, if we choose $T_s = \{1, 2, 3, 4, 5, 6, 7, 8\}$ as a tree of G, then for the critical set $S_{\alpha_1}^1$ we have the relations:

$$s_{\alpha_{1}}^{1} \supseteq \overline{T}_{s} = \{9, 10, 11, 12, 13, 14, 15\}$$
$$|s_{\alpha_{1}}^{1} - \overline{T}_{s}| = |\{6, 7, 8\}| = 3,$$
$$r[(G \cdot s_{\alpha_{1}}^{1}) \times (s_{\alpha_{1}}^{1} - \overline{T}_{s})] = 1$$

where $(G \cdot S_{\alpha_1}^1) \times (S_{\alpha_1}^1 - \overline{T}_s)$ is shown in Fig. 1(b), and consequently we have

$$1 > c_1 |S_{\alpha_1}^1 - \overline{T}_s| - r[(G \cdot S_{\alpha_1}^1) \times (S_{\alpha_1}^1 - \overline{T}_s)] = (1/2) \times 3 - 1 = 1/2.$$

(END)

Hence we see from the theorem 1 that ${\tt T}_{\rm S}$ is a central tree of G.

[Example 2]

Let G be a graph shown in Fig. 2. Then $E = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$ and all the critical sets of E with respect to all α such that $0 \leq \alpha < \infty$ are

Fig. 2 A Graph for Example 2

$$\begin{split} & s_{\alpha_0} = s_{\alpha_0}^{(\infty)} = \phi \ , \\ & s_{\alpha_1} = s_{\alpha_1}^{(\infty)} = \{6, \ 7, \ 8, \ 9, \ 10, \ 11, \ 12, \ 13, \ 14\} \ , \\ & s_{\alpha_2} = s_{\alpha_2}^{(\infty)} = \{4, \ 5\} \cup s_{\alpha_1}^{(\infty)} \ , \\ & s_{\alpha_3} = s_{\alpha_3}^{(\infty)} = \{1, \ 2, \ 3\} \cup s_{\alpha_2}^{(\infty)} = E \\ & \text{where } 0 \leq \alpha_0 < c_1, \ c_1 \leq \alpha_1 < c_2, \ c_2 \leq \alpha_2 < c_3, \ c_3 \leq \alpha_3 < \infty \ , \ c_1 = 4/9, \\ & c_2 = 1/2 \ \text{and} \ c_3 = 2/3. \ \text{Now, if we choose } T_s = \{1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7\} \ \text{as} \\ & a \ \text{tree of } G, \ \text{then for the critical sets } s_{\alpha_1} \ \text{whave the relations:} \\ & s_{\alpha_1} \supseteq \ \overline{T}_s = \{8, \ 9, \ 10, \ 11, \ 12, \ 13, \ 14\} \ , \\ & |s_{\alpha_1} - \overline{T}_s| = |\{6, \ 7\}| = 2, \\ & \text{from which it follows that} \\ & 1 > c_1 |s_{\alpha_1} - \overline{T}_s| = (4/9) \times 2 = 8/9. \\ & \text{Hence we see from the corollary 1-2 that } T_s \ \text{is a central tree of } G. \\ & (\text{END}) \\ & [\text{Theorem 2]} \\ & \text{ If, for a critical set } s_{\alpha_1} \ \text{of } E \ \text{with respect to } \alpha_1 \ \text{such that} \\ & c_1 \leq \alpha_i < c_{i+1} \ , \ \text{there exists a tree } T_s \ \text{of } G \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{there exists a tree } T_s \ \text{of } G \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{there exists a tree } T_s \ \text{of } G \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{there exists a tree } T_s \ \text{of } G \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{there exists a tree } T_s \ \text{of } G \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{there exists } a \ \text{tree } T_s \ \text{of } S \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{there exists } a \ \text{tree } T_s \ \text{of } S \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{there exists } a \ \text{tree } T_s \ \text{of } S \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{tree exists } a \ \text{tree } T_s \ \text{of } S \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{tree exists } a \ \text{tree } S \ \text{of } S \ \text{such that} \\ & s_1 \leq \alpha_i < c_{i+1} \ , \ \text{tree exists } a \ \text{tree } T_s \ \text{of } S \ \text{tree exists } a \ \text{tree } T_s \ \text{of } S \ \text{tree exists } a \ \text{tree } T_s \ \text{tree exists } a \ \text{tree exists } a \ \text{tree } T_s \ \text{tree exists } a \ \text{tree$$

$$(2-1) \ S_{\alpha_{\dot{1}}} \subseteq \overline{T}_{s} = E - T_{s} , \qquad (27)$$

$$(2-2) 1 > (1-\alpha_{i}) |\overline{T}_{s} - S_{\alpha_{i}}| - n[(G \cdot \overline{T}_{s}) \times (\overline{T}_{s} - S_{\alpha_{i}})]$$
(28)

are satisfied, then T_s is a central tree of G.

