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G e n e r a l  G e n u s  

The case of curves of arbitrary genus is much more difficult than the case of curves of 

genus 1, and there are no well-developed algorithms for this case. I have not been able to 

code any significant program to deal with this case because of the large number of subsidi- 

ary algorithms for which I do not have programs, though such programs have been written 

elsewhere, or can readily be written. Presented here, therefore, are the outlines of techni- 

ques which will enable one to bound the torsion of curves of arbitrary genus over algebraic 

number fields. 

The matter is complicated by the fact that most of the necessary supporting mathe- 

matics is couched in very abstract language and much is contained only in the "folklore" of 

Algebraic Geometry. For this reason the results stated will be less detailed than in the rest 

of the monograph, and there will not always be complete references to support them. The 

theory to be described is true for curves of genus 1 as well as for curves of higher genus, 

and in fact lies behind much of the theory described in the previous chapter. We will 

therefore be able to illustrate ~ most of this work by examples over* curves of genus 1, and 

we will usually do this for simplicity although the main application of the work will be for 

curves of genus > 1. 

The basic idea is similar to many processes in algebraic geometry: we reduce the 

problem to one over finite fields, in which we can compute explicitly and over which we 

# There is an excellent illustration of these methods at work in Mazur & Swinnerton-Dyer 
(1974, p. 21, Lemma 1). 

* Also there are many more computations and tables relating to elliptic curves 
(Swinnerton-Dyer, 1974, for example), so that it is easier to find suitable examples, and 
to explain their behaviour. 
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can perform complete searches, and then we can piece together the information from 

several finite fields in order to solve the original problem. In the terminology of computer 

algebra, we will adopt a modular approach. 

G o o d  R e d u c t i o n  

Let K be the common field of definition of the curve C and the divisor D, so that D 

corresponds to an element of the Jacobian of C as defined over K. Let p '  be a prime ideal 

of K lying over the rational prime p. Let K '  be the residue class field of K mod p ' ,  i.e. the 

field generated by the elements of the integers of K modulo the ideal pf. Let A be an 

Abelian variety over K (normally considered to be the Jacobian of C from our point of 

view, but the general theory does not require this). Let A '  be the variety over K '  defined 

by the same equations as A over K (i.e. A '  is a specialisation of A in the sense of Mumford 

(1965)). We note that A ~ is defined over a finite field, and therefore has only a finite 

number of elements, which must all be torsion elements. 

If p is any rational prime, and G is an Abelian group (normally a Jacobian divisor 

group but this is not necessary), then define the p-part of G to be those elements of G 

which have order a power of p. This is clearly a subgroup of G, and its order is a power of 

p. Define the non-p-part of G to be those elements of G whose (finite) order is coprime to 

p. This too is a subgroup of G. If every element of G is of finite order, then G is the 

direct product of its p-part and non-p-part for any prime p. Because of the manipulation 

of p-parts that we will engage in, we shall require the following algorithm: 

MAX POWER 

Input: 

P: a positive integer, frequently a prime. 

N: a positive integer. 
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Output: 

Q: the largest integral power of P <N. 

We will not bother to describe such a simple algorithm in detail. 

Following Serre and Tare (1968) we say that A has good reduction* at p~ iff A = A v x 

K, where the operation "x" means the taking of tensor products over the valuation ring of 

pW. The following result is essentially well-known: 

Theorem 1 If A has good reduction at p l  which lies over p, then the non-p-part of the 

torsion subgroup of A is injected into the non-p-part  of the torsion sub-group of A ~, 

Corollary 2 The size of the non-p-part of the torsion group of A divides the size of A v 

(viewed as a group). 

We can also state the following result (from Serre and Tate (1968) or Shimura and 

Taniyama (1961)) as adapted to our circumstances and notation: 

Theorem 3 For a fixed K and A, there are only a finite number of primes of bad 

reduction. 

Theorem 2 of Chapter 7 implies that this is still true if we restrict ourselves to 

unramified primes, which we will do in the future. This means that we can use the 

following algorithm to reduce the general problem to that of torsion bounds modulo prime 

ideals. 

