
MORE ON ADVICE ON STRUCTURING COMPILERS AND PROVING THEM CORRECT

James W. Thatcher, Eric G. Wagner and Jesse B. Wright

Mathematical Sciences Department

IBM Thomas J. Watson Research Center

Yorktown Heights, New York 10566

USA

1. INTRODUCTION

The purpose of this paper is to affirm and applaud the advice given by F. L Morris (1973) at the Second

SIGACT/SIGPLAN Symposium on Principles of Programming Languages and to correct, refine, and complete

the example he gave there.

The goal, first announced by McCarthy, is to make compilers for high level programming languages

completely trustworthy by proving their correctness. Morris (1973) stated his belief (shared by many) that

the compiler correctness problem is much less general and better structured than the unrestricted program

eorreemess problem.

The essence of Morris' advice was that a proof of compiler correctness should be a proof that a diagram

of the form t

(*)

source
language

L

sourc~
semantics

0

M
source

meanings

target

compile language
~----T

"/ I target semantics

encode
~---~U

e
target

meanings

commutes; that the corners of the diagram are not just sets but are many-sorted (heterogeneous) algebras and

that the arrows are homomorphisms.

This paper can be seen as the fourth in the sequence: McCarthy and Painter (1967), Burstall and Landin

(1970) and Morris (1973). At each step the content of (*) has become more algebraic and the example

source language richer. Ours is not the last step! Much can be done to improve the picture, including a

thorough analysis of the primitives used in the semantics of both source and target languages along the lines of

Mosses (1978, 1979). The correctness proof should be mechanical; but the algebraic preliminaries must be

further developed.

t Morris' diagram had &U-*-M along the bottom, though in the text he uses e:M-~U.

166

Morris observed that the source language, being described by a context free grammar, determined an

initial many-sorted (heterogeneous) algebra. This correspondence is discussed in detail in ADJ (1975); if G is

the grammar and N is its set of non-terminals, then G is viewed as an N-sorted operator domain where the

productions are the operator symbols. T G is the initial G-algebra and its carrier of sort A e N is the set of all

parse trees from non-terminal A.

Recall that T a being initial means that there is a unique homomorphism from it to any other algebra with

operator domain G. This is how the top and left side of the diagram (,/r) are determined; L is T G and M and

T are G-algebras -- then y and 0 are unique homomorphisms. Initiality is also the method of correctness

proof, for if ~p and e are also homomorphisms, then ~, off = 0 o e by uniqueness. This is an extremely powerful

methodology; no "structural induction" is required for the definition of the arrows or the proof.

So to describe the source semantics (the left side of the diagram) we need only define a G-algebra M,

that is, carriers corresponding to the non-terminals and operations corresponding to the productions. Morris,

"as a concession to readability," combined the specification of 0 and M's operations in a "conventional style

of recursive function definition, following the notation of Scott and Strachey (1970)." However we claim the

result is not more readable for two reasons; first, combining with the definition of 0 is just more notation -- 0

is uniquely determined, and, second, the algebraic operations (composition, tupling, product, etc.) have not

been separated out from the "local" operations, those involved with manipulating environments or "adding

numbers." For example, for assignment, our semantic line is (see (M2)):

(a)x:= M = aoassign x

where a :E -*ExV (E = environments and V = values) and assign x is the obvious function from E x V to E.

(environments). Were we not being pedantic about writing arguments to the left of functions, that line would

look even more familiar and simpler:

In contrast Morris writes:

X:=M(a) = aoassign x.

0 [x := r l = (hahe.Xw.w=0txl~-a,e(w))*0lr l

where p*q -- Xx.p(q(x)l)(q(x)2)! This is an incredible difference. It comes from our attempt to isolate the

fundamental operations used in the semantic definitions just as Mosses (1980) wants to do with his semantic

data types.

Our treatment differs substantially from that of Morris in that we have succeeded in making the

right-hand side of (-k) algebraic. This is what Morris wanted to do, but his algebraic model of flow charts was

too unwieldy. In particular, we do not see the justification for his claim that a semantic homomorphism is

determined by specifying the effect of the homomorphism on the individual instructions. Recognizing

fundamental operations for building up flow charts (Section 5) and uniqueness of interpretation (Section 7)

are crucially important contributions of Elgot (1973).

Thus, we take for the target language, an algebra T o of flow charts (actually a category) whose

operations are things like parallel and serial composition and iteration, and whose individual instructions

manipulate a stack and a "memory. '~ The semantics of this category of flow charts is uniquely determined by

167

the interpretations of the flow chart primitives. The semantic target (U 0) is a category of meanings for those

flow charts (aetuaUy an algebraic theory in the sense of Lawvere (1963)).

Then we extract from T O a G-algebra T, defining the operations of T in terms of the operations of T 0.

(As the TCS referee emphasized, the "compiler writer must be warned that the extraction of a G-algebra from

T O (the true target language) is, in fact, the very difficult work he usually calls 'compiler design' or

' implementation choices. '" It is the essence of compiler construction.) By initiality this gives the compile

function ~,:L-,-T and it also immediately determines an algebra U, extracted from Uo, and a homomorphism ~.

from T to U. These arrows are each uniquely determined by the interpretations of certain primitives. All that

is left is the "bot tom line," e:M-~U. Given the (simple) definition of e from the carrier of M to the carrier of

U we have to prove that e is a homomorphism, that is, that it preserves all the operations of M. Once this is

done, the compiler correctness proof is complete for, by initiality, ~ off -- 0 o e.

As Barry Rosen has pointed out to us, commuting of (jr) is not, in itself, "compiler correctness." T and

U could be one-point algebras and % if, and e, the unique homomorphisms to those one-point algebras

resulting in a commuting square. At first look this is somewhat misleading because we should assume that the

source language (with semantics), O:L-*-M, and the target language are given. But, as indicated above, the

algebraic structure of the target language is different from that of the source. The process of constructing the

compiler consists of extracting an algebra T from the target language To; we could foolishly extract a

one-point algebra, then U would automatically be a one-point algebra and Rosen's point is reinstated.

One possible way around the degenerate case of one-point algebras, suggested by Rosen, is to require the

encoding (e) to be injective (it is in our ease). Then, as Steve Bloom has argued [personal communication],

commutativity of Jr would say that there is a subalgebra of U which is isomorphic to M and up to this

isomorphism a source program and its compiled target program have the same meaning. This is certainly a

sufficient condition for compiler correctness. Several (including Steve Bloom and Barry Rosen) have argued,

that it is necessary; you do not want to identify semantic objects in a translation of the source language. Two

programs with distinct semantics must have, at this level of abstraction, distinct target meanings. But is it

conceivable that distinct program phrases might have the same target semantics. We are just not sure at this

time that injectivity is necessary.

Both Gaudel (1980, 1980a) and Mosses (1980) want to present source and (in effect) target semantics in

terms of abstract data types. Then correctness becomes a property of the implementation or representation of

the source data type in terms of the target data type. Mosses clearly requires this implementation to be

injective; it is the part of his proof that is as long as ours.

Although our example language is similar to that of Mitner and Weyrauch (1972) t and Milner (1976),

our approach is different because we are explicitly avoiding the lambda calculus and because their target

semantics is interpretive. In another treatment, and a concise one also, Germano and Maggiolo-Schettini

(1975) present a compiler from a simple source language which computes sequence-to-sequence partial

Milner [personal communication] commented on the Milner and Weyrauch (1972) proof: "... we could only
think clearly enough to do our proof at all on the machine by structuring it algebraically." (See page 58 of
their paper.)

168

recursive functions, to a target language which is a modification of Markov normal algorithms. Contrary to

the approach advocated by Morris and by us, semantics given by Germano and Maggiolo-Schettini is not

homomorphie: "semantics consists in a correspondence between syntactic objects (strings of symbols) and

mathematical objects ..." But both source and target semantics c o u M be homomorphie and it would be

interesting to see how this reformulation would change their correctness proof.

Our treatment differs from Morris (1973) in one other less significant respect. We make the advice that

the starting point for the semantic definition should be an abstract data type in the sense of ADJ

(1976,1976a).

This paper presumes familiarity with many-sorted algebras, categories, and algebraic theories, but we

hope that it can be read without detailed knowledge of those concepts. It is our intention that the example

will prove potent enough to convince the reader of the importance of the algebraic ideas; that they are worth

the investment of time and energy to obtain even better understanding.

2. THE UNDERLYING DATA TYPE

Let X be the following {int, B o o l } - s o r t e d signature for integer and Boolean valued expressions.

int, A = {0,1 } X int, int = { - ,Pr,Su} X int, in tint = { + , - , × }

YBod, X= {tt,ff} Y. Bool, Bool = { ~ } X Boot, Boo l Boot = { ̂ , v }

X BooLint = { e v e n } X Bool, int int ={ < '> ,EQ} Y~int, Boot int int = {eond}.