°i

143

[Proof]

As in the proof of the theorem 1, for a critical set S $_{\alpha_{i}}$ of E and for every tree T of G, there holds

$$\alpha_{i} | S_{\alpha_{i}} | - r[G \cdot S_{\alpha_{i}}] \ge \alpha_{i} | \overline{T} | - r[G \cdot \overline{T}].$$
(19)

Now, suppose that there exists a tree T_s of G such that the condition (2-1) is satisfied, then we have the relations:

$$|\overline{\mathbf{T}}_{\mathbf{s}}| = |\mathbf{S}_{\alpha_{\underline{i}}}| + |\overline{\mathbf{T}}_{\mathbf{s}} - \mathbf{S}_{\alpha_{\underline{i}}}|, \qquad (29)$$
$$\mathbf{r}[\mathbf{G} \cdot \overline{\mathbf{T}}_{\mathbf{s}}] = \mathbf{r}[\mathbf{G} \cdot \mathbf{S}_{\alpha_{\underline{i}}}] + \mathbf{r}[(\mathbf{G} \cdot \overline{\mathbf{T}}_{\mathbf{s}}) \times (\overline{\mathbf{T}}_{\mathbf{s}} - \mathbf{S}_{\alpha_{\underline{i}}})]$$

from which it follows that for every tree T of G we have

$$-\alpha_{i}|\overline{T}_{s} - S_{\alpha_{i}}| + r[(G \cdot \overline{T}_{s}) \times (\overline{T}_{s} - S_{\alpha_{i}})]$$

$$\geq r[G \cdot \overline{T}_{s}] - r[G \cdot \overline{T}]$$
(30)

because $|\overline{T}_{s}| = |\overline{T}|$. Since

$$|\overline{\mathbf{T}}_{\mathbf{S}} - \mathbf{S}_{\alpha_{\mathbf{i}}}| = r[(\mathbf{G} \cdot \overline{\mathbf{T}}_{\mathbf{S}}) \times (\overline{\mathbf{T}}_{\mathbf{S}} - \mathbf{S}_{\alpha_{\mathbf{i}}})] + n[(\mathbf{G} \cdot \overline{\mathbf{T}}_{\mathbf{S}}) \times (\overline{\mathbf{T}}_{\mathbf{S}} - \mathbf{S}_{\alpha_{\mathbf{i}}})] \quad (31)$$

is satisfied, we have

$$(1 - \alpha_{i}) |\overline{T}_{s} - S_{\alpha_{i}}| - n[(G \cdot \overline{T}_{s}) \times (\overline{T}_{s} - S_{\alpha_{i}})]$$

$$\geq r[(G \cdot \overline{T}_{s}] - r[G \cdot \overline{T}]$$
(32)

for every tree T of G. Furthermore, suppose that the condition (2-2) is satisfied, then for every tree T of G we have

$$1 > r[G \cdot \overline{T}_{S}] - r[G \cdot \overline{T}]$$
(33)

from which it follows that for every tree T of G

$$r[G \cdot \overline{T}_{S}] \leq r[G \cdot \overline{T}]$$
(34)

because both $r[G \cdot \overline{T}_{S}]$ and $r[G \cdot \overline{T}]$ are non-negative integers. Hence we see that the theorem is true. (END)

[Corollary 2-1]

°;

If, for a critical set S α_i of E with respect to α_i such that

$$\leq \alpha_{i} < c_{i+1}, \text{ there exists a tree } T_{s} \text{ of } G \text{ such that}$$

$$(2-1) \quad S_{\alpha_{i}} \subseteq \overline{T}_{s},$$

$$(27)$$

(2-2)
$$1 > (1 - \alpha_{i}) |\overline{T}_{s} - S_{\alpha_{i}}|$$
 (35)

are satisfied, then T_S is a central tree of G. [Proof] This is obvious from the theorem 2. (END) [Example 3]