* Roughly speaking, this condition means that A can be reconstructed from a knowledge of 
A i and K. This is a similar concept to that of good evaluations or lucky primes (see, e.g., 
Yun 1973). 
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B O U N D  T O R S I O N  

(Version 1) 

Input: 

K: an algebraic number field. 

F(X,¥) :  the equation of a curve defined over K. 

Output: 

N: a bound for the torsion of F over K, 

[1] For P = 2,3,5,. .  do: 

For each prime idealPt  o f K w i t h P ~  I P d o :  

if GOOD REDUCTION(F,K,P ' )  

then do: 

[1 .1]NON P P A R T : =  FINITE BOUND(F,K,P ' ) .  

The algorithm F I N I T E B O U N D  

modulo the prime ideal P~. 

should give a bound for the torsion 

[1.2] Go to [2]. 

[2] For Q = prime after P .... do: 

For each prime ideal Q'  of K with 

Q'  I Q do: 

if GOOD REDUCTION(F ,K,Q ' )  

then do: 

[2.1] NON Q PART := FINITE BOUND(F,K,Q~). 

[2.2] Go to [3] 

[3]ANSWER1 := NON Q P A R T *  MAX POWER(Q,NON P PART). 
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ANSWER2 := NON P PART * MAX POWER(P,NON Q PART).  

Return minimum(ANSWER 1,ANSWER2). 

ANSWER1 splits the torsion group into its non-q-part and its q-part, while 

ANSWER2 does the converse. 

This algorithm is not the only one which can use the mechanism we have developed to 

find a bound for the torsion of an elliptic curve. One possibility is to take 3 primes of 

good reduction rather than 2, and then observe that the p-torsion, for any p, will appear in 

the non-q-parts for 2 primes q, so that the torsion is bounded by the square root of the 

product of the 3 non-q-torsions. 

Later in the Chapter we will see that something much better can be done when we 

know precisely what the torsion is over the finite field. 

T o r s i o n  o v e r  F i n i t e  F i e ld s  

The aim of this section is to describe various ways of finding, or at least bounding, the 

size of Jacobian divisor group over a finite field, i.e. the implementation of the algorithm 

F I N I T E B O U N D .  Much of this material comes from Lang ( t959,  chapter V, especially 

section 3)L We require a piece of notation: if A is an Abelian variety defined over a field 

K, let I A I K be the number of points of A defined over K. Our first remark is that, if C is 

a curve of genus g, then Jac(C) is an Abelian variety of dimension g (see the discussion at 

the end of chapter 5). Hence we wish to discover I Jac (C)  lK for the curve C under 

investigation. Unfortunately, this is not easily related to I C I K" However  we do have the 

following Lemma: 

Lemma 4 (This is proved in Lang (1959, pp. 139-140).) Let A be an Abelian variety 

of dimension r over a finite field K with q elements. Let ,/, : A=>A be the Frobenius 

# I am grateful to Professor Sir Peter Swinnerton-Dyer for drawing my attention to this 
work, and for correcting many errors in my understanding of it. 
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endomorphism induced by the Frobenius* endomorphism on K. 

where the wj are the characteristic roots of ~. 

j=2r 
Then I A } K =  H ( w j - 1 )  

j = l  

Lemma 5 (Lang (1959, p.138 Lemma 2 and Chapter IV section 3.) With the notation 

as above, I wjl = q 1~2. 

2g 
Theorem 6 I Jac(C) I K < (ql /2  + 1) 

Proof: From Lemma 4 and 5 above. 

Cr i t e r i a  for  G o o d  R e d u c t i o n  

Theorem 7 If C has good reduction, then Jac(C) does. 

The converse is not necessarily true, but it does not seem worth trying to take 

advantage of those primes at which Jac(C) has good reduction but C does not. I have 

managed to avoid any explicit construction of Jacobians in the programming, and I feel that 

the slight gains would be outweighed by additional complexity. 