All other Xs, w are empty. Tx, in t is the set (or algebra) of integer valued expressions and TX,Bool is the set of

Boolean valued expressions. The underlying data type (an {int, B o o l } - s o r t e d algebra S) for our simple

programming language is the abstract data type* determined by the signature X together with axioms E

consisting of at least (the correctness of these axioms is not at issue for this paper) axioms El-E27 below.

Assuming those axioms are correct (in

and (for technical reasons) SBoot = [2]

(El) Pr(Su(x)) = x

(E4) . (t t) = ff

(E6) b^tt = b

(E9) x+0 = x

(E l l) x - 0 = x

(El3) xx0 = 0

(E16)

(E18) x_<x = tt

(E21)

(E23) EQ(x ,y)=

(E25) even(0) = tt

the strong sense of ADJ (1976a)), we can take Sin t = 77 (the integers)

= {1,2} (with tt s = 2).

(E2) Su(Vr(x)) = x

(E5) ~ (f f) = t t

(E7) b^ff = ff

(El0) x+Su(y) = Su(x+y)

(El2) x -Su(y) = Pr (x -y)

(El4) xxSu(y) = (xxy)+x

cond(tt,x,y) = x (El7)

(El9) 1 < 0 = ff

x<y= t t =~ x_<Su(y)=tt (E22)

(x<y)^(y<x) (E24)

(E26) even(l) = ff

(E3) Su(0) = 1

(E8) bvb' = . (. b ^ . b ')

(El5) -(x) = 0 - x

eond(ff,x,y) = y

(E20) x<y = Su(x)_<Su(y)

x_<y=ff =~ S(x)_<y=ff

x>_y = EQ(x,y)v ~ (x<y)

(E27) even(x)= ~even(Su(x))

* See, for instance, Zilles (1974), Guttag (1975) or ADJ (1976a).

169

3. THE LANGUAGE L

Our programming language is essentially the one employed by Morris (1973). As such, it is a slight

enrichment of the language used as an example by Milner (1976). Our grammar will have non-terminals

{<s t> ,<ae> ,<be>} for "statements", "arithmetic expressions" and "Boolean expressions." The terminals

include the symbols in the signature E above, plus those other letters in boldface occurring in the productions

below. Further, we assume given a set X of variables or identifiers.

We list the productions of G giving each a name which we can use in defining the semantic algebra.

Thus, for example, when G is viewed as an operator domain, ifthenelse is an operator symbol to denote a

function that takes three arguments of sorts < b e > , < s t > , < s t > , respectively, and yields a result of sort <s t> .

Similarly result takes two arguments of sort <s t> and <ae> and yields a result of sort <ae>.

(L1) continue <s t> ::= continue

(L2) x: = <s t> ::= x : = < a e > For xEX

(L3) ifthenelse <s t> ::= i f<be>then<s t>e lse<s t>

(L4) ; <s t> ::= < s t > ; < s t >

(L5) whiledo <s t> ::= while<be>do<st>

(L6) c <ae> ::= c For CE~int,)~

(L7) x <ae> ::= x For x c X

(L8) aopl <ae> ::= aop l<ae> For aopt~Eint , in t

(L9) aop2 <ae> ::= <ae>aop2<ae> For a o p 2 ~ i n t , in t int

(L10) cond <ae> ::= i f<be>then<ae>else<ae>

(L l l) result <ae> ::= <st>resul t<ae>

(L12) letx <ae> ::= let x be<ae>in<ae> For x¢X

(L13) be <be> ::= be For bCeEBoot, X

(L14) prop <be> ::= prop<ae> For prop~,Bool, int

(L15) tel <be> ::= <ae>re l<ae> For rel~Y.Boot, int im

(L16) bop1 < b e > ::= bop l<be> For bopl~Y.Bool, Boo!

(L17) bop2 < b e > ::= <be>bop2<be> For bop2eXBooI, Bootboo l

4. SOURCE LANGUAGE SEMANTICS, THE ALGEBRA M.

Now we want to define the semantic algebra M. For this we need the set Env of "environments," Env =

[X--Z]. Then the three carriers are:

M<st> -- [Env-o-~Env] M<ae> = [Env--o*Env×7/] M<be> = [Env-o--Envx[2]].

Here [A--B] is the set of (total) functions from A to B and [A-o-~B] is the (po)set of partial functions from

A to B.

The definitions of the seventeen operations on M (corresponding to the grammar's seventeen prod-

uctions) involve certain primitive operations on M's carriers, including assign and fetch, along with standard

(and some not so standard) operations on functions such as composition, tupling and iteration. Thus before

170

presenting M's operations we must familiarize the reader with what is, in effect, our metalanguage for giving

the definition of M. The reader should be advised that this "metalanguage" will be used throughout this

paper.

We first list the primitive operations:

assignx:Env x 2g-~ Env (y) <e ,v> assign x =
v if y = x

(y)e if y # x

fetchx:Env-~Envx2~ (e)fetch x = <e , (x)e>

We also have available all the operations as, for aEX, from Section 2; e.g., + s is addition on the integers.

Now for the more general considerations. The set [2] was used in Section 2; [n] is the set {1,2,...,n}.

For both total and partial functions, we will write f:A-~B to designate source and target, function arguments

will usually be written on the left as in (a)f, and we will explicitly write o for the operation of function

composition whose arguments are written in diagrammatic order: if f :A-~B and g:B-~C then fog:A-~C. 1A is

the identity function on the set A (for f:A-~B, 1Aof = f = fo 1B).

Given two (partial) functions, fi:A-~B, define the source tuple, (fl ,f2):Ax[2]-~B, by

<a , i>(f l , f 2) = (a)f i.

Define the sum, f l+ fx :Ax[2] -~Bx[2] , of functions fi:A-~B for iE[2] by:

< a , i > (f l + f 2) = <(a)fi , i>.

If q:B-~Bx[2] is the injection sending bCB to <b , i> , for ie[2], then f l+f2--(f lot t , f2ot2). Bx[2] is the

disjoint union, sum or coproduct of B with itself, and more generally Bx[n] is the eoproduet of B with itself n

times (n disjoint "copies" of B); ti:B-~ B x [n] sends b to <b , i> , for i¢ [n]. Context will usually distinguish the

source of an injection and for this paper, the target will always be clear. When necessary to distinguish
B

sources, we will write rj :B-~Bx[n].

Given a partial function f :A-~Ax [2], define the iterate, f*:A-~A, to be the least upper bound (i.e. union)

of the sequence f(k) defined by:

f(o) = O

f(k+l) = fo(f(k) 1A) '

where 0 is the empty partial function from A to A. Iteration is the least familiar operation that we use; it

replaces the fixed-point operator (Y) of other semantic definitions. Say f :Env-~Envx[2] is a function that

takes an environment e, creates a new environment e r and then performs some test, giving < e t , l > if the test is

false and <et ,2> if the test is true. Then the function f*:Env-*Env is the function corresponding to our

intuition, "do f until its test is true."

Given (partial) functions f i :A*Bi , define the target tuple, [fl,f2]:A-~BlXB2, by:

(a)[fl,f 21 = <(a)f l , (a)f2>.

I 7 1

Note that if either fl or f2 is undefined at a, then [fl,f2] is undefined at a. The projection function

~ri:AlX...XAn-~Ai takes <al , . . . ,an> to a i. Given functions fi:Ai-*Bi, define their product,

fl xf2:At x A 2 ~ B 1 xB2' by:

<a l , a2>(f 1 x f 2) = <(a l) f 1,(a2)f2>.

Paralleling the sum case above, the product of functions is defined in terms of target tupling and projections:

fl X f2=['n'l °fI'~r2°f2]"

Now for the definitions of M's operations; 'r,'rl,'r2, range over M<st>; e , e l , e 2 range over M<ae> ; and,

fl'fll'/32 range over M<be>.

(M1) cont inue M = lea v

(M2) (e)x:= M = ~oassign x

(M3) (/3,,t,~2)ifthenelse M = ~o('rl,~2)

(M4) ('rl,'r2); M = "el o'r 2

(MS) (/3,*)whilodo M = (/3o(*+lEnv))*

(M6) c M = 1EnvXC S

(M7) x M = fetch x

(M8) (a)aop l M = eO(1EavXaopls)

(M9) (a l ,e2)aop2 M = a l o (a 2 x l•)o[,rrl,Cr3,zz2]o(1ErtvXaOp2S)

(M10) (/3,el ,a2)cond M = ~O(al,a2)

(M11) (z ,e)resul t M = ,roe

(M12) (tz 1,a2)lotx M = fetch x ° [(a 1 o assign x o a 2) x 1 Z] o [*r 1,~r 3,~r2] o (assign x x 12Z)

(M13) bc M = 1Envxbcs

(M14) (e)proPM = aO(1EnvxproPs)

(M15) (el,a2)rel M = a I o (a2x 1Z) o (1EnvXrels)

(M16) (/3)~M = /3°(*2'L1)

(M17a) (/31'flZ)^M ---- /31 *(t1'/32)

(M17b) (/31,/32)VM = /31o(/32,~2)

The Boolean expressions are treated differently from the arithmetic expressions. In the defirtition of aM,

for example, /31 can give the value false (1) and /32 will not be evaluated, i.e., could be non-terminating: if

(e) /3l=<e r, 1 > (false with new environment e~), then (e)/3I o (q ,B2)=<e ' , 1 > independent of B 2.

