CHAPTER I

BEGINNINGS

The aim of this introductory chapter is two-fold. First it
serves to introduce some of the basic terminology and notation of
context-free, EOL and ETOL grammars, which is a necessary prerequisite
for the reader to have any understanding of the remainder of this book.
Any terminology and notation not found in Section I.1 will either be
defined at the time of usage or is assumed to be standard.

Second in Section I.2 the relationship between form theory and
grammatical similarity is discussed briefly. Towards this end various
approaches to grammatical similarity that have been taken previously
are discussed. It culminates by proposing form theory as another
approach to grammatical similarity and demonstrates how some of the
problems that have been tackled fit into this framework.

Thus the study of grammatical similarity can be seen to be
one of the aims of form theory. However it should be borne in mind
that form theory has two further equally important aims. The first
of these is simply an attempt to gain a better understanding of
generative devices and the second is to obtain a deeper knowledge of
the context-free, EOL and ETOL languages.

It is to be hoped that this book not only serves to whet the
reader's appetite but that it also convinces the reader that form
theory has already made contributions to each of these three areas.

1.1 Basic Terminology and Notation

Much of the terminology required for reading this book is
standard and can be found in Aho and Ullman (1972), Berstel (1979),
Ginsburg (1966), Harrison (1978), Herman and Rozenberg (1975),
Hopcroft and Ullman (1979), Rozenberg and Salomaa (1980) and Salomaa
(1973). However the notation differs in one important respect, namely
sequential and parallel rewriting are distinguished by the use of =
and = vespectively, for the rewrite relations.

Before introducing the notation and terminology for context-
free and L grammars in Sections I.1.1 and I.1.2, respectively, some
of the basic notation and terminology for alphabets, words, language
families and operations, and production schemes is reviewed.

Definition: Alphabets, Words and Length

An alphabet I is a finite non-empty set of symbols or letters.
A word x over z is a finite, possibly empty, sequence of letters from
L. The empty word, that is the empty sequence, is denoted by x. By
* we denote the set of words over I and by 2¥ we denote I* - {Al}.
The length of a word x over I, denoted by |x|, is the number of symbols
in x, hence [A] = 0. For a in Z and x a word over I the a-length of x,
denoted by fx{a is the number of a's in x. Similarly for A c %
the A-Tength of x, denoted by IXIA, is defined as L__ ') | %1,

a is ina

hence in the case that A = @, the empty set, |x|¢ = 0.

For an alphabet Z and an integer iz 0, ' s ?he set of all
words over I whose length is exactly i. Similarly by 251 we denote the
set of all words over [whose length is at most i.

Notation:

Let A be an arbitrary set, then #A denotes the cardinality
of A.

Definition: Operation on Words

Let % be an alphabet and x a word over Z. Then by mi{x) we
denote the mirror image of x, also called the reversal of x.

Let £ and A be alphabets. Then a map h: I* ~ A¥ is a
homomorphism if h(x) = x and for all x,y in I*, h{xy) = h{x)h(y).
It is a letter-to-letter homomorphism if h(a) is in A, for all a in
2 and an isomorphism if it is letter-to-letter and one-to-one onto.

*
A map f: Z* » ZA is a substitution if f(x) = {A}and for all x,y in

*, fxy) = f(x)f(y). [If f(a) is finite for all a in I then f is a
finite substitution. If f(a) < A for all a in £ then f is a finite-
Tetter substitution and if furthermore f{a} n f(b} = @ for all a,b

in %, a % b, then f is a disjoint-finite-letter substitution (dfi-
substitution). If f(a) is a regular language (see Definition below)

for all a in Zthen f is said to be a regular substitution.

Definition: Languages and Operations

A language is a subset of I*, for some alphabet X. Let
L ¢ I* be a language and h: I* » A* a homomorphism. Then
h{L} = {h(x): x is in L}. Similarly if h: A* > £* is a homomorphism,
then h'1(L) = {y: y in A* such that h(y) is in L}. Let L, and L2 be
two languages then by L]L2 we denote the catenation of L] and L2’
defined by: L]L2 = {x}xzz X, is in Li’ i =1, 2} and by L} U L2
the union of L] and Lz, defined by: L] u L2 = {x: x is in L] or x is
inL,}. Let L be a language, then its (star) closure L* is defined
as: L* = {x]xz...xm: m=z0, X; is in L, 1 £ i <m}. For a language
L ¢ £* and a regular language R ¢ I* (see Definition below), we dencte
by L n R the language {x: x is in L and x is in R}.

Definition: Finite State Acceptors and Regular Sete

A finite state acceptor {fsa) is a quintuple M = (Q,Z,s,qo,F)
where Q is a finite set of states, I is the input alphabet,
§: Q x ¢~ ZQ is the transition function, ag in Q is the start state
and F c Q is the set of accepting states.

A configuration of M is an ordered pair (q,x) where q is the
current state of M and x is the input remaining to be read, that is g
is in Q and x is in I*,.

Let (p,x) and (q,y) be two configurations of M, we say there
is a move from (p,x) to (q,y) in M, denoted (p,x)#—(q,y), if x = ay
for some a in £ and q is in &(p,a).

i This is extended to move sequences in the usual way to give
—, — and }——*. A word x in I* is accepted if:
(ags x) — (g, A) for some g in F.
The language of M, denoted L(M) is defined as:
L(M) = {x: (qo, x) —* {(g,2) for some g in F}.
The collection of all languages, which can be generated by fsa
is denoted by ;f(REG) and is known as the family of regular sets.

Definition: A-transducers and Gsms

It is straightforward to generalize finite state acceptors in
such a way that words can be read at each move rather than input
symbols. Moreover each generalised fsa can always be replaced by an
equivalent fsa {one accepting the same language) satisfying the
original definition. When output is included however it is the
generalised fsa which is considered.

An a-transducer is a sextuple M = (Q,Z,A,H,qO,F) where Q is
a finite set of states, £ is the input alphabet, A is the output
alphabet, H = Q@ x £* x &* x § is a finite set of transitions, 49
in Q is the start state and F = Q is the set of accepting states.