Clearly we will not have good reduction if the genus of C '  is not the same as that of 

C, for then the Jacobians would have different dimensions. In fact the following is a 

necessary and sufficient criterion for good reduction to occur for C, and hence for Jac(C): 

Theorem 8 If C and C'  have the same genus, and F v is absolutely irreducible (i.e. 

irreducible in all algebraic extensions of K ' ) ,  then we have good reduction. 

Let us consider the two halves of this test separately: the genus preservation part 

first. The genus of C'  can never be more than that of C, so we have to detect those cases 

* The Frobenius endomorphism is defined by x - -  > x q. See Eichler (1966, p.249) for 
further details. 
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in which the genus decreases. This can happen in one of two ways: a differential of the 

first kind on C can cease to be a differential of the first kind on C ~, or the space of 

differentials of the first kind can contract. As an example of the first, consider 

y2 = ( X - 1 ) ( X  + 1)(X + 2), which has genus 1 over Q with one differential of the first 

kind, viz. dX/Y. However, modulo 3 this function has a pole at X = l = - 2 ,  for X - 1  is a 

local parameter there, and 1 /Y  behaves like 1/(X - 1)V/ '~+ 1. In fact, of course, the 

curve has genus 0 modulo 3. Since we know the differentials of the first kind as a result of 

computing the genus, this case is fairly easy to test for. The other possibility is that the 

differentials of the first kind will cease to be independent,  and as an example of this 

consider the space curve y2 = X 3_ 1 and Z 2 = X 3 + 2. Here both dX/Y and dX/Z  are 

independent differentials of the first kind over the rationals, but not when taken modulo 3, 

as one might expect. 

Note that there is a possibility that we will reject some primes as not giving rise to 

good reductions when in fact they do, since we might inadvertently have an expression for 

a differential which was divisible by the prime in question. This is especially likely to 

happen over algebraic number fields, when we are dealing with prime ideals rather than 

straight primes, since in this case we cannot just divide out the prime. However, this can 

only happen finitely often, so we still have an infinite number of primes of good reduction 

available. This point may prove computationally embarrassing, but it does not affect the 

theory. 

E x a m p l e  

We will consider the example of Tate's curve with D = 2  from Appendix 2 example 4, 

and we will work over the rationals. This is not necessary, inasmuch as either Mazur's 

bound or the Lutz-Nagell approach will suffice, but it is a relatively easy case to work and 

explain. The equation is y2 = 4x3_15x 2 + 8x + 16. Clearly this does not have good 

reduction rood 2, because the equation reduces to y2 = x 2 and not only is this clearly not 

irreducible but also the differential of the first kind, l /y ,  does not remain a differential of 

the first kind. 
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Modulo 3, the equation reduces to y2= X 3 +  2X + 1, which is irreducible and 

preserves the differentials of the first kind. Therefore the non-3-part  of the torsion is at 
2 

most (31/2 + 1) = 7 (after rounding down to an integer). The curve also has good 
2 

reduction modulo 5, so that the non-5-part  is at most (51/2 + 1) -- 10 (after rounding 

down). Therefore the curve has torsion at most* minimum(7*9,10*5) = 50. 

A B e t t e r  A l g o r i t h m  

In this section we will develop the consequences of knowing exactly how many points 

there are on the Jacobian of the curve over our finite field. Just as in the previous case we 

required the trivial algorithm MAX POWER to extract p-parts, here we have an algor- 

ithm O C C U R R E N C E S  to do the same. 

* In fact we can do rather better than this if we consider the various cases separately. 
Case 1. The curve has 7-torsion. In this case the torsion group must have precisely 7 
elements (this is, in fact, what happens). 
Case 2. The curve has 3-torsion and 5-torsion. In this case the 3-torsion is bounded by 
9, and the 5-torsion by 5, so the whole torsion is bounded by 45 (since introducing 
2-torsion decreases the total). In fact this can be ruled out by considering reduction 
modulo 11, which gives 18 (and hence 15 once we have ensured that the group structure 
is maintained) as a bound for the non-11-part ,  and hence for the entire torsion. 
Case 3. The curve has 3-torsion (but not 5- or 7-torsion). Then the maximum size of 
the torsion group is 10. 
Case 4. The curve has 5-torsion (but not 3-torsion). In this case there can also be no 
2-torsion (consider the non-3-part) so the torsion group must have order 5. 
Case 5. The curve has only 2-torsion. In this case the torsion is bounded by 4. 