Calling our grammar above, G, we have made M -- <M<st> , M<ae> , M<be> > into a G-algebra with the

seventeen definitions, (M1-M17). The algebraic semantics for G is the unique homomorphism O:TG-~M.

5. THE TARGET LANGUAGE, To, THE (ENRICHED) CATEGORY OF FLOW CHARTS

Our full target language will be a category of flow charts. Morris also used flow charts for the target

language but his lacked the algebraic structure that we shall describe. This algebraic structure is one of the

principal advances that we have to offer; it is lacking in previous treatments of the compiler correctness

problem. Further translations could be performed on the target language, and they could be proved correct.

172

This is because the target language has a clean algebraic character. Then the composite translation would

immediately (automatically) be correct by "pasting" commuting squares together. This is our answer to our

TCS referee who asks, "but who uses a compiler which generates flow charts?" Even though the flow charts

are very close to machine code, we leave it to interested parties (the authors included) to carry out subsequent

translations or "compilations."

The referee has also raised the question of why the category of flow charts should be so general. We will

see flow charts with n "entries" and p "exits," for non-negative integers n and p. But the specification of the

compiler uses only n,p~ { 1,2}. This criticism is more difficult to answer. We could argue that if our language

employed a conventional "case"-statement, then the compiler specification would use all non-negative integers

n and p. But the reason is really deeper than that; our category of flow charts will have semantics in what is a

well known algebraic system, an "algebraic theory" in the sense of Lawvere (1963). In an algebraic theory

you can take two morpbisms, one from n to p and one from q to r, take their sum and get a morphism from

n + q to p+r . And this corresponds to a natural operation on flow charts, their "parallel composition." Closure

under this operation demands that we have all "n-entry, p-exit" charts.

We will begin with a general description of the category of flow charts (arbitrary operation symbols) and

then, later in this section, specialize to the particular operation symbols for operations on stacks and stores.

Our definitions of the the flow charts and the operations on them are detailed and (we hope) complete.

Accompanying each formal definition is an informal description which should be adequate for a first reading

of the paper.

So to continue, let ~ be an arbitrary one-sorted signature or operator domain, i.e. an indexed family of

disjoint sets, <fli>ie . Viewing ~ as the union of the fli' we associate with the operator domain a ranking

function, ra:f l-*¢ where (,) r~ = k iff ae£~ k. f~± is the operator domain ~2 with i adjoined as a symbol of

rank zero, i.e., (f~±)0=floU{Z}. Below we will fix on a specific operator domain ~ for our language T 0.

We now define flow charts, identity charts, and the operations of composition, pairing and iteration on

flow charts. That these are the essential operations on charts is a key contribution of Elgot (1973). We

obtain an enriched category of flow charts which is small (a set of objects instead of a proper class) by using

the various In], nE~, as the sets of vertices. Elgot (1977) and Elgot and Shepherdson (1977) define an

equivalent large category and consider the skeletal small category determined by isomorphism classes of flow

charts.

In addition to the operations used in Section 4 (composition, pairing, iteration, etc.), we need the

following: 0A:[0]--A is the unique function from [0]=~ to A; and, where A* is the (underlying set of the)

free monoid generated by a set A and f:A-*B is a (total) function, f*:A*-~B* is the "extension" of f which

takes a string al...a n to (al)f-..(an)f.

Definition 5.1. A (normalized) ~±-flow chart from n to p of weight s consists of a triple <b , r ,g> where:

begin function b:[n]-*[s+p]

underlying graph ~: [s] -* [s+p]*

labeling function t ~ :[s]-~ ~2 ±,

173

satisfying the requirement that I (i)rl =((i)g)r£1.

(i)b is called a begin vertex, ie[s] is an internal vertex, i e s + [p] = { s + j l je[p]} is an exit and in particular,

s+ j is the jth exit vertex. (i)~ e is the operation symbol labeling the i th internal vertex; by the above requirement

it must have rank [(i)r [. Note that the exit vertices are not labeled, though the begin vertices are. This

makes composition of flow charts work well. Let Flon±(n,p) be the set of £±-flow charts from n to p. [3

This definition of flow chart employs the convenient definition of directed ordered graph introduced by

Arbib and Giveon (1968). To relate to more familiar notions of flow charts, say the function , :[s]-~[s+p]*

k * takes ke[s] to 1...kue[s+p] . This says that there is an edge from vertex k to each of the vertices k i (i¢[u])

and the natural ordering on [u] induces the (local) ordering on the edges leaving vertex k. This ordering is

essential to distinguish between, for exampte, the "true" and "false" branches of a (binary) test node.

Definition 5.2. The identity fai-flow chart from n to n, denoted In, has weight 0 and:

begin function l[~]:[n]-~ [n]

underlying graph O[n] *: [0] -* [n] *

labeling function 0£, :[0] ~ fa ±. [3

Informally the identity chart from n to n has n begin vertices which are also exits and thus there is no

labeling.

Definition 5.3, The composite of fix-flow charts, F = < b , r / > from n to p of weight s and Fr=<br , r r , f f>

from p to q of weight s t is F o F ' from n to q of weight s + s ~ with:

begin function

underlying graph

labeling function

where f and g are the following functions,

bo f : [n]-*[s+s '+q]

(,r o f*,~%g*):[s+s'] -~[s+s '+q]*

(e / ') : [s+s '] -~ fa~

f= l[s] +b ' : [s+p]-~ [s+s '+q]

g=0[s]+ t[s,+q]:[s~+q]-*. [s+st+q]" [3

Informally FoF ' is obtained by "laying down" F and F' "end-to-end" and by identifying the p exits of F

with the p begin vertices of F r. Note that the labeling works here; the labels of the identified vertices are

those of F t since the exit vertices of F are not labeled. At the same time the vertices of F r are "translated"

(~numbered) by adding s, i.e., a vertex j of F ¢ becomes s+j in F*F ' .

Theorem 5.4. For each n ,p~0, let Flo~z(n,p) be the set of fax-flow charts from n to p (i.e., FIo£±(n,p)).

Then Flo£± is a category with the nonnegative integers as objects, with composition given by Definition 5.3~

and with identities given by Definition 5.2. [3

Without identifying it as such, Elgot (1973) describes a category of normal descriptions over £ which is

essentially the same as Flo£±, and it is also equipped with the operations of pairing and iteration which we

now proceed to define.

174

Definition 5.5. The pairing or coalesced sum of two f~±-flow charts F = < b , r / > from n to p of weight s

and F r = < b r , z r y > from n p to p of weight s t is (F,F r) from n + n r to p of weight s+s I where

where

begin function

underlying graph

labeling function

(b o f,b' o g): [n+ n']-~ [s + s t + p]

(, o f , , og) :[s+s] -*[s+s +p]

(~,e ') :[s+s ']-*~ x

f = 1 [sl +0ls'l + 1 [pl:[S +p]-*- [s+ s' + p]

g=0ls]+ i [s,+pl:[s~+P]-* [s+s ' +P]. I3

Informally, the effect of pairing is to put the two charts F and F t next to each other identifying the p

exits of F with those of F t.

Proposition 5.6. Pairing of 9z-flow charts is associative, i.e.,

(FI,(F2,F3))= ((F I,F2),F3)

for F 1, F 2, F 3 where the pairing is defined. 0

Definition 5.7. For any function f:[n]--~-[p] we define an associated ~±-flow chart f^ from n to p of weight

0; f^=<f,0[p]*,09±>.

The charts f^ are trivial ones which simply allow us to permute or identify exits by composition on the

right; we already have an example which is the identity chart, 1 a -- l[n] ̂ . Using these trivial charts corre-

sponding to maps (Definition 5.7) and coalesced sum or pairing (Definition 5.5), we define the separated sum

of F i from n i to m i (iE[2]) to be the chart

F I G F 2 = (FlOfl^,F2of2 ^)

where f i :[si+mi]--[Sl+S2+ml+m2] are the obvious injections for i -- 1,2. Informally FI~)F 2 is the result of

laying the two charts side-by-side as is the case with pairing, except here there is no identification of exit

vertices.