A configuration of M is a triple (g,x,z) in Q x I* x A%,
where q is the current state, x is the remaining input and z is the

present output.
Let (p,x,w) and (g,y,z) be two configurations. Then we say
there is a move from (p,x,w} to{g,y,z) in M, denoted {p,x,w}¥— (q,y,z)
if x = uy for some u in I*, z = wv for some v in A* and {p,u,v,q) is
in H.)
As before this is extended to F—', —', and +—*.
In this case however we are not so much interested in the word
pairs accepted by M as the transformation of input words to output
words. For each x in I*, let M{x) = {z: (qo,x,k) — {g,x,z),
for some q in F and z in A*} and for each language L < I* let

*
M(L) =\ J M(x). The mapping M from 2%% into 2® so defined is
x in L
ca]]ed‘an a-transducer mapping.

A gsm {generalized sequential machine) is an a-transducer in
which (i) all states are accepting states (hence M is given as a
quintuple) and (i1) H € Q x £ x A* x Q, that is it is based directly
on the finite state acceptor. Otherwise its definition is analogous
to that of the a-transducer. Note that there is no accepted standard
definition of a gsm. As will be seen we will use the most convenient
definition in our proofs, however it is straightforward though
laborious to convert these into gsms according to the present definition.

Definition: Pushdown Acceptors

A pushdown acceptor (pda) is a sextuple M = (Q,Z,P,H,Zo,qo)
where Q is a finite set of states, I is the input alphabet, I' is the
pushdown alphabet, H ¢ Q@ x {(Z v {A}) x T x I'* x Q is a finite set of
moves or transitions, Z0 in I is the initial pushdown symbol and 9
in Q is the start state.

A configuration of M is a triple (q,x,y) in Q x I* x T'*, where
q is the current state, x is the remaining input and vy is the current
pushdown. Note that the left end of vy corresponds to the tope of the
pushdown.

Let (p.x,v) and (q,y,Y"') be two configurations. We write
(PoXsY) b— (Q,y,Yy') if x = zy,y = Z§ and v' = §'6 where {p,z,Z,8',q)
is in H. Note that z is in I u{i}. We can definer——i, r——% and +—*
in the usual way. The language accepted by M with empty pushdown,
Null(M), is defined by:

NulT{M) = {x: (9g-%,23) F—"* (g.2,1), for some g in Q}.

It is well known that the collection of all Null{M) for all
pda M is the family of context-free languages, oZ (CF).

A pda M is a deterministic pda (dpda) if

(i) for all (p,z,Z) in Q x (2 u {A}) x T there is at most one move

(pszsZ,Y,q) in H for some y and g, and

(ii) for all p in Q and Z in T if there is a move (psrsZ,v.q) in
H for some y and q then for all a in I, there is no move
(psasZ,y'sq') in H for any y' and g'.

Definition: Language Families and Operations

A Tanguage family ifis a collection of languages which
satisfies the following weak condition:
If L ¢ 2* is a language in éf, A is an arbitrary alphabet with
#I = #A and h: I* > A* is an isomorphism, then h(L) is in oZ .
Thus ins closed under renaming.
We saydf is closed under:
(1) union if for all Ly, L, ind , Ly v L, is in &,
(ii) intersection with regular sets, if for all L in o and
for all regular languages R, L n R is 1nof,
(111) catenation if for all Ly, L, inZ, LiL, is ind,
(iv) star closure is for all L inod , L* is in o,
{v) homomorphism if for all £, for all L ¢ ¥ ir:&fand
for all homomorphisms h: =¥ > A* for some A, h{L) is indf,
(vi) inverse homomorphism if for all =, for all L c * inoZ
and for all homomorphisms h: A* - £* for some A, h'1(L}
is in,f,
(vii) a-transducer mappings if for all I, for all L < z* in,f’
and for all a-transducers M: I* » ZA* for some alphabet
A, M(L) is inol .

If,{ is closed under (i)-{vi) then it is said to be a full
AFL (Abstract Family of Languages).

1fZ is closed under (i), (ii), and (vi) then is said to be
a full semi-AFL; Z is a full semi-AFL iff it is closed under
a-transducer mappings.

A final operation is the wedge operation of two lTanguage
families. Let .,Zp] and QZ’Z be two language families, then a(} v ,2’2
{the wedge of c(} and 7 2) is defined as:

Lyv L, =l ul, L, dsingy, i=1, 2},

Definition: Clogsure and Language Families

Ltet L be a family of languages and X be a subset of the
operations (i)-(vii) of the previous definition. Then the X-closure
gj_gglis the smallest family of languages containing and closed
under each of the operations in X. In particular we speak of the
homomorphic closure of & , denoted (L) = {h(L): L is inZ ,

L = I*, h: £* » A* is a homomorphism for some alphabet A}. This notion
is often well defined for a collection of Tanguages a(, which is not

a family. For example given a single language L < I* say, then the
full semi-AFL closure of L, denoted by éWL), is the smallest full
semi-AFL containing L. In this case we say that Jf = (L) is a full
principal semi-AFL, with full generator L. Let of be the family of all
alphabets and X = {u,-,*} where - denotes catenation, then the

X-closure ofed,is well known to be the family of reqular languages,
denoted & (REG). Moreover oZ (REG) is a full AFL.

Definition: Production Schemes

The notion underlying context-free, EOL and ETOL grammars is
that of a production scheme.

A production scheme is a (n+3)-tuple G = (V,Z,P],...Pn,s),
for some n > 1, where ¥ is an alphabet, £ < V is the terminal alphabet,
V - £ is the nonterminal alphabet, Pi is a finite subset of V x V¥,

for all i, 1 < i <« n and S in V - £ is the start or sentence symbol.
Each member of each Pi is called a production and each (X,a)

in Pi is usually written as X > a.

For context-free grammars we have n = 1 and P = P1 is further
restricted so that P c (V~I) x V*, For EOL grammars we also have
n=1and P = P] satisfies a "completeness” condition, namely for all
X in V there is some production X+ o in P for some o in V¥. Apart

from this basic distinguishing feature context-free and EOL grammars
are only distinguished by their rewrite relations.

Let G = (V,2,P,S) be a production scheme, then a production
X+ a in P is called an X-production. The X-productions of G are all
X~productions in P. This notion is easily extended to production

schemes with n > 1. hen specifying the X-productions of a scheme §
we often write them as: X-+a]|a21...[ar, that is in BNF notation.