Unfortunately I know of no good way of mechanising this sort of intuition, so we 
are left with the bound of 
minimum(NON Q PART * MAX P O W E R ( Q , N O N  P PART),  

NON P P A R T *  MAX POWER(P ,NON Q PART)) .  
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OCCURRENCES 

Input: 

P: a positive integer, frequently a prime. 

N: a positive integer. 

Output: 

Q: the largest integral power of P dividing N. 

We will not bother to describe such a simple algorithm in detail. 

Finding the number of points on the Jacobian of the curve is not easy, and I have no 

algorithm to suggest for doing it. In the case of curves of genus 1, then the curve is the 

Jacobian and there is no real problem (except that one has to be careful when counting 

multiple points, and to distinguish ordinary multiple points from ramified points). Never- 

theless we present this algorithm, since it is clearly the correct way to approach the torsion 

divisor problem (from our current state of knowledge) in the case of algebraic number 

fields. 

B O U N D  TORSION 

(Version 2) 

Input: 

K: an algebraic number field. 

F(X,Y):  the equation of a curve defined over K. 

Output: 

N: a bound for the torsion of F over K, 

such that the true torsion is a factor of N (as opposed to version 1, where we 

merely knew that it was at least N). 
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[1] For P = 2,3,5 .... do: 

For each prime ideal P~ of K with 

pv I P do: 

if GOOD REDUCTION (F,K,P ' )  

then do: 

[1.1] NON P PART := FINITE TORSION(F,K,P ' ) .  

The algorithm FINITE TORSION should give the torsion modulo the 

prime ideal p ,  

[1.2] Go to [2]. 

[2] For Q = prime after P .... do: 

For each prime ideal Q~ of K with 

Q ' ]  Q d o :  

if GOOD REDUCTION(F ,K,Q ' )  

then do: 

[2.1] NON Q P A R T : - -  FINITE TORSION(F,K,Q' ) .  

[2.2] Go to [3] 

[3] ANSWER1 := OCCURRENCES(Q,NON P PART) * NON Q PART 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OCCURRENCES(Q,NON Q PART) 

ANSWER2 := OCCURRENCES(P,NON Q PART) * NON P PART 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OCCURRENCES(P,NON P PART) 

Return gcd(ANSWER 1,ANSWER2). 

Furthermore this curve has 7 points on it, viz. (0 ,+1) ,  (1 ,+1) ,  (2 ,+1)  and the point at 

infinity. 
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C o m p u t a t i o n a l  C o n s i d e r a t i o n s  

This section will describe some of the problems involved in the implementation of this 

"modular" algorithm, and outline some solutions. Since I do not have anything approach- 

ing a complete implementation of the work described in this chapter, this section may well 

not be complete,. 

We know that the residue class field is finite of characteristic p, and it is in fact 

obtained from the integers of Q(I) by identifying elements if their difference lies in the 

prime ideal. Since p lies in the prime ideal, we need only consider those elements of Z[I] 

with integer coefficients between 0 and p, i.e. a finite set. Hence we can construct the 

residue class field by enumeration, though this may not be efficient in all cases. Since the 

field is of characteristic p, it contains a subfield isomorphic to the integers modulo p. The 

field is then an extension of the field of integers modulo p, and computation over such 

fields has been studied by Mignotte (1976). 

We need to determine not only irreducibility but also absolute irreducibility in a 

residue class field in order to test for good reduction. We can factorise univariate polyno- 

mials in the subfield which corresponds to the integers modulo p by Berlekamp's Algorithm 

(Zimmer, 1972), but this is not sufficient. For example, in the residue field of 5 in Q ( v / 2 )  

(see the next section for a detailed discussion of this example) the polynomial X 2 + 2 = 0 

factorises, whereas it does not factorise in the integers modulo 5. Hence, even for polyno- 

mials defined over the subfield, reduction to the subfield is not an adequate factorisation 

strategy. 