We want special notation for the flow charts corresponding to certain maps (injections); this is notation

used for the corresponding morpkisms in algebraic theories, vlrst, x(i) :n i n l + . . . + n r is i , where

f: [n i] -- [n I +... + n r]

x i : l -~n where f:[1]-~[n] is the injection sending jE[n i] to n l + . . . + n i _ l + j . Next (actually a special case) n is f^

sends t to i. In general we will not distinguish between the maps (f, above) and the corresponding charts,

n l + . . . + n r n
x(i) and x i .

The last operation is perhaps the most important operation; it is the only one that employs '±'. Thus aH

the definitions above apply to f~-flow charts with arbitrary f~ replacing our special ~±. The idea is that for an

~2±-flow chart from n to n + p of weight s, the 'iterate' of F, denoted F ~r, identifies the ith exit with the ith

begin node, for i--1,...,n, thus introducing 'loops;' the result has p exits and weight s. The construction is

more complicated than that, however, because the ith begin might be the ith exit and this iteration

175

(identification) has to yield an nonterminating loop (±). Worse, the first begin could be the second exit, and

the second begin, the first exit; again the iteration yields non-termination. In general there could a loop of

length n from the ith begin back to the ith begin in the manner indicated and the definition below finds such

nodes and labels them z.

Definition 5.8. Let F = < b j , e > be a ~2±-flow chart from n to n+p of weight s. Further, let
s+n+p s+n+p

f=(X(l) ,b,x(3)) : [s+n+p] -~ [s+n+p] and factor fn to

fn = h o (l s + g + l p) : [s + n + p] . ~ [s + n + p] ,

where h : [s + n + p] - * [s + u + p] and g:[u]-~[n] and u is the smallest natural number yielding such a factorization.

The iterate of F is the flow chart F t from n to p of weight s + u with:

begin function b o h:[n]-~ [s+u+p]

underlying graph (, o h*,~,u)):[s+u]-* [s+u+p] *

labeling function (~,±u):[s+u]-~ £±,

where hU:[u]-~[s+u+p] * sends each ie[u] to hE[s+u+p]* and xU sends each ie[u] to ±¢£±.

Now we present a signature (ranked alphabet) £ which we use to construct £ z f l o w charts for the target

language T O In that alphabet we include some of the symbols from the {int, Bool}-sorted signature ~ of Section

2.

£1 = {l°adx' s t ° rex lxEX] u {switch} u Ow~{int}, ~int,w
~2 = UwE{int}* ~Bool,w
~2 = 0 , n = 0 , 3 , 4

This signature determines the category Flo#l of ~x-ftow charts via Definition 5.1 and Theorem 5.4. This is

T0!

Once the operations and tests (£) have been interpreted in a (rational or continuous) algebraic theory,

the interpretation of the flow charts is uniquely determined by certain natural preservation properties. The

mathematics of this interpretation is postponed to Section 7; here we provide an interpretation (it is the

expected interpretation) of £ in Smm A where A = Stkx Env (stacks cross environments):

Stk = [~-~Z] Env = [X-~7/].

For any set A, Sum A is the algebraic theory whose morphisms from n to p consist of all partial functions from

A x [n] to Ax[p] . U o is Sumstk×En v. (See Elgot (1973) where this theory is denoted [A], or ADJ (1976b).)

Composition in Sam A is function composition, identities are identities from Set, and tupling of n functions,

f i :A-~ax [p] gives (fl,...,fn):[n]-~,[p] which takes <a , i> to (a)f r For distinguished morphisms,

A
(S1) x? = t i :A-~Ax[n] ,

A ,
where ~'i Is defined in Section 4 (a ~ <a, i>) .

Note that we have taken stacks to be infinite to make the definitions simpler. For example we will write

Vl.V2....oVn-p where v i e Z and peStk to denote the stack whose first n elements are vt,...,Vn, and whose

"rest" is #. The usual functions are associated with stacks: push :Stkx~-~Stk ; and, pop:Stk-~Stkx2L

176

($2) <p ,v>push = v-p

(S3) (v.p)pop = <p,v>.

With the identification of A with A x [1], the interpretation, I:£-~ Sum A (A = Stk x Env), is given in II-19

below; it assigns the expected partial function to every operation and test that can occur in a To-flow chart.

As we mentioned above this uniquely determines the interpretation of every flow chart (Section 7).

(I1) <p, e>(loadxI) = <(x)e .p , e> For x~X

(I2) <v-p , e>(storexI) = <p, e [x /v]>

(13) <vl .v2op, e>(switchI) = <v2ovlop, e>

(14) <p, e>(cI) = <CsOP, e> For eE~int, h

(I5) <vop, e>(aop l I) = <(v)aopls*P, e> For aopl • ~int, int

(I6) <V2.V 1 op, e>(aop2I) = <(vl,v2)aOp2s.P, e > For aop2E ~int, int int

(I7) <p, e>(beI) - < < p , e> , bcs> For bceEBool, X

(18) <v .p , e>(propI) = < < p , e>, (v)prOPs> For prop~Boot , int

(I9) <v l °v2 .P , e>(relI) -- < < p , e> , (Vl,V2)rels> For relE~Bool, int int

6. THE TARGET ALGEBRA OF FLOW CHARTS, T, AND THE COMPILER

Now we 'extract' a G-algebra T from T O as outlined in the introduction. Take T<ae>=T<st>=Flo~±(1,1)

and T<be>=Flo£±(1,2), where £ is the ranked alphabet introduced at the end of the last section. We make T

into a G-algebra where G is the context-free grammar of Section 3, and we do that by defining operations on

£±-flow charts corresponding to each of the seventeen productions of G. This is the construction of the

compiler because initiality of L gives the compile function (homomorphism) 7:L-~T. In the definitions of T's

operations below, F, F1, F 2 range over T<ae>=T<st>=Flo£ (1,1) and P, PI ' P2 range over

T<be>--Flo£±(1,2). Thus, for example, in T l l , the operation result T, is just the serial composition of two

arbitrary single entry, single exit flowcharts F 1 and F 2. If F 1 and F 2 are the flow charts compiled from a

statement and an arithmetic expression, respectively, then F 1 will leave the stack as it found it and F 2 will add

a single value to the stack. This last statement is a fact that one could conclude from compiler correctness,

but there is nothing like this presumed or asserted in the specification of the compiler itself.

(T1) Cont inue T = 11

(T2) (F)x := T = F°store x

(T3) (P,F1,F2)ifthenelseT = po(Fz,F 2)

(T4) (F1,F2); T = F I = F 2

(T5) (P,F)whi ledo T = (P ° (F ® 11)) ?

(T6) e T = c

(T7) x T = load x

(T8) (F)aopl T = F o a o p l

(T9) (F1,F2)aop2 T = FIOF2oaop2

(TI0) (P,F1,F2)cond T = P°(FI ,F 2)

I 77

(T1 t) (F1,F2)resultT = F 1 oF 2

(T12) (F1,F2)letx T = loadxoFIostorexoF2oswitch°storex

(T13) be T = be

(T14) (F)proPT = Foprop

(T15) (F1,F2)rel T = F 1 oF2orel
2 2

(T16) (P)~T = P°(x2,xl)

(T17a) (PI,P2)^ T = PIO(P2,x~)
2

(T17b) (P1,P2) VT = P1 o (Xl,P2)

7. SEMANTICS FOR FLOW CHARTS, THE TARGET THEORY U 0

We already have defined the target theory, U 0, to be the algebraic theory SumStkxEnv; we need the

interpretation functor. Rather than going directly from Flea±to SnmStkxEn v it is convenient to factor that

interpretation through the continuous algebraic theory freely generated by 9, CT~ (c.f. ADJ 1975, 1976b,

1976e, 1977). Recall that CTg(n,p) consists of all n-tuples of countable partial trees on the ranked alphabet

9 and variables, Xl,...,Xp; the composition operation is simultaneous substitution. The following is a variation

of an important theorem first proved by Elgot (1973).

Theorem 7.1. There is a unique functor Un (for unfolding) from Flof~x to CT a that preserves maps,

pairing, iteration, x, and the primitives fL fq

Theorem 7.2. (ADJ 1977) For any u-continuous algebraic theory T and any interpretation I:9-~T there

exists a unique ~-continuous functor I#:CTa-~T that preserves maps, pairing, iteration, z and the interpreta-

tion (I) of the primitives fL f'l

The combination of Un from Theorem 7.1 and I # from Theorem 7.2 (with the interpretation t of Section

5) gives us an interpretation (unique subject to certain conditions) of all 9-flow charts; the composite UnoI #

goes from Floai to SnmstkxEn v. It is now a simple matter to describe the algebra U for the interpretation of

the algebra of flow charts because each of the operations of T (Section 6) is defined in terms of operations

preserved by the composite Un o I #.