Finally we introduce two conventions, which are used through-
out these notes.

Convention: I-convention

Given two languages L] and L2 we say that they are equal
(modulo A) if Ly - {A} = L2 - {x}. Similarly we say two language
families 4f1 and uf o are equal {(modulo A and @) if for every
Ly - 1) # @ in o there is an L, in &, such that Ly - 02} =L, - {2}
and vice versa,

Notational Convention:

In the following unless specified otherwise we have assumed the
following notational conventions:
Terminal symbols are represented by early lower case Roman

letters and

Nonterminal symbols by early upper case Roman lettiers.

Symbols which may be either terminal or nonterminal are
represented by late upper case Roman letters.

Terminal words are represented by late Tlower case Roman letters
and words which may or may not be terminal by lower

case Greek letters.

II1.1.1 Context-Free Grammars and Languages

Definition: Context-free Grammars

A context-free grammar is an ordered pair (G,=) where G is a
production scheme (V,z,P,S) with P ¢ (V-T) x V* and = is the sequential
rewrite relation defined as follows:

For all a,B in V* we write o =B {or simply o = g if G is
understood) if:

a = a]Caz, g = oY%, for some 01505y in V¥, C in V - 2
and C+ y in P.

If oy is in I* then we may write o 5 8, that is 8 is obtained by a

lTeftmost rewrite of o and if e, is in £* then we may write o 5 g, that
is 8 is obtained by a rightmost rewrite of a. We will write G rather
than (G,=) when it is clear that a context-free grammar is meant.

Definttion: Derivations

Given a context-free grammar (G,=), where G = {V,2,P,5}) we
extend =, g and 5 to sequences of rewrite steps.]
For all i = 1 and for all a,B in V* we write o = B if:
either i =1 and a = B
or i > 1 and there exists y in V* such that a = v and
v »1-1 5.
For all a,B in V¥, we write o ;'B if there exists an i 2 1
such that o o1 8. By convention we write o -0 a for all a in V* and
we write o " 8 ifeither o Ny B or a = B.

1 * 3 *
RINRINRSN U URrS.

In a similar manner we can define
Whenever o =* B for some a,B in V¥ we say that 8 is derived
from a and when a -F 8 we say that g is properly derived from a. In

both cases we say that o - g or o - g is a derivation in G. If

o = S we say that it is a sentential derivation and that § is a

sentential form.
Occasionally we need to specify the sentential forms in

derivations more precisely in which case we write a derivation
as a derivation sequence:

a = uo = @1 = ,...= ar =B

where o ' g in G, for some r z 0.

Definition: Sub-grammars

Let 6 = (V,z,P,S) be a grammar. We say G' = (V',5',P',8) is
a sub-grammar of G if V' <V, Z' = I and P' < P. For a nonterminal A
in V-I we say that the sub-grammar of G induced by A, denoted by GA’
is the grammar G, = (V,z,P,A).

Definition: Derivation Trees and Distinet Derivations

Let 6 = (V,Z,P,S) be a context-free grammar and T be a tree
with oriented and directed edges and with node labels taken from
V u {A}. Then 1 is said to be a G-derivation tree or a derivation
tree in G if the following conditions hold:

(i) the root is labelled with S,
(ii) the leaves are labelled from V v {A},
{(iii) the non-leaf ar internal nodes are labelled from V - %, and
(iv) for all non-leaf nodes u: if u is labelled with some A
from V - £ and the sons of u in 1eft to right order,
Upsevoslys 1 2 1 are labelled with Xl""’xr respectively,
then A > X]"'Xr is in P.
The leaf nodes .of T when read in left to right order yield a sentential
form of G if T is a derivation tree for G. We call this the frontier
of 7 and refer to the specific frontier by fr{t).
Since each A in V - I defines a sub-grammar GA of G we also
allow any nonterminal to be the label of a root node, in this case
we write: T is a GA-derivation tree.
We say two derivation trees T and Ty for two grammars G] and
GZ (not necessarily distinct) are equally shaped if the non-leaf nodes
of T, can be relabelled to give Ty and vice versa.

Let dy: A=y =» ... = @ =0 and d,: A= By = ... > B ;=8B

be two derivations in G. Then d] and d2 are distinct if their cor-

responding GA-derivation trees Ty and Tg satisfy the following

condition:
Ty is not a tree-prefix of TB and Tg is not a tree-
prefix of Tye

Definition: Ambiguity

Let 6 = (V,5,P,S) be a context-free grammar. A word x in I* is
said to be ambiguous with respect to G if there are two different
G-derivation trees Ty and Ty with fr(T]) = fr(Tz) = X,

G is said to be ambiguous if there is a word in I*, which is
ambiguous with respect to G, otherwise G is said te be unambiguous.

Definition: Context-free Languages and Length Sete

Given a context-free grammar G = (V,Z,P,S) the language

generated by G, denoted L{G,=»), is defined by:

L(G,») = {x: x is in I* and § =" x}.
Similarly the length set generated by G, denoted LS{G,»), is defined by:

LS(G,=») = {}x]: x is in £* and S =* x}.
Let £ be an alphabet and L be an arbitrary subset of I*, then we say
that L is a context-free language if there exists a context-free grammar
G such that L(G,=») = L.

10

Definition: Fagmilies of Context-free Grammars

Let G = (V,%,P,S) be a context-free grammar. G is a linear
grammar if P < (V-%) %x {Z* u g*(V-I)I*), a right linear grammar if
P c (V-2) x (Z* u Z*(V-Z)) and a left linear grammar if
P c (V-Z) % (Z%* u (V~E)I*).

We say G is an empty or trivial grammar if L{G,=} = @ or {A}
and otherwise G is nonempty or nontrivial. G is said to be finite
if L{(G,») is finite and infinite otherwise. We say 6 is reduced if
the following conditions hold:

(i} For all X in V there is a derivation S - aXg for some
o and B in V*¥; X is reachable.
{(ii) For all A in V - % there is a derivation A =* x where
x is in Z*; A is useful.
G is self-embedding if G is reduced and there exists A in
V - I together with a derivation A " uAv, for some u and v in st

We say a reduced grammar G is non-self-embedding if it is not self-
embedding.