Let G be a graph shown in Fig. 3. Then $E = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$ and all the critical sets of E with respect to all α such that $0 \leq \alpha < \infty$ are

$$S_{\alpha_{0}} = S_{\alpha_{0}}^{(\infty)} = \emptyset ,$$

$$S_{\alpha_{1}} = S_{\alpha_{1}}^{(\infty)} = \{14, 15, 16\} ,$$

$$S_{\alpha_{2}}^{1} = \{12, 13\} \cup S_{\alpha_{1}}^{(\infty)} ,$$

$$S_{\alpha_{2}}^{2} = \{10, 11, 12, 13\} \cup S_{\alpha_{1}}^{(\infty)} ,$$

$$S_{\alpha_{2}}^{3} = \{8, 9, 12, 13\} \cup S_{\alpha_{1}}^{(\infty)} ,$$

$$S_{\alpha_{2}}^{4} = S_{\alpha_{2}}^{(\infty)} = \{8, 9, 10, 11, 12, 13\} \cup S_{\alpha_{1}}^{(\infty)} ,$$

$$S_{\alpha_{3}} = S_{\alpha_{3}}^{(\infty)} = \{1, 2, 3, 4, 5, 6, 7\} \cup S_{\alpha_{2}}^{(\infty)} = E$$

where $0 \le \alpha_0 < c_1, c_1 \le \alpha_1 < c_2, c_2 \le \alpha_2 < c_3, c_3 \le \alpha_3 < \infty$, $c_1 = 1/3$, $c_2 = 1/2$ and $c_3 = 4/7$.

Fig. 3 A Graph for Example 3.

Now, if we choose $T_s^{(1)} = \{1, 2, 3, 5, 6, 7, 8, 9\}$ as a tree of G, then for the critical set $S_{\alpha_2}^2$ we have the relations

$$S_{\alpha_{2}}^{2} \subseteq \overline{T_{s}^{(1)}} = \{4, 10, 11, 12, 13, 14, 15, 16\},$$
$$|\overline{T_{s}^{(1)}} - S_{\alpha_{2}}^{2}| = |\{4\}| = 1$$

from which it follows that

$$1 > (1 - \alpha_2) |\overline{T_s^{(1)}} - S_{\alpha_2}^2| = (1 - \alpha_2) \times 1 = 1 - \alpha_2$$

Thus, $\alpha_2 > 0$. Here, since there exists α_2 such that $\alpha_2 > 0$ and $c_2 = 1/2 \le \alpha_2 < c_3 = 4/7$, we see from the corollary 2-1 that $T_s^{(1)}$ is a central tree of G.

On the other hand, if we choose $T_s^{(2)} = \{1, 2, 4, 5, 6, 7, 10, 11\}$ as a tree of G, then for the critical set $S_{\alpha_2}^3$ we have the relations:

$$\begin{split} \mathbf{S}_{\alpha_{2}}^{3} &\subseteq \overline{\mathbf{T}_{\mathbf{S}}^{(2)}} = \{3, 8, 9, 12, 13, 14, 15, 16\}, \\ |\overline{\mathbf{T}_{\mathbf{S}}^{(2)}} - \mathbf{S}_{\alpha_{2}}^{3}| &= |\{3\}| = 1 \end{split}$$

from which it follows that

$$1 > (1 - \alpha_2) |T_s^{(2)} - S_{\alpha_2}^3| = 1 - \alpha_2.$$

Accordingly, we get $\alpha_2 > 0$. Since there exists α_2 such that $\alpha_2 > 0$ and $c_2 = 1/2 \leq \alpha_2 < c_3 = 4/7$, we also see from the corollary 2-1 that $T_s^{(2)}$ is a central tree of G.

(END)

Now, considering that the condition (2-1) is equivalent to
(2'-1)
$$T_s \subseteq \overline{S}_{\alpha_i} = E - S_{\alpha_i}$$
(36)

we have the relations

$$\overline{T}_{s} - S_{\alpha_{i}} = \overline{S}_{\alpha_{i}} - T_{s} , \qquad (37)$$

$$(G \cdot \overline{T}_{s}) \times (\overline{T}_{s} - S_{\alpha_{i}}) = (G \times \overline{S}_{\alpha_{i}}) \cdot (\overline{S}_{\alpha_{i}} - T_{s})$$
 (38)

from which it follows that the theorem 2 and its corollary 2-1 can be rewritten as follows:

[Theorem 2']