8. THE SEMANTIC ALGEBRA FOR FLOW CHARTS, U

Take U<ae>=U<st>----SamStk×Env(1,1) and U<be>=SumStk×Env(1,2). We make U into a G-algebra (one

operation of appropriate arity for each production of G) by translating the definition of T in Section 6. This

translation is possible because each of the operations used in the definitions in Section 6 (on right-hand sides)

is preserved by the composite UnoI #, In the displayed equations defining U, the variables ~, ffl, and ~2 range

over U<ae>=U<st> while p, PI and P2 range over U<be>.

(U1) Con t i nue U = 11 : lStkxEn v

(U2) (¢)X:= U = ~,o (storexI)

(U3) (p ,~ l , ~2) i f t hene l seu = po(~l,ep2)

(U4) (~b1'¢~2) ;U : dPl o ¢~2

178

(U5) (p,6)whiledo U = (p o (~+ 11)) t

(U6) C u = cI

(UT) x U = toadxI

(U8) (~)aopl U = ~ o (aoplI)

(U9) ((~l,e~z)a°P2u = ~1 ° ~b2 o (aop2I)

(U10) (p,d?l,~2)cond U = p o(q~l,O2)

(U11) (¢l,¢2)resultu = ¢1 ° ¢2

(Ut2) (¢l,¢2)letx U = (loadxl)O¢lO(storexI).o¢2o(switchI)o(storexI)

(U13) be U = bcI

(U14) (if) prOPu = ~ o (propI)

(U15) (~l,eP2)retu = ~lo~2o(relI)
2 2

(U16) (P)~U = #°(x2,xl)

(U17a) (Ol'Pz)^C = Pl o(P2 'x2)
2

(U17b) (pl,P2)Vu = plO(Xl,P2)

Let ~ be the restriction of the composite UnoI # to the carriers of T. Then ~ is a G-homomorphism

because of the way U was defined (and the preservation properties of UnoI #) which gives algebraic semantics

to the algebra T of flow charts.

9. THE ENCODING FROM PROGRAM MEANINGS TO FLOW CHART MEANINGS

As the final step before the proof of the correctness of the compiler (commuting of -k) we must define

the function e from M to U. In particular we must define e s for s¢{<ae>, <s t> , <be>}. The proof that ~r

commutes then amounts to proving that e is in fact a homomorphism. This is accomplished in the next section.

We recall the types of e:

e<st>: M<st> = [Env---o-)Env]

e<ae>: M<ae> = [Env---o~Envx2Z]

e<be>: M<be> = [Env-o---Envx[2]]

-~ U<st> = [StkxEnv-c-*StkxEnv]

-~ U<ae> = [StkxEnv--o-*StkxEnv]

-- U<be> = [StkxEnv--~-StkxEnvx[2]]

The definition of the bottom line is now given by the following.

(B1)

(B2)

(B3)

('r)e<st> = 1stkx~"

(a)e<ae> = (tstkXa) o [~rl,Cr3,rr2] o (pushx 1En v)

(~)8<be> = 1stkX ft.

10. T H E C O R R E C T N E S S PROOF: e IS A H O M O M O R P H I S M

To emphasize again the main point made by Morris in 1973 and, we believe, carried to fruition here, the

correctness proof for the compiler (~r commutes) now reduces to seventeen little proofs or lemmas; one

lemma for each operation ~ of G (Section 3). We must prove that e is a homomorphism, i.e., that

179

((vv . . . ,~ ,) fM)e = ((v l)e , . . . , (v .) e) f U

for each of the seventeen instances of ~ as given in M1-M17.

This proof process has some very intriguing aspects. The proofs of the lemmas are all equational, each

line being justified by some previous line, some definition (M1-M17, U1-U17, and B1-B3) or some fact about

the operations involved in those definitions. We divide these latter facts into three groups.

(E) Properties of the underlying data type.

(F) Properties of the "storage" operations (push, fetch x, etc).

(G) Properties of the set-theoretic operators like composition, identities, tupling, sum and product.

Even though we make the advice that all properties of the underlying data type(s) be included in the

specification of the language (El-E27), we will have no need for these facts in connection with the proof of

compiler correctness. Presumably program correctness and program transformation in the proposed style

would use properties of this first kind.

The second kind of justification will depend on the particular kind of mathematical semantics given for

the languages (source and target). In our case we must relate functions like those associated with loadx,

store x, switch, with those used in the semantics of M like fetch x and assign x. Each of the assertions in this

group has a simple set-theoretic proof, depending, in part, on properties of the third kind (G). The first nine

(F1-F9) are reformulations of the definition of the interpretation function I (11-19). In the latter case we

chose to give "argument - value" presentations of the meanings of the flow chart primitives because such are

much simpler and clearer than the alternative "closed form" presentations below. However, we Call

equationally manipulate these closed form characterizations, something we could not do with I1-I9. And it is

the equational (algebraic) proof method that we are aiming for in the details of the correctness argument.

(F1) loadxI =

(F2) storexI =

(F3) switchI =

(F4) cI =

(F5) aoplI =

(F6) aop2I =

(F7) bcI =

(F8) propI =

(F9) rell =

(FX)

(FXa)

(1Stk x fetChx) o [,r 1,~r3,~r2] o (push x 1Env)

(pop x 1Env) o ['ffl'~r3"~'2] o (1Stk x assignx)

(popx 1Env) o (popx 17/×Env) o [~r 1,,n.3,~-2,,n-4] o (pushx 17/xEnv) o (push x 1Env)

(1Stk x C s x 1Env) o (push x 1Env)

(pop x 1Env) o (1Stk x aop 1S x 1Env) o (push x 1Env)

(pop X 1Env) o (pop X 17, / X 1Env) o (1Stk X aop2 S x 1Env) o (push x 1Env)

lstk x Env × bcs

(pop x 1Env) o [*r 1,*r3,~r2] o (1Stkx Env X prOPs)

(pop x 1Env) ° (pop X 17/× Env) o [~r l'*r3'*r2'*r4] ° (1Stk x Env X rels)

pushopop = lstkx W

[,rl,~r3,~2] o (pushx 1Env) o (pop x 1Env) o [*r 1,~r3,1r2] = 1Stkx xEnvx 7/

The last are the most interesting properties for they are general and, in effect, category theoretic.

Presumably the set of these equations is pretty small and will not keep changing with different languages or

styles. This suggests the plausibility of Mosses' approach to "making denotational semantics less concrete,"

(Mosses (1977, 1978)).

180

(GO) 1Aof

(G1) (fog) oh

(G2) (fxg) xh

(G3) lAX 1B

(G4) lAX(fog)

(G5) (fxg) ~ (hxk)

(G6) (fx 1C) O(1Bxg)

B
(C1) 1AXL j

(C2) lAX (f,g)

(C3) 1A x (f+g)

(C4) t A x f t

(C5) (f,g) oh

The following identities are

projection functions.

(P1)

Let q,r:[n]-~ [n] be permutations of [n].

= f = f o 1 B

= fo(goh)

= fx (gxh)

= lAx B

= (1AXf)*(1AXg)

= (foh)x(gok)

= fxg = (1Axg)*(fXlD)

AxB
= tj

= (1AXf, lAXg)

= (1Axf)+(1Axg)

= (IAXf) t

= (f o h , goh)

necessary for permuting arguments for functions, i.e., manipulating tuples of

[,n'l,,n'2,...,,n'n] = 1

(P2) [~rlq,~r2q,..,~raq]°[~rlr,~r2r,...,Irnr] = [~lrq,~2rq,...,~rarq]

(P3) IAX['n'lq,~2q,...,Vrnq] = [~rt,~lq+t,~r2q+i,---,~nq+l]

For monadic functions fi:Ai~Bi there is a convenient general rule for permuting arguments:

(P4) (fl × '" x fn) o [~rlq,...,qrnq] = [,/r lq,..,,,/rnq] o (flqX ... x fnq).

But when the functions involved have cartesian products for sources and/or targets, then the corresponding

scheme has a very complicated statement. Below we list the special cases of that general scheme which we

will need in proofs to follow. Assume fi:Ai-~Bi, c:-~C, g:CIXC2-~D and h:C-~DlXD 2.

(P4a) (flxf2xc)o[~rl,~r3,~r 2] = f l x c x f 2

(P4b) (gxfl×f2)°[~l ,~3,~2] = [~l,¢r2,~4,cr3]°(gxf2×fl)

(P4c) (flxgxf2)°[~rl,~3,qr2] = [~l,~r4,~r2,~r3]°(flxf2xg)

(P4d) (flxf2xg)*[~rl,~r3,~ 2] -- [~rl,~r3,~r4,~2]°(flxgxf2)

(P4e) [~rl,~r3,~r2] o (hx f 1 ×f2) = (h×f2×fl) o [~rl,~r2,~r4,~3]

(P4f) [~r 1,~r 3,~r2] o (fl x h x f2) = (fl x f2 x h) * [~r 1,~r3,~r4,~r 2]

(P4g) [~rl,~r3,tr2] ° (fl xf2xh) = (fl xhxf2) ° [~rl'Ct4'~r2'~'a]

To save space in displaying the proofs we will abbreviate the isomorphism [~rlq,...,~rnq] with the sequence

[lq...nq] which will not need commas since n<10 (thank goodness). In addition we will abbreviate Stk, Env

and 77 by S, E and Z respectively. Use of associativRy of o (G1) and of x (G2) will not be mentioned

explicitly in the proofs.