G is expansive if it is reduced and there exists a nonterminal
. . . . + ,
A in V - Ztogether with a derivation A = uAvAw in G, for some u,v,w
in Z*, where uvw # A,

We say G is non-expansive if it is not expansive.

Definition: Families of Context-free Languages

We denote by df(CF) the family of all context-free languages,
that is:
Z (CF) = {L(G,»): G is a context-free grammar}.
A number of the families of context-free grammars define
proper sub-families of & {(CF). Thus we obtain:
(1) ‘g’(FIN), the family of finite languages, is defined by:
Z (FIN) = {L(G,»): G is finite}.
(i1} o (REG), the family of regular languages is defined by:
Z (REG) = {L{G,=): G is right linear}
{L(G,»): G is left linear}
{L{G,=): G is non-self-embedding}
(ii1) df LIN), the family of linear languages, is defined by:
< (LIN) = [L(G,=»): G is linear}.
Q(the family of derivation bounded languages, is defined

n

I

by:
Jf(DB) = {L(G,=): G is non-expansivel.

11

11.1.2 EQL and ETOL Grammars and Languages

Definition: EOL Grammars

An EOL grammar {Extended Zero-sided Lindenmayer grammar)
is an ordered pair (G,»), where G is a production scheme (V,Z,P,S)
with P < V x ¥* also satisfying the condition that for all X in V

there is an o in V¥* sych that X - ¢ is in P, and = is ‘the parallel
rewrite relation, defined as follows:
For all a,8 in V* we write o a-GB {or simply o =8 if G is
understood) if:
o = X] I Xm, where Xi is inV, 1 <1 < m,
B = B] e Bm’ i
X, » Bi is in P, 1 <4 g m,

i
As for context-free grammars we will often write G rather than (G, =)

for some B, in V¥, 1 < i < m, and

when it is clear from the context that an EOL grammar is intended.

Definition: ETOL Grammgrs

An ETOL grammar (Extended Tabled Zero-sided Lindenmayer grammar)

is an ordered pair (G,2), where

(1) for some n=z=1, G = (V,Z,P],...,Pn,s) is a production
scheme, where the Pi are called tables,

(2) for all i, 1 < i < n, G;= (V,Z,Pi,S) is an EOL grammar, and

(3) = the parallel rewrite relation is defined by: for all a,B
in V¥, o = B if there is some i, 1 < i < n such that

a = B. Usually we will write a = Bor simply o =8 when
i i
the table used is not important.
We say that G is a n-tabled ETOL grammar. Note that an EOL grammar
is a one-tabled ETOL grammar.
A sub-grammar of an ETOL grammar is defined analogously to

the notion of a sub-grammar of a context-free grammar.

Definition: Derivations

Given an n-tabled ETOL grammar (G,=) where G = (V,Z,P],...,Pn,s)
we extend = to sequences of rewrite steps as follows.]

For a1l i = 1 and for all a,B in V* we write o = 8 if:
either i =1 and a =8
or i > 1 and there exists vy in V* such that a =¥y

and vy o -1 g.

For any a,B in V* we write o < Bif there exists an i =2 1 such that

o = B. By convention we write a :—>0 a for all o in V¥* and we write
o B8

e

*
E-d

if either a 94'8 or o = B.

Whenever o = 8 for some o,B in V* we say that B is derived from
+ .

o and when a = B we say 8 is properly derived from a. In both cases
*

+ . R . R -
we say that o = 8 or a = B is a derivation 1n G. In a similar manner

we can extend) to s% and sg . In this case we say that a a% 8 pr
i i i j
O.-”.>+

P

B is a derivation in Pi'
i
*
A sentential derivation is a derivation S = B8 (or S Ry 8),
in which case 8 is said to be sentential form.
Whenever we need to specify a particular derivation we write

*
a = B as a derivation sequence.
0 = 0y B ... 0, =
0 =% r - B

r .
where o = Bin G, for some r = 0.

Definition: Nomterminal Derivations

N Let G = (V,Z,P1,...,Pn,s) be an n-tabled ETOL grammar and
s = B be a derivation in G for some o and 8 in V*.
We write o %g-ﬁ, that is a nonterminal derivation
(nt-derivation) in G, if there exists a derivation sequence:

0c=ou0:—>a] 2 ... aocr=6

for some r > 0 such that each a 1 < i < r contains a nonterminal.

.i’
We write o tﬁ?* 8, that is a totally nonterminal derivation

(tnt—derivat?on) in G, if for every derivation sequence

u=on0~:>on.l:—a~...:—>cxr=8

for some r > 0, each Oy 1T < i < r contains a nonterminal.

This notion can be extended to an nt- and a tnt-derivation

in Pi in the obvious way.

Definition: Derivation Trees and Distinet Derivations

We only deal with derivation trees for EOL grammars, since
the extension to the case of ETOL grammars is straighforward.
et 6 = (V,%,P,S} be an EOL grammar and T be a tree with
oriented and directed edges and with node labels taken from Vou {1}
Then T is said to be a G-derivation tree or a derivation tree in G
if the following conditions hold:
(i} the root is labelled with S,
(ii) the nodes are labelled from V u {1},

13

(111) all the leaves are at the same distance from the root,
{iv) for all non-leaf nodes u; if u is Tabelled with some X
from V and the sons of u in left to right order
Ugsnenslp, 12 1 are labelled with X],...,Xr, respectively,
then X » X1"'Xr is in P; if u is Tabelled with X then
it has one son which is also Tabelled with A.
The leaves of t, when read in left to right order yield a sentential
form of 6 1if 1 is a G-derivation tree. We call this the frontier of 71,
written fr(t). The notion of equally shaped derivation trees is

defined as for context-free derivation trees, see Section 1.1. However
note that internal nodes may be labelled with terminals in the EOL
case.
Let d]: S =0
d2: S @»B] =>.,,. 2§

12 >0 =0 and

r-1
s-1 % 8
be two derivations in G. We say d] and d2 are distinct if their
corresponding trees T and TB satisfy:

Ty, is not a tree-prefix of Tg and

g is not a tree-prefix of Tye
Because we are dealing with parallel derivations we can simply say:

d] and d2 are distinct if d] is not a prefix of

d2 and d2 is not a prefix of d1.
This of course extends naturally to any two derivations, not necessarily

sentential, in G.