If, for a critical set $S_{\alpha_{i}}$ of E with respect to α_{i} such that $c_{i} \leq \alpha_{i} < c_{i+1}$, there exists a tree T_{s} of G such that (2'-1) $T_{s} \subseteq \overline{S_{\alpha}}$, (36)

$$(2'-2) \quad 1 > (1-\alpha_{i}) \left| \overline{S}_{\alpha_{i}} - T_{s} \right| - n[(G \times \overline{S}_{\alpha_{i}}) \cdot (\overline{S}_{\alpha_{i}} - T_{s})] \quad (39)$$

are satisfied, then T_S is a central tree of G. (END) [Corollary 2'-1]

If, for a critical set S_{α} of E with respect to α_i such that $c_i \leq \alpha_i < c_{i+1}$, there exists a tree T_s of G such that

Acknowledgement

The authors would like to express their thanks to Prof. Y.Kajitani of Tokyo Institute of Technology, Tokyo, and Prof. C.Ishida of Niigata University, Niigata, for their comments.

References

- N. Deo: A central tree, IEEE Trans. Circuit Theory; Vol. CT-13, pp.439-440, 1960.
- [2] N. R. Malik: On Deo's central tree concept; IEEE Trans. Circuit Theory, Vol. CT-15, pp.283-284, 1968.
- [3] V. Amoia and G. Cottafava: Invariance properties of central trees; IEEE Trans. Circuit Theory, Vol. CT-18, pp,465-467, 1971.
- [4] G. Kishi and Y. Kajitani: Generalized topological degree of freedom in analysis of LCR networks; Papers of the Technical Group on Circuit and System Theory of Inst. Elec. Comm. Eng. Japan, No.CT 71-19, pp.1-13, July 1971.
- [5] Y. Kajitani: The semibasis in network analysis and graph theoretical degree of freedom; IEEE Trans. Circuits and Systems, Vol.CAS-26, pp.846-854, 1979.
- [6] T. Kawamoto, Y. Kajitani and S. Shinoda: New theorems on central trees described in connection with the principal partition of a graph, Papers of the Thchnical Group on Circuit and System Theory of Inst. Elec. Comm. Eng. Japan, No.CST77-109, pp. 63-69, Dec. 1977.
- [7] S. Shinoda, M. Kitano and C. Ishida: Two theorems in connection with partitions of graphs; Papers of the Technical Group on Circuits and Systems of Inst. Elec. Comm. Eng. Japan, No.CAS79-146, pp.1-6, Jan. 1980.
- [8] S. Shinoda and K. Saishu: Conditions for an incidence set to be a central tree, ibid., No.CAS80-6, pp. 41-46, Apr. 1980.
- [9] G. Kishi and Y. Kajitani: On maximally distinct trees, Proceedings of the Fifth Annual Allerton Conference on Circuit and System Theory, University of Illinois, pp.635-643, Oct. 1967.
- [11] S. Shinoda: Principal partitions of graphs with applications to graph and network problems, Proc. of Inst. Elec. Comm. Eng. Japan, Vol.62, pp.763-772, 1979.

$$(2'-1) \quad T_{s} \subseteq \overline{S}_{\alpha_{i}} , \qquad (36)$$

$$(2'-3) \quad 1 > (1 - \alpha_{i}) \left| \overline{S}_{\alpha_{i}} - T_{s} \right|$$

$$(40)$$

are satisfied, then T is a central tree of G. (END)

Also, as a special case of the theorem 1 and 2, the following known theorem and corollary can be derived: [Theorem 3]

If, for a critical set S_{α_i} of E with respect to α_i such that $c_i \leq \alpha_i < c_{i+1}$, there exists a tree T_s of G such that

$$(3-1) \quad T_{s} = \overline{S}_{\alpha_{1}}$$

$$(41)$$

is satisfied, then T_s is a central tree of G. (END) [Corollary 3-1]

If there exists a tree T_s of G such that for a critical set $S_{1/2}$ of E with respect to 1/2 there holds (3-2) $T = \overline{S_{1/2}}$. (42)

$$3-2)$$
 T = $\frac{5}{1/2}$ (42)

(END)

then T_s is a central tree of G.

This corollary was given and proved in 1977 by Kawamoto, Kajitani and Shinoda [6]. In 1980, as an extension of the corollary, the theorem 3 was proved in an elegant way by Shinoda, Kitano and Ishida [7]. Indeed it was the proof technique of the theorem 3 shown in [7] that suggested the present investigation.