Now we proceed with the 17 (actually 18 because ^ and v are treated separately) proofs. Each proof

will be a line-by-line proof with justifications (on the right) coming from previous facts and definitions.

181

Observe the form; they begin with the definition in M, the definition of e (B1,2,3), and then the various facts.

In the middle we are justifying what at times seem to be tediously manipulative steps; this is particularly true

in proofs (9), (12) and (15), and in them, in applications of (FX), (FXa) and (P4a-P4g). The proofs

conclude with the definition (again) of e and of operations in U.

(1) (c o n t i n u e M) e < s t > = (IE)e<st>

= l s x l E

= 1Sx E

= c o n t i n u e U

(2) ((a)X:=M)8<st> = (aoassignx)e<st>

= I s x (a o assign x)

= (l s x a) * [1 3 2] o [132] o (lsxassignx)

-- (l s x a) * [I32] o (push x 1E) o (popx 1E) o [132] * (l s x assignx)

---- (l s x a) o [132] o (pushx 1E) * (stOrexI)

= (a)e<ae>* (storexI)

= ((a)e<ae>)X:= U

(3) ((fl ,Tl:2)ifthenolseM)e<st> = (flo('rl,¢2))e<st>

= l s× (/~o (1-i0-2))

= (1S×fl) o (1S×(~-1,r2))

= (lsXfl) o (l s x ¢ l , l s x z 2)

= (f l)e<be>o((T1)e<st>,(~2)e<st>)

= ((f l)e<be>,('Cl)e<st>,(r2)e<st>)i f thenelse U

(4) ((rl,.r2);M)e<st> = (,rlO,r2)e<st>

= lSX ('rio'r2)

= (IsX¢I)O(lsX~2)

-- ('rl)e<st> * (,r2)e<st>

= (('rl)e<st>, ('r2)e<st>); U

(5) ((fl,~-)whiledOM)e<st> = ((flo(Z+lE))*)e<st>

---- 1sX(f lo(r+ lE)) ?

= (IsX(/~o(r+IE)))*

= ((l sxf l) o (l s x (, + 1E)))*

= ((Isx/3) o ((l s x ,) + (l s x 1E))) ?

= ((l sxf l) o ((l s x ,) + tSxE)) ?

= ((fl)e<be> o (('r)e<st>+ 1E×S)) t

---- ((fl)e<be> o ((r)e<st> + 11)) *

= ((/3)e<be>,(~)e <st>)whiledo U

(M1)

(B1)

(03)

(u1)

(M2)

(B1)

(G4)

(FXa)

(F2)

(B2)

(U2)

(M3)

(B1)

(G4)

(C2)

(B1,B3)

(u3)

(M4)

(BI)

(G4)

(B1)

(u4)

(M5)

(B1)

(C 4)

(04)

(c3)

(63)

(B1,3)

(u1)

(us)

(6) (CM)e<ae> = (1 E x C s) e < a e >

= (l s x 1EXes)*[132] o (pushx IE)

= (IsXCsX IE) o (push× 1E)

(M6)

(B2)

(P4a)

182

= cI (F 3)

= c u (U 6)

(7) (XM)e<ae> = (fetchx)e<ae> (M7)

= (1S x fetch x) * [13 21 o (push x 1 E) (B2)

= loadxI (F1)

= x M (U 7)

(8) ((a)aOplM)e<ae> = (aO(1E×aopls))e<ae> (M8)

= (l s x (ao (1EX aopls))) 0[132] o (pushx 1E) (B2)

= (l s × a) o (l s x 1Exaopls) o[132] * (push× IE) (G4)

= (l s x a) o[132]o(lsxaoplSX 1E)o(pushx 1 E) (P4)

= (l s x a) * [132] o (push x 1E) o (popx 1 E) o (1sXaOplsx 1E) o (pushx 1 E) (F2)

= (a)e<ae> o (pop x 1E) o (l s x aoplSx IE) o (pushx 1E) (B2)

= (c0e<ae> o (aoplI) (F6)

= ((a)e<ae>)aopl U (US)

(9) ((%,a2)aop2M)e<ae>= (alo(a2xlz)o[132]o(1ExaOp2s))e<ae> (M9)

= (l s x (% o (a2x lz) o [132] o (1Ex aOp2S))) o[132] o (pushx 1E) (B2)

= (l s x (% o (a2x lz))) o (l s × [132]) * (l s x 1Ex aop2 s) o [132] o (push x 1 E) (G4)

= (l s x (% o (a2x tz))) o[1243]o(ls× 1Ex aOp2S) o[1321o (push x 1E) (P3)

- - (l sX (a I o (azx lz))) o [1243] o[1342] o (1 s x aop2 s x 1 E) o (pushx 1E) (P4d)

= (l s x (a l . (a2 x lz))) o[1432] o (l s x aop2sX 1E) o (pushx 1E) (P2)

_-(lsx (al ° (a2 x lZ))) o[1432] o (pushx lzX 1E) o (popx lzX 1E) * (lsX aOp2sX 1E) o (pushx 1E) (FX)

= (l s X (a 1 o (a2x lZ))) o[1432] o (push x l z x 1 E) o (push x 1 E) o (popx 1 E) o

(popx l z x 1E) o (lsxaOp2sX 1E)* (pushx 1E) (FX)

=(1 s x (% o (a 2 x lZ))) o [1432] * (push x l z x 1 E) o (push x 1E) o (aop2I) (F6)

---(lsx %) o (I s x ~2x 1 z) o[1432] o (push x 1Z x 1 E) o (pushx 1E) o (aop2l) (G4)

_-.(lsx %) o (1S xct2x Iz) o[1423] o[1243] o (pushx l zx 1 E) o (pushx IE) o (aop2I) (P2)

= (l sX al) o [132] o (l s x lzX a 2) *[1243] o (push x l z x 1 E) o (push x 1 E) o (aop2I) (P4g)

= (l s x %) o [132] o (I s x l z x a 2) o (push x 1E× lZ) o [132] o (push x 1 E) o (aop2I) (P4b)

= (l s x a t) o[t32] o (pushx IE) o (l sxa2) o [132] o (pushx 1E) o (aop2I) (G6)

= ((a l)e<ae>) ° ((a2)e<ae>) o (aop2I) (B2)

=((al)e <ae>,(a2)e <ae>)aop2 U (U9)

(10) (([~,al,a2)cOndM)e<ae> = (flo(Otl,Ot2))e<ae> (M10)

= (l s x (/3° (~pa2))) o [132] o (push x 1E) (B2)

= (l sx f l) o (l s x (al,a2)) o[132]o (pushx t E) (G4)

= (lsx/3) o (l s x a l , l s x a2)o [132] o (pushx 1E) (C2)

= (lsx/3) o ((lsXCtl) o[132] o (pushx 1E),(lsxa2) o[132] o (pushx 1E)) (C5)

= (/3) e<be> o ((C~l)e<ae>,(a2)e<ae>) (B2,B3)

= ((~)e<be>,(al)e<ae>,(a2)e<ae>)cond U (U10)

(11) (r,a)rosultM = (roa)e<ae > (M l l)

= (1 s x ('r o a)) o [132] o (pushx tE) (B2)

t83

(12)

-- (l s x ~ ') o (l s x a) o [1 3 2] o (p u s h x 1 E) (G4)

= (¢)e<st> o (a)e<ae> (B1,B2)

= (('c)e<st>,(ct)e<ae>)resultu (U11)

((a l ,a2) le txM)e<ae>

= (fetch x o ((a 1 o assign x o a2) x l z) o [132] o (assign x x l z))e<ae> (M12)

= 1S x (fetChxO ((a l o assignxO a2) x 1z) o [132] o (assignx x l z)) o [132] o (push x 1E) (B2)

= (l s x fetChx) * (l s x (c~l oassignxO a2) x l z) o [t243] o (l s x assignxX l z)) o [132] o (p u s h x 1E) (G4,P3)

-- (l s x fetChx) o (l s x (a l o assignxo c~2) x t z) o [1243] o [1423] o (l s x z X assignx) o (p u s h x 1E) (P4c ,G3)