Definition: Ambiguity

Let G = (V,Z,P,S) be an EOL grammar. A word x in I* is said
to be ambiguous with respect to G if there are two different
G-derivation trees Ty and T, such that fT(T]) = fr(Tz) = x. G is said
to be ambiguous if there is a word in I* which is ambiguous with
respect to G, otherwise G is said to be unambiguous.

Definition: EQL and ETOL Languages and Length Sets

Given an EOL grammar G = (V,Z,P,S) the language generated by G,
denoted L(G,>), is defined by:
L(G,#) = {x: x is in I* and S = x}.
Similarly the length set generated by G, denoted LS{G,=), is defined
by:

LS(G,=) = {|x]|: x in Z* and § = x}.

14

Let & be an alphabet and L be an arbitrary subset of L*, then we say
that L is an EOL language if there exists an EQOL grammar G such that
L = L{(G,=),

Each of these notions can be extended to the ETOL case in the
obvious way.

Definition: Families of EOL and ETQOL Grammars

Let G = (V,Z,P],...,Pn,s) be an n-tabled ETOL grammar.

We say G is propagating if for all i, 1 < i < n, and for all
X+ a in Pi’ o *F A

We say G is deterministic if for all i, 1 < i £ n, and for
all X in V there is exactly one production X +- o in Pi’ for some a.

We refer to EPTOL, EDTOL, EPDTOL, EPOL, EDOL and EPDOL grammars,
where P and D indicate propagating and deterministic, respectively.

A n-tabled TOL grammar G = (E,P3,...,Pn,0) is an n-tabled ETOL
grammar in which V = £ and S has been replaced by a starting word o.

An OL grammar G = (Z,P,c) is a one-tabled TOL grammar. In both cases
L(G,=)} consists of all words in all G-derivations.

We say G, an ETOL grammar, is empty if L{(G,=) = @ or {A},
otherwise G is nonempty. G is finite if L(G,=») is finite and infinite
otherwise.

We say G = (V,Z,P],...,Pn,s) is reduced if for all X in V there
is a derivation S = aXB, for some o and B in ¥*; we say X is reachable.
This notion of a reduced grammar should be compared with the cor-
responding one for context-free grammars in Section 1.1.

We say G = (V’Z’Pl""’Pn’Sl is looping if there is a reachable
symbol X in V with a derivation X = X in G, and G is expansive if

there is some reachable symbol X in V with a derivation X Ny aXgXy, for

some a,B and y in V*.

We say G = (V,Z,P],...,Pn,s) is separated if for all i,
T <1<n, X>ainP, implies (i) o is in £ u {V-2)* and {(ii) X in I
implies o is not in . G is synchronized if for all a in I, a = o
implies o is not in Z*, 6 is short if for all i, 1 < i < n, X+a in
P, implies |a] = 2. G is said to be binary if each production is of
one of the types A > x, A+ a, A>- B, A» BC or a~+ A where a is in &

and A,B and C are in V - I.

15

Definition: Families of EOL and ETOL Languages

We denote by a((EGL) and Z(ETOL} the families of all EOL and
ETOL languages, respectively that is:
,Z'(EOL) = {L(G,=): G is an FOL grammar}
and
z(ETOL) = {L(G,=): G is an ETOL grammar}.
Similarly we obtain o((OL) and .,{’(TOL) and with the propagating and
deterministic restrictions we obtain Z(EPOL), e'Z'(EDOL), etc.

16

1.2 Notions of Grammatical Similarity

In this section a rapid survey of the different notions of
grammatical similarity for context-free grammars is given. This
culminates in Section 2.6 with the introduction of the topic of these
lecture notes, namely a definition of similarity based on collections
of grammars rather than on the grammars alone. With the exception
of the similarity notions discussed in Sections 2.1, 2.4 and 2.6,
these notions have not been applied to EOL or ETOL grammars.

1.2.1 Weak and Structural Equivalence

Given two grammars 61 and 62, the simplest notion of grammati-
cal similarity is that L(Gl’=) = L(GZ,»); we say that G, and 82 are
(weak) equivalent in this case. However this notion is too primitive,
since grammars which are very different in structure can be related
in this way. For example, consider G] and G2 given as follows:

G]: S>> X3 S+ as;

and

62: S > x; S~ aSaSa; S+ a; S+ aa.
Now L(G],=) = L(Gz,=) = a*, however the derivation trees generated by
each grammar are clearly very different.

Because of this, a second notion of grammatical similarity
was suggested by McNaughton [1967]. This was further investigated by
Knuth [1967] and Paull and Unger [1968].

For an arbitrary context-free grammar G = {V,Z,P,S) the
parenthesized version of G, denoted by G(), is defined as
Gy = ((Vu {(s))sZ v {(,)},P().S) where

P<) = {A~> (o) : A> o is in P}.
Thus L{G,y,=) is a Tinear parenthetical coding of the deriva-

tion trees of L{G,=).

Given two context-free grammars G] and 62 we say that they are
structurally equivalent if L(G1’(),=) = L(ng(),a). In other words,
for every derivation tree in G] with a terminal frontier there is an

equally shaped derivation tree in GZ’ and vice versa.
It is decidable whether or not two context-free grammars are

structurally equivalent as proved in the three papers mentioned above.
An even more restrictive notion of structural equivalence was

introduced in Ginsburg and Harrison [1967]. This we now define.

17

Let 6 = (V,z,P,S) be a context-free grammar in which the
productions in P are numbered in some arbitrary but unique way. Define
the bracketed version of G, denoted by G[], as follows:

Let A = {[i’]i : i <1 < #P} and G[:| = (VuA,Tu A,P[],S),
where P[] = {A ~» [1a]1 : A+ a is the ith production in P}.

In this case each word in L(G[},») not only contains enough
information to reconstruct the shape of its derivation tree (as is the

case for L(G(ys)) but also enough information to label the internal
nodes of the tree correctly. The brackets [i and]i are known as phrase
markers in linguistics.