Berlekamp (1970) presents an algorithm for reducing the problem of factoring 

univariate polynomials over a field of prime power order to that of factoring over the prime 

field, but this is riot an easy process* and I have not yet implemented it. Alternatively, 

using the techniques of Trager (1976) generalised (where applicable) to finite fields and to 

multi-variate expressions of algebraic extensions (see Appendix 3 for details and algor- 

* Mignotte (1976) describes the process as "complexe mais efficace". 
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ithms), we can reduce the problem to that of factoring a much larger polynomial over the 

field of p elements, which can then be solved readily. Once we have a univariate factorisa- 

tion, we can grow it up to a multi-variate factorisation in almost ~ all cases,using essentially 

the same techniques as are used in p-adic factorising techniques (Wang, 1978 or Yun 1973 

and 1976). 

A n  E x a m p l e  over  A l g e b r a i c  F ie lds  

Now let us consider the curve y2 = X 3 + 8, with differential 1/Y.  This does not 

have good reduction modulo 2 (since it becomes y2 = X 3, which is no longer of genus 1) 

or 3 (since it becomes y2 = ( X _ I )  3, also no longer of genus 1). It has good reduction 

modulo both 5 and 7, and the non-p-parts of the torsion are 6 and 12 respectively. Hence 

the torsion is at most 6 (in fact, the curve has no torsion over Q, but it does have one 

generator of infinite order (Birch & Swinnerton-Dyer, 1963), which has to map into a 

torsion divisor over a finite field). 

Over the field Q(V/'2), the situation is slightly different. 2 and 3 are still primes of 

bad reduction (and, more generally, extending the ground field does not get rid of any 

primes of bad reduction). 5 is a prime in this field; and the residue class field has 25 

elements, which we can represent by {(i + j r / 2 ) , 0  < i,j < 4} The curve has 36 points of 

finite order in this residue class field. 

In Q(~/~) ,  the rational prime 7 splits into the product of 2 prime ideals, 

< 7,4 + V/-22 > and < 7,3 + ~ > . The first of these is a prime of good reduction, and 

the residue class field has 7 elements, which we can equate with the numbers 0 to 6 modulo 

7. The curve has 12 points of finite order over this field (exactly as in the case of Q, since 

the two residue class fields are isomorphic and the isomorphism preserves the curve). Thus 

# it may be that all evaluations of the other variables in a multivariate factorisation are 
"unlucky" in the sense that the image ceases to be square-free. However, this can only 
happen for finitely many primes, so at the worst we can afford to treat this as a case of 
bad reduction and try a different prime. 
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with 36 for the non-5-torsion and 12 for the non-7-torsion, we are led to a bound of 12 for 

the torsion of the curve over the rationals as extended by the square root of 2. Although I 

know of no easy $ way of discovering the torsion of an elliptic curve over fields other than 

the rationals, this curve does have a point of order 6 over the field Q ( v / 2 ) ,  viz 

X = 4, Y--  6v /2 ,  and furthermore twice this point (which is therefore of order 3) crops 

up in some comparatively simple integrals (see the footnote to Appendix 2 example 3). 

Note that, though our point is of order 3 (or possibly 6) we have a computed bound 

of 12 by the second technique, but 252 by the first technique, so that this technique, while 

undoubtedly workable and effective in the mathematical sense of the word, has limitations 

for practical computation. One reason for this is that there are likely to be infinite order 

divisors as well, and these will tend to map into points of high (but finite) order in the 

torsion group corresponding to a good reduction, thus giving us unnecessarily high esti- 

mates. 

Computationally, this is especially embarrassing because we only need the bound 

when there are divisors of infinite order, since if the divisor is of finite order we will find 

the order with or without a bound. 

$ As far as I know, the algorithms of Birch & Swinnerton-Dyer (1963) have not been 
implemented over fields other than the rationals. 