= (l s x fetehx) o (I s x (a 1 o assignx o c~2) x lz)o [1324] o (l s x z X assignx) o (p u s h x tE) (P2)

= (l s x fetchx) o (l s x (c~ 1 o assignxO c~2) x l z) o [1324] o (p u s h x 1ExZ) o (l s xass ignx) (G6)

-- (l s x fetchx) o (l s x (a 1 o assignx o a2) x Iz) o [1324] o

(push x 1ExZ) o [132] o (push x 1E) o (p o p x 1E) o [132] ° (l sX assignx) (G0 ,FXa)

= (I s x fetehx) o (I s x (a 1 o assignx o a2) x 1 z) o [1324] o (push x 1ExZ) o [132] o

(push x 1 E) o (stOrexI) (F2)

= (l s x fetchx) o (l s x (a l o assignx o a2) x lZ) o [1324] o [1243] o (p u s h x 1ZxE) o

(push x 1 E) o (stOrexI) (G3 ,P4b)

= (l s x fe tch x) o (l s x (a 1 o assignx o c~ 2) x 1 z) o [13421o (push x lZ×E) o (push x 1 E) o (storexI) (P2)

-- (1 s x fetchx) o [132] ° (p u s h x 1E) o (pop x 1E) o [132] o (I s x (a 1 o assign x o a2) x l z)

o [1342] o (push x lZ×E) o (pushx I E) o (stOrexI) (G0 ,FXa)

= (loadxI) o (popx 1E) o [132] o (l s × (aj o assignx o a2) x l z) o [1342] o

(p u s h x lZxE) o (push x 1 E) o (storexI) (F1)

- (loadxI) o (p o p x I E) ° (l s × z X (a 1 ° a s s i g n x ° a 2)) ° [1 3 4 2] ° [1 3 4 2] o

(push x 1Z x E) ° (push x 1E) ° (st°rexI) (P4f)

= (loadxI) o (p o p x 1E) o (1 sxzX (a 1 o assignx o ct2)) o[1423] o

(p u s h x lZxE) o (push x IE) o (stOrexI) (P2,P1)

= (loadxI) o (1 s x (a 1 o assign x o a2)) o (pop x 1E×Z) o [1423] o

(push x lZ×E) o (push x 1E) ° (stOrexI) (G6)

= (loadxI) ° (1 s x a l) o (1 s x assignx) o (1 s x a2) o (pop x 1E×Z) o [1423] o

(p u s h x IZ×E) o (push x 1E) o (storexl) (G4)

= (loadxI) o (l s x a l) o [132] o (p u s h x 1E) o (p o p x 1E) o[132] o

(l s x a s s i g n x) o (t s X a 2) o (pop x 1ExZ) * [1423] o

(push x 1ZxE) o (p u s h x 1E) o (stOrex I) (FXa)

_.. (loadxI) o (a l) e<ae> * (storexI) o (l s x a 2) o (pop x 1ExZ) *

[1423] o (push× lZ×E) o (push x 1E) o (storexI) (B2,F2)

= (loadxI) o (a 1)e <ae> o (stOrexI) o (1S x a2) °

[132] o (p u s h x 1E)o (p o p x 1E) o[132] ° (pop X 1ExZ) o

[1423] ° (push x lZxE) o (p u s h x 1E) o (stOrex I) (FXa)

= (loadxI) o (a l) e<ae> ° (stOrexI) o (a2)e<ae> o (pop× 1E) o[1321o

(p o p x 1Ex Z) o [14231o (push x lZxE) o (p u s h x tE) o (storexI) (B2)

= (loadxI) o (a l) e<ae> o (storexI) o (a2)e<ae > o (p o p x 1E) o

(p o p x IZ×E)o [1243] o [1423] o (push x lZ×E) o (p u s h x 1E) o (stOrexI) (P4e)

184

= (loadxI)O(al)e<ae>O(storexI)o(a2)e<ae>O(popxlE)*

(pop x l z x E) ° [1324] o (push x lZ × E) ° (push x 1 E) ° (st°rexI) (P2)

= (loadxI) o (al)e<ae> o (storexI) o (a2)e<ae> o (switchI) o (storexI) (F3)

-_ ((al)e <ae>,(a2)e <ae>)letxu (UI2)

(13) (bCM)e<be> _-- (1EXbCs)e<be> (M13)

= l sXlEXbCs (B3)

_..lSxEXbe s (G3)

-- bcI (FT)

= b e U (U 1 3)

(14) ((a)proPM)e<be > = (aO(1EoproPs))e<be> (M14)

= l s x (a . (1ExproPs)) (B3)

= (l s × l a) o (l s x 1ExproPs) (G4)

= (l s x la) o[132] o[132] o (l s × 1ExproPs) (P2,P1)

= (l s x la) o [132]* (push x 1E) o (popx 1E) o [132] o (1sX 1E× prop s) (FXa)

= (a)e<ae> o (popx 1 E) o [132] o (l s × 1Exprop s) (B2)

= (a)e<ae> o (propI) (F8)

= ((a)e<ae>)orop U (U14)

(15) ((al,a2)ralM)e<be> = (a l* (a2x lz)* [132]° (1Exre l s))e<be> (M15)

= l s x (a t* (a2x lz)*[132] o (IE×rels)) (B2)

= (l s x (al o (a2x lz))) o (lsX [132]) o (1s×Exrels) (G4)

= (lsX (al o (a2x lz))) o [1243]. (lsxEXrels) (P3)

= (l s X a l) o (l s x a 2 x lz) o[1243] ° (lsxEXrels) (G4)

= (l s x a l) o [132]o (push× 1E). (popx 1E) o[132]o (l s × a 2 x lZ) °[1243] o (l s×Exre ls) (FXa)

= (al)e<ae> ° (popx 1 E) ° [132] o (l s x a2× 1 z) *[1243] o (l s×Ex rel s) (B2)

= (al)e<ae> o (popx 1 E) * (Is×zX a 2) ° [1342] ° [1243] ° (l sxEXrel s) (P4f)

= (al)e<ae>O(popxlE)O(ls×zXa2)o[1324]o(ls×Exrels) (P2)

= (al)e<ae> o (lsX a2) o (popx 1E× z) *[1324] * (ls×EX rels) (G6)

_. (a l)e<ae>o(l sXa2)o[132]o(pushx lE) . (popx lE)O[132]°(popx lE×z)O[1324]o(l s×Exre ls) (FXa)

-... (al)e<ae> o (a2) e<ae> ° (popx 1 E) o [132] o (pop x 1E× z) o [1324] o (1 s ×EX rel s) (B2)

= (al)e<ae>O(a2)e<ae>.(popxlE)o(popxlzxE) , , [1243]o[1324] . (l s×Exrels) (P4e)

= (al)e<ae>O(a2)e<ae>O(popXlE)O(pOpxlZxE)O[1423]o(ls×Exrels) (P2)

= (al)e<ae> o (a2)e<ae>* (relI) (F9)

= ((al)e<ae>,(a2)e<ae>)rel U (U15)

(16) ((~)~Me<be > = (fl .(t2¢l))e<be > (M16)

__ l s x (flo(~2¢1)) (B2)

= (l sxf l) o ls×(t2,L1) (G2)

__ ~e<be> o ((lsX ~2),(lsX ~1)) (B2,C2)
2 2 (C1,S1) = /3e<be> o (x2,x ~)

= (/3e<be>)~ U (U16)

(17a) ((fll,fl2)^M)e<be> = (fllO(Ll,fl2))e<be > (Ml7a)

(17b)

185

= l s x (/~I ° ('q'i2)) (B2)

= (l s X t l) o 1sX (~1,i2) (G2)

= (t l) e < b e > O (I s X ~ l , l s x i 2) (B2,C2)

= (l l) e < b e > O (l s X ~ l , (t 2) e < b e >) (B2)

= (t l)e<be>O(X21,(t2)e<be>) (S1,C1)

= ((t l) e<be>, (t2)e<be>) ^U (U17a)

((i l , t2)VM)e<be> = (Ell°(t2'~2))e<be> (M17b)

= 1sX (t l * (i2,t2)) (B2)

= (l s X i l) o l sx(i2 , t2) (G2)

= (i l)e<be> o (l s x fl2,1S x ~2) (B2,C2)

= (t l)e<be> o ((i2)e<be>,l S x L2) (B2)
2

= (fll)e<be> o ((i2)e<be>,x2) (S1,CI)

-- ((i l) e<be>,(i2)e<be>) Vu (U17b)

11. CONCLUSION

The eighteen proofs, yielding the homomorphism property of e, turned out to be considerable longer and

more cumbersome than we had expected. But they are equational and we believe that we have isolated the

properties used for the correctness proof. That list of properties is itself somewhat of a motley assortment

and we feel that it can and should be cleaned up. We hope, however, that the reader will recognize that

something very different is going on in that the compiler correctness is being developed in a machine

checkable equational framework despite those rough edges.