We say two context-free grammars Gi = (Vi’Z’Pi’Si)’ i=1, 2
are strongly structurally equivalent if there is a numbering of the

productions of P] and P2 such that under this numbering

L(G],[],=) = L(GZ,[]’Q)‘ Strong structural equivalence is decidable
since there are only finitely many numberings and for each such numbering
the bracketed version of a grammar defines a simple deterministic
Tanguage. The transformation of G[] into an s-grammar {simple
deterministic grammar) is straightforward. Korenjak and Hopcroft [1966]
have proved that it is decidable whether or not two s-grammars generate
the same language. More recently Olshansky and Prnueli [1977] and
Harrison, Havel and Yehudai []979] have also provided proofs of this
result.

While the parenthetical and bracketed versions of grammars
provide a stricter notion of grammatical similarity, they are both too
restrictive. This comes about in two different ways. First their
Tanguages must be identical and second, the derivation trees must be
identical up to an isomorphic renaming of their nonterminals.

In the next three sections we consider the affect of relaxing
these restrictions somewhat.

However before doing this we mention in passing a notion due
to Blattner [1976], which strictly speaking is based on languages
rather than grammars. Let L and L' be context-free languages. They
are said to be structurally similar if there are a-transducers M
and M' such that M(L) = L* and M'(L') = L. One of her results is:
if L has a structurally similar set of sentential forms and L and L'

are structurally similar then L' has a structurally similar set of
sentential forms. These results are of some interest for grammar form
theory because of the results in Sections I1.4.2 and I1.4.3 on
principality and semi-AFLs.

18

11.2.2 Covers

In the area of compiler theory and practice the notions of
cover and syntax-directed translation have considerable importance.
In both cases this involves a conéept of grammatical similarity. Let
us first examine the notion of cover.

Let G = (V,Z,P,S) be a context-free grammar, A be a set of
lTabels with #A = #P, and label each production in P arbitrarily but
uniquely with some label from A. Let (G,A) denote this Tlabelled versian

of G. Let D:S = Gg =0y = ... Fa =X in * be a derivation in (G,A),
where d1""’dr are the labels corresponding to the productions used in
D in that order. We say d = d]"'dr is a parse, derivation word or

d

Szilard word of (G,A) and write S = "x. If D is a left derivation
then d is a left parse and if D is a right derivation then d is a
right parse. Sz(G,A) = {d : d in A* is a parse in (G,A)} is called
the Szilard language of (G,A), LSz(G,A) = {d : d in A* is a left parse
in (G,A)} is the left Szilard language, and similarly we obtain the
right Szilard language. See Salomaa [1973] for further information on
Szilard languages,

We can now define the notion of left cover following Aho and
UTtman [1972]. Let Gi = (Vi’Z’Pi’Si)’ i =1, 2 be two context-free
grammars, A, i =1, 2 be their label sets and (Gi’Ai) be their labelled
versions, i = 1, 2. We say G2 left covers G] if there is a homomor-
phism h from AZ* to A]* such that:
d

2 h(d

2)x in G], and

d
(b) for all d] in A* such that S] L Ty in Gy, there exists

1
L dp
d2 in AZ* such that h(dz) = d] and 52 3 “x in Gz.
Condition (b) is a surjectivity condition. Note that L(G],=) = L(Gz,a)
is implied by this definition.

(a) if S, 5 Zx in 6y, then s, L

Typical questions in this area are:

(i) For each LR(k) grammar G does there exist an LR(1) grammar
G' such that G' right covers G? See Mickunas, Lancaster
and Schneider [1976].

(ii) Can every A-free grammar be right covered with a grammar
in Greibach normal form? See Nijholt [1979f).

(i4i) Given two grammars G and G' is it decidable whether or not
G' left or right covers G? See Hunt III, Rosenkrantz and
Szymanski [1976]. In the case or arbitrary grammars it is
undecidable, but for sub-Tinear grammars it is in fact
decidable.

19

The emphasis of the work of Hunt III, Rosenkrantz and Szymanski places
the study of covers within the area of grammatical similarity, since
the basic question (iii) of when two grammars are similar is tackled
for the first time in their papers.

Since covering implies weak equivalence and question {iii) has
been resolved negatively the usefulness of this notion of similarity
is limited as a basis for a theory of grammatical similarity. This,
we hasten to add, does not imply that it is an area to be abandoned,
since questions of types (i) and (ii) remain meaningful in their
original framework.

Other papers in this area are those of Hunt III, Rosenkrantz
et al, those of Mickunas et al, those of Nijholt, and the following,
Benson [1977], Gray and Harrison [1972], Haskell [1970], Reynolds
[1968], Reynolds and Haskell [1970], Soisalon-Soininen [1979] and
Ukkonen [1978, 1979].

I.2.3 Translations and Szilard Languages

Just as studies of the parsing process led to the notion of
covering, studies of compiling led to the notion of syntax-directed

translations.

The reader is referred to Aho and Ullman [1972], which deals
with this topic in some detail and includes many of their own
contributions.

Let 6 = (V,Z,P,S) and G' = {V',Z',P',S') be two grammars. We
say (6,6’,f) is a translation grammar if f: P> P' is a bijection.

Since a translation is a set of pairs {x,x') of words x and x' over
some alphabets I and I', respectively, we denote by T(G,G',f) the
translation defined by the translation grammar (G,G',f) and we define

it as follows:

T(G,G ,f) = {(x,x'): S = 9

X in Z* in G and
St »f<d)x’ in Z'* in G'}.
Often, for example see Aho and Ullman [1972], the relationship of the
derivations is even more tightly controlled.
A translation grammar (G,G',f)} is said to be agreeable if:
s = 9% ino% in 6 iff s » Dyt gnzix p g

Penttonen [1974] had proved that (G,G',f) is agreeable iff:

{i) there is a bijection g: V - &> V' - L' and

(i1} for all p: A~ XOA1 v Amxm in P, where m > 0, the X3
are in I* and the Ai are in V - &, and

20

for p': B ~» yOB] e BnYn in P' such that p' = f(p),
then m = n, g{(A) = B, and (g(A]),...,g(Am)) is a permutation of
(81""’Bm)'

These are exactly the conditions needed in the definition of
a syntax-directed transiation schema (see Aho and Ullman [1972,
p. 218]), hence the notion of agreeableness is equivalent to requiring
that (G,G",f) forms a syntax-directed translation schema.