4. Conclusions

In this paper, in connection with the critical sets of the edge set of a nonseparable graph, some new theorems on central trees of the graph have been given as a few extensions of the results obtained already in [6, 7].

Since all the critical sets of the edge set of a nonseparable graph can be easily obtained by Tomizawa's algorithm [12], the theorems and their corollaries presented in this paper may be very useful. [12] N. Tomizawa: Strongly irreducible matroids and principal partitions of a matroid into strongly irreducible minors, Trans. Inst. Elec. comm. Eng. Japan, Vol. J59-A, pp.83-91, 1976.

Appendix The 2-nd hybrid equation and a central tree

Let N(G) be an electrical network whose underlying graph is G and whose edge-immittance matrix is a non-singular diagonal matrix. Each edge κ in N(G) is represented by either (a) or (b) of Fig. A where

- s : complex variable in the Laplace transformation;
- $v_{\kappa}(s)$: voltage of edge κ ;
- $i_{\kappa}(s)$: current of edge κ ;
- $e_{\kappa}(s)$: voltage of voltage source in edge κ ;
- $j_{\,\kappa}\,(s)$: current of current source in edge κ ;
- $\boldsymbol{z}_{\kappa}\left(\boldsymbol{s}\right)$: edge-impedance of edge κ ; and
- $y_{\kappa}(s)$: edge-admittance of edge κ .

Among $v_{\kappa}(s)$, $e_{\kappa}(s)$, $i_{\kappa}(s)$, $j_{\kappa}(s)$, $z_{\kappa}(s)$ and $y_{\kappa}(s)$ there holds either $v_{\kappa}(s) = z_{\kappa}(s) \cdot (i_{\kappa}(s) + j_{\kappa}(s)) - e_{\kappa}(s)$ (A-1)

or

$$i_{\kappa}(s) = y_{\kappa}(s) \cdot (v_{\kappa}(s) + e_{\kappa}(s)) - j_{\kappa}(s).$$
 (A-2)

Here, (A-1) or (A-2) are called the v-i relations of edge ${\mbox{\tiny K}}$.

For a tree t of G, t* is a tree of G which is at the maximal distance from the tree t. \overline{t} and $\overline{t}*$ are the cotrees of t and t*, respectively. Since each edge in $\overline{t} \wedge \overline{t}*$, together with some (or all) edges in $\overline{t} \wedge t*$, defines the fundamental tieset with respect to t*, it follows from Kirchhoff's voltage law that the voltages of the edges in $\overline{t} \wedge \overline{t}*$ can be uniquely expressed as the linear combinations of the voltages of the edges in $\overline{t} \wedge t*$.

Now, applying the v-i relations to the edges in \overline{t} , we see that the currents of the edges in \overline{t} can be uniquely expressed as the linear combinations of the voltages of the edges in $\overline{t} \cap t^*$. Also, since each edge in t defines the fundamental cutset with respect to t, it follows from Kirchhoff's current law that the currents of the edges in t can be uniquely expressed as the linear combinations of the voltages of the edges in $\overline{t} \cap t^*$.

(a)

Fig. A An edge κ in N(G).

Moreover, applying the v-i relations to the edges in t, we see that the voltages of the edges in t can be uniquely expressed as the linear combinations of the voltages of the edges in $t \cap t^*$. Namely, we see from the above that the voltages and the currents of all edges of N(G) can be uniquely expressed as the linear combinations of the voltages of the edges in $t \cap t^*$.

Here, substituting the voltages of all edges of N(G) expressed as the linear combinations of the voltages of the edges in $\overline{t} \cap t^*$ into a system of Kirchhoff's voltage equations based on the fundamental tiesets in G which are defined by the edges in $\overline{t} \cap t^*$ with respect to t, we obtain a system of equations whose variables are the voltages of the edges in $\overline{t} \cap t^*$. Such a system of equations is called the <u>2-nd hybrid</u> <u>equation</u> of N(G), since the elements in the coefficient matrix of the 2-nd hybrid equation are expressed in quadratic polynomials of edgeimmittances.

The order of the 2-nd hybrid equations is $d(t) = |\overline{t} \cap t^*|$. d(t) varies under the choice of t. Since d(t) is the distance between t and t*, and since t is called a central tree of G if $d(t) \leq d(t')$ for every tree t' of G, we see that the 2-nd hybrid equation of minimum order can be obtained by choosing a central tree of G as t.

The above was originally pointed out in 1971 by Kishi and Kijitani [4] and subsequently considered in 1979 by Kajitani in a new context [5].