Perhaps it is typical of detailed and exhaustive correctness efforts, but the process of carrying out the 18

proofs with unflinching detail uncovered several errors in the preceding definitions. This was particularly true

of the more difficult (more lengthy) proofs involving the more complex definitions: 9, 12, and, 15. These

proofs pointed to errors in the source definition of binary arithmetic operation evaluation (M9), of the block

construct (M12), and in the definition of "switehI" in terms of pop and push (F9).

Note also the important faet that the i8 proofs are independent; that is, each programming feature is

analyzed independent of the others. So long as the language can be extended within the semantic definition

of Section 4, that extension can be checked without consideration of the rest of the correctness proof.

We hope, in the future, to carry out such extensions; even to classify what extensions are possible. Also,

if the extension requires new semantic domains for the denotational semantics of the language (the carriers of

M) we hope that there will be a uniform way to carry over the proofs already done.

Finally, we hope to carry out the same kind of algebraic arguments with alternative semantic definitions;

alternatives to ~ (compile) and alternatives to 0 (source semantics). One would hope also to find translations

of the flow chart language so that correctness of a composite translation would be obtained by "pasting"

commuting squares together.

186

ACKNOWLEDGEMENTS

We have had a continuing interest in the "compiler correctness problem." In the spring of 1974 that

interest was active; Susanna Ginali did a thorough study of the McCarthy and Painter (1967) and Burstall and

Landin (1969) papers while visiting IBM. There were several fruitful discussions with Joe Goguen and

Susanna Ginali at that time. An important discussion with Calvin Elgot occurred during the summer of 1978

at which time we realized that T O should be the category of flow charts, rather than the quotient rational

theory or the continuous algebraic theory of countable trees. We are deeply indebted to Susanna Ginali, Joe

Goguen and Calvin Elgot for their help and encouragement in general and for their contributions to our

progress on this problem in particular.

This work on compiler correctness was initiated following a series of lectures on algebraic semantics for

the Summer School on Foundations of Artificial Intelligence and Computer Science, Pisa, Italy, 19-30 June

1978, by JWT. We were seeking a significant and informative example employing many of the algebraic

concepts. This example (though not developed to the point it is here) was used for the 3rd Advanced Course

on Foundations of Computer Science, Amsterdam, The Netherlands, 21 August - 1 September, 1978. An

earlier version of this paper was presented at the Sixth International Colloquium on Automata, Languages and

Programming in Graz, Austria, July, 1979. We are grateful to the organizers and sponsors of the summer

schools and the colloquium for the opportunity to discuss and promote our ideas on algebraic semantics.

We are also very grateful to Andrzej Blikle, Steve Bloom, Calvin Elgot, Marie-Claude Gaudel, Robin

Milner, Barry Rosen and the ICALP '79 and TCS referees for discussions, specific suggestions and corrections

based on earlier drafts of this paper.

BIBLIOGRAPHY

ADJ (Authors:

(1975)

(1976)

(1976a)

(1976b)

(1976c)

J. A. Goguen, J. W. Thatcher, E. G. Wagner and J. B. Wright)

(JAG, JWT, EGW, JBW) "Initial algebra semantics and continuous algebras," IBM Research

Report RC-5701. November 1975. JACM 24 (1977) pp. 68-95.

(JWT, EGW, JBW) "Specification of abstract data types using conditional axioms," IBM

Research Report RC-6214, September 1976.

(JAG, JWT, EGW) "An initial algebra approach to the specification, correctness, and

implementation of abstract data types," IBM Research Report RC-6487, October 1976. To

appear, Current Trends in Programming Methodology, 1V: Data Structuring (R. Yeh, Ed.), pp.

80-149, Prentice Hall, New Jersey.

(EGW, JBW, JAG, JWT) "Some fundamentals of order algebraic semantics," Lecture Notes in

Computer Science 45 (Mathematical Foundations of Computer Science 1976), Springer-Vertag,

pp. 153-168; IBM Research Report RC 6020, May 1976.

(JBW, JWT, EGW, JAG) "Rational algebraic theories and fixed-point solutions," Proceedings

17th IEEE Symposium on Foundations of Computing, Houston, Texas, October, 1976, pp.

147-158.

187

(1977) (EGW, JWT, JBW) "Free continuous theories," IBM Research Report RC 6906, December

1977. Accepted for publication, Fundamenta Informaticae.

Arbib, M.A. and Giveon, Y.

(1968) "Algebra automata I: Parallel programming as a prolegomena to the categorical approach,"

Information and Control 12 (1968) 331-345.

Birkhoff, G. and Lipson, J.D.

(1970) "Heterogeneous algebras," J. Combinatorial Theory 8 (1970) 115-133.

Burstall, R.M. and Landin, P.J.

"Programs and their proofs: an algebraic approach," Machine Intelligence 4, 1969. (1969)

Elgot, C.C.

(1973) "Monadic computation and iterative algebraic theories," IBM Research Report RC 4564,

October 1973. Proceedings, Logic Colloquium 1973, North Holland (1975) 175-230.

(1977) "Some geometrical categories associated with flow chart schemes," IBM Research Report RC

6534, May 1977. Proceedings, Conference on Fundamentals of Computation Theory, Poznan-

Kornik, Poland, 1977.

Etgot, C.C. and Shepherdson, J.C.

(1977) ' A semantically meaningful characterization of reducible flow chart schemes," IBM Research

Report RC 6656, July, 1977.

Fiebrich, Rolf-Dieter

(1978) "Generation of correct compiler parts from formal language descriptions," LRZ-Bericht Nr,

7802/1, Institut fiir Informatik der Ludwig- Maximilians-Universit~t, M0chen, 1978~

Gaudel, M.C.

(1980) "Specification of compilers as abstract data type representations," draft manuscript, IRIA,

Paris France. Presented, Workshop on Semantics Directed Compiler Generation, Aarhus,

Denmark, January 1980.

(1980a) Thesis, March, 1980.

Gremano, G. and Maggiolo-Schettini, A.

"Proving a compiler correct: A simple approach," JCSS 10 (1975) 370-383. (1975)

Guttag, J. V.

(1975)

Lawvere, F.W.

(1963)

"The specification and application to programming of abstract data types," Univ. of Toronto,

Computer Systems Research Group, Technical Report CSRG-59, September, 1975.

"Functorial semantics of algebraic theories," Proceedings, Nat'l Acad. Sci. 50 (1963)

869-872.

McCarthy, J. and Painter, J.

(1967) "Correctness of a compiler for arithmetic expressions," Mathematical Aspects of" Computer

Science, Proceedings of Symposia in Applied Mathematics, Vol. 19 (J.T. Schwartz, Ed.)

188

Milner, R.

(1972)

(1976)

Milner, R. and

(1972)

Morris, F. L.

(1972)

(1973)

Mosses, P.

(1977)

(1978)

American Math. Soc., Providence R.I. (1967) 33-41.

"Implementation and application of Scott's logic for computable functions," Proceedings, ACM

Conference on Proving Assertions about Programs, Las Cruces, New Mexico, January, 1972,

pp. 1 -6 .

"Program semantics and mechanized proof," Mathematical Centre Tracts 82 (K.R. Apt and

J.W. de Bakker (Eds.), Mathematiseh Centrum, Amsterdam, 1976, pp. 3-44.

Weyrauch, R

"Proving compiler correctness in a mechanized logic," Machine Intelligence 7 (B. Mettzer and

D, Michie, Eds.), Edinburgh University Press (1972) 51-72.

"Correctness of translations of programming languages," Stanford Computer Science Memo

CS 72-303 (1972).

"Advice on structuring compilers and proving them correct," Proceedings, ACM Symposium on

Principles of Programming Languages, Boston (1973) 144-152.

"Making denotational semantics less concrete," manuscript, Aarhus University, August, 1977.

"Modular denotational semantics," Draft paper, 1978-11-11, Department of Computer

Science, Institute of Mathematics, Aarhas University, 1978.

(1979) "A constructive approach to compiler correctness," draft manuscript, Department of Comput-

er Science, Aarhus University, November 1979. Presented, Workshop on Semantics Directed

Compiler Generation, Aarhus, January, 1980.

Schmeck, Hartmut

(1975) "Korrektheit yon 13bersetzungen," Bericht Nr. 3/75 des Institut fiir Infromatik und Praktische

Mathematik, Christian-Albrechts-Universitat Kiel, 1975.

Scott, D. and Straehey, C.

(1971) "Toward a mathematical semantics for computer languages," Technical Monograph PRG-6,

Oxford University Computing Laboratory, Programming Research Group, t 971.

Zilles, S. N.

(1974) "Algebraic specification of data types," Computation Structures Group Memo 119, MIT,

Cambridge, Mass. (1974) 28-52.