Moreover Penttonen's [1974] characterization theorem implies
that (G,8',f) is agreeable iff Sz{(G,A) is isomorphic to Sz{G',A'}.
This leads to a tie-in with Szilard languages.

Kriegel and Maurer [1976] proposed a one-sided version of
agreeableness, since in a translation grammar (G,G',f) it is only
necessary for each terminating derivation in G, the source language
grammar, to have a corresponding terminating derivation in G', the
object Tanguage grammar, but not necessarily vice versa.

We say (G,&',f) is a fitting translation grammar if whenever
dx in Z*¥ in G there is a derivation $' = f d)x' in Z'* in G'.

It now follows that (G,G',f) is fitting iff
f(Sz(G,A)) < Sz(G',A"), where f is extended to label sets and words over

these label sets in a natural way.

S =

Assuming 4 = A', this reduces to the containment problem for
Szilard languages of context-free grammars. Kriegel and Mayrer [1976]
show that this is decidable.

A refinement of this notion comes from observing that usually
only left or right derivations are used in the source language grammar.
Thus (G,G',f) is said to be left (right) fitting if whenever

S L dx (s R dx) in £* in G then S' = f(d)x' in G', for some x' in »'*,

Again whether a translation grammar (G,G',f) is left fitting
reduces to a question concerning their Szilard Tanguages, namely is
f(LSz(G,A)) = Sz(G',A'). In Kriegel and Ottmann [1977] this also was
shown to be decidable.

We say {G,6',f) is (X,Y) fitting, where X and Y are chosen
from {L,R,0}, if whenever 5 3 97 in z* in 6, then s+ & F(d),0 4y g
for some z' in £'*, where A is equivalent =,

Linna [1977] has shown that {L,L) fitting is also decidable.

The area of syntax-directed translations has led to another
notion of grammatical similarity based on Szilard languages of grammars,
which can be called Szilard similarity. A number of cases have been
shown to be decidable, therefore this notion is in this respect better
than covering. However given a grammar G, all possible candidate

21

similar grammars must have the sane number of productions. It is this
fact which causes us to look elsewhere.

1.2.4 Grammar Morphisms

Let G = {V,Z,P,S) and &' = (V',2',P',S'} be two grammars and
h: V¥ > V'* be a homomorphism such that:
(i) nh{v - 2) < ¥y* - £,
(i1) h(z) = z'*,
{iii) for all A -~ o in P, h{A » a) = A’ =" o' in g
where h{A) = A' and h{a) = a', and
{iv) nh(S) = S'.
In this case, we say that h is a grammar morphism h: G > G'.
This notion was first studied in Hotz [1966] and in the sub-
sequent papers of Benson, Bertsch, Claus, Hotz, Nelson, Nivat, Ross,

Schnorr and Walter. Recently lLange [1978] has considered L morphisms,
while Kobuchi and his co-workers have studied a special case of L
morphisms, called simulations, see Culik II and Kobuchi [1980],
Kobuchi [1977], Kobuchi and Seki [1980], Kobuchi and Wood [1980] and
Seki and Kobuchi [1980].

Its importance stems from the observation that a grammar
6 = (V,Z,P,S) defines in a natural way a category {(called the free
X-category or syntax category) in which the objects are words over V

and the morphisms are essentially derivations in G. Moreover this
category is a free strict monoidal category. From this viewpoint a
grammar morphism is a functor between two syntax categories.

0f all the approaches to grammatical similarity in the previous
sections, this one seems to be the most useful and, at the same time,
the most natural. The fact that a grammar morphism is a functor for
the corresponding syntax categories tends to confirm this.

In Section II.1 the two basic notions of interpretation for
context-free grammars will be characterized in terms of particular
grammar morphisms. To this end some'special grammar morphisms need
to be identified.

We say that a grammar morphism h: 6 > G', where 6 = {V,Z,P,S)
and G' = (V',&',P',S') is:

(i) fine if h(A ~ a) is in P' for all A > o in P,
{ii) length preserving if h{(V) c V'
(ii1) very fine if h is fine and length preserving,
(iv) closed if for every derivation S' =Y x' in T'% in G' there is
a derivation S =" x in T* in G such that h(s -* x) = S' - X
and

22

(v} terminal if h(A) = A for all A in V - Z.

Given two grammars G and G' it is clearly decidable whether or
not there exists a length preserving grammar morphism h: G - G'. More-
over a grammar mokphism preserves the structural properties of the
source grammar G. Recently Walter [1979] and his co-workers have
begun a detailed investigation of this notion of similarity. As we
shall see in Section II.1, whether one grammar is an s-interpretation
of another is equivalent to whether there exists a very fine grammar
morphism between them. Thus an in-depth study of grammar morphisms is
long overdue.

An untapped research area is the consideration of collections
of grammars based on grammar morphisms rather than grammar forms,

11.2.5 Topological Similarity

Kuroda [1973 a,b and, in particular, 1976] introduced a new
notion of grammatical similarity, which he called topological
similarity. A related notion was placed in the framework of syntax
categories by Walter [1975] and this was followed up by Nelson [1980].
At this time it is unclear how useful these complex similarity measures
will be.

We will briefly explain the basis of the similarity measures
due to both Kuroda [1976] and Walter [1975].

tet 6 = (V,Z,P,S) be a context free grammar. For < P and
%8 in V%, we write o = 98 if o = 98 in G, where d is in Q*. Similarly
we write o = Bis such a d in Q* exists. Let v: o " B be a derivation
in G, then recall that 7{y) denotes its corresponding tree. In the
following we will discuss topological similarity by way of derivation
trees. However any proofs are better dealt with in terms of deriva-
tions, for example compare Kuroda [1976] with Nelson [1980] and
Walter [1975].

Let Tree(G) = {t(y): v:S = x in 6 with x in Z*},
that is all derivation ftrees of G with terminal frontiers. Let Q ¢ P
and T be in Tree(G), then TQ is the maximal tree-prefix of T which
only consists of productions in Q. For all Q < P and all 1 in
Tree(G) g clearly exists. Of course it may be degenerate, that is
consist of a single node labelled S.

For all Q < P and for all v and ' in Tree(G) we write
T sQ ' iff g is a tree-prefix of Té.

Clearly <, is reflexive and transitive hence it is a pre-
order {or quasi-order). Moreover {Tree(G), sQ) is a lattice, since

23

given 1t and t' their gcd and lcm under SQ exists and is unique.

Using the natural topology which is defined by & quasi-ordered
set we have:

For all Q < P, for all T < Tree(G):

Open(T,Q) = {t': t' is in Tree(G),7 is in T and 7 sQT'}.

Tree(G) is the set of points of the toplogical space and the open sets
are all Open(T,Q), for all T < Tree(G). Each point t in Tree(G) has
a smallest open neighborhood, namely Open ({7}.,Q). We denote this
topology by J3(6,Q).

Since (Tree(G), sQ) is a lattice for every G and Q,a bijection

f from Tree{G) to Tree(G') is said to be structurally continuous if
for all Q@ < P there exists Q' < P’ such that for all t,t' in
Tree(G), T SQT' implies f{t) SQ' f{t'}, that is it is order preserving.
In this case f is continuous 1in the toplogical sense with respect to
“3(6,Q) and ~J(6',Q'). Numerous definitions of the similarity of two
grammars can be obtained on the basis of these definitions. Let us
consider one such definition.

We say 6 = (V,Z,P,S) is structurally similar to
G' = (V',Z',P',S"'), written G <y G', there exists a bijection f:
Tree(G) ~ Tree(B') which is structurally continuous. We can define

two grammars G and G' to be structurally equivalent if G <¢f G' and

G St G.

However at the time of writing it is not even known whether =g
is decidable. 1In all the studies so far, with the exception of Nelson
and Wood [1980], there has been no detailed investigation of any of
the possible measures. In particular two basic questions have
remained unanswered for most cases. First, is = decidable and more
generally are any of the measures proposed in Kuroda [1976] and Walter
[1975] decidable? Second, are any of the measures meaningful in the
sense that (i) they provide a nontrivial classification of the context-
free grammars and (ii) they provide a consistent classification, for
example an expansive grammar is never similar to a right linear grammar.
In Nelson and Wood [1980] there is a partial answer to the first con-
cern and a complete answer to the second, in both cases for a specific
topological similarity measure.

Before closing this section we also glance briefly at Kuroda's
notions.

Let Alltree(G) = {v{(y): v:A =¥ x in & for some A in V¥ - %

and x in I*},

24

that is all derivation trees with terminal frontiers having any non-
terminal as their root symbol. Let m < Alltree(G) and 7 be finite,
then 7 is a pruning set and each member of m is a prune.

Let t be in Tree{(G) and 1 c Alltree(G) be a pruning set.
Hotice that each prune p in 7 can only appear in 1 as a tree-suffix
since p has a terminal frontier. We prune v with n by removing tree-
suffixes of 1 which are members of n. Moreover we do this in such a
way that t is pruned by © to the maximum extent. It can be proved
that this leaves a unique tree prefix of v which we denote by T
For all pruning sets m < Alltree(G) and for all v and 1t' in Tree(G)

'
.

As with Walter's approach we can now define Open(T,m), for
all T c Tree(G) and all pruning sets m < Alltree(G), by:

Open{T,n) = {t': t' is in Tree(G), 7 is in T and 7 < T'}.

we write T < ' iff T is a tree prefix of ¢

Again Open{{t},n) is the smallest open neighbourhood of the point t
and as before we can define a notion of similarity based on these
ideas. We denote the pruning set topology with respect to 7 by
J{G,7).
Let G and G' be two grammars and f be a bijection

f: Tree(6) = Tree(8'). We again say f is structurally continuous if:

For all 7 < Alltree{(G), there exists 7' < Alltree(G')

such that f is order-preserving with respect towand 7',

that is if o < 1 in G then f(o) sn;f(T) in G'. In

other words f: J(G,n) > J(6',n') is continuous.
We say f is a structural homeomorphism iff f and f_] are structurally

continuous.

Again it is not known whether or not structural homeomorphism
is decidable.

However Kuroda [1976] does not base his main notion of topo-
logical similarity solely on J(G,n) but rather on the join of J(G,n)
with another topology J* generated by the "partial” trees of G.
This new toplogy is denoted by J*{(G,7). He demonstrates the remark-
able result that if f: Tree(6) = Tree(G') is a structural homeomor-
phism then f is & structural *-homeomorphism, where structural
*~homeomorphism is defined in the same way as structural homeomor-
phism, replacing J(G,w) by I*{(G,m) in the definition.

25

1.2.6 Grammar Collections

Cremers and Ginsburg [1975] introduced the notion of a grammar
form as, among other aims, a new approach to the study of grammatical
similarity. Each grammar G gives rise to a collection of grammars

(6), all of which are similar in a strong sense. For each G' in
(G) each production in G' is an "image" of some production in G, in
act if terminals are ignored there is essentially a very fine grammar
morphism from &' to G. A grammar used to define a collection in this
way is termed a grammar form.

It enables some basic similarity questions to be posed and

solved, that is:
(1) is §(s;) (6,)?
(i1) s &£(6)) = L(6,),
where (6;) = {L(6),»): 6 is 1n§(ei)}, i=1, 2.
If the answer to question (i) is affirmative then G] and G

2
are very similar and we say they are strong form equivalent, whereas

if the answer to question (ii) is affirmative, then G] and Gz are

similar but not very similar, hence we say they are form equivalent.

These similarity definitions should be compared with those of structural
and weak equivalence for grammars.

In the future perhaps the major impact of grammar forms will
be seen to be the idea of grammar collections defined by a grammar.
It is the purpose of these notes to demonstrate that this idea gives
rise to many interesting and fundamental questions in grammar and
language theory as well as contributing to the study of grammatical
similarity. For example, two grammars G and G' are said to be
L -similar if Jf(G) = Z(G") = Z for some given language family 4{.
What does a grammar which is oL (CF)-similar, look like? 1Is it
decidable whether or not G is , -similar for a given« ? And so on.
The guestions explode.

