
PROCEEDINGS OF THE SYMPOSIUM ON 
LANGUAGE DESIGN AND PROGRAMMING METHODOLOGY 
SYDNEY, 10-11 SEPTEMBER, 1979 

THE MODULE : A SYSTEM STRUCTURING FACILITY IN 
HIGH-LEVEL PROGRAMMING LANGUAGES 

Niklaus Wirth 

Institut f~ir Informatik 
ETH Ztirich 

ABSTRACT 

The key to successful programming is f inding the " r ight "  structure 

of data and program. A programming language concept called module is 

presented here as a means to par t i t ion systems ef fect ive ly .  The module 

allows to encapsulate local detai ls and to specify e x p l i c i t l y  those 

elements that are part of the interface between modules. 

Modules as presented here are part of the language Modula-2. 

Problems of separate compilation and of sp l i t t i ng  a module into 

def in i t ion ( interface) and implementation parts are discussed. 

* I ns t i t u t  "fUr Informatik 

ETH-Zentrum 

CH-8092 ZUrich 



introduction 

The predominant factor influencing the f ie ld  of computing today is 

the advent of the microprocessor and of LSI semiconductor technology in 

general. Depending on one's point of view, i t  is assessed as posit ive 

or negative; in any case i t  is exci t ing. I have recently heard the remark 

that i t  has set back the p rac t i ceo f  programming by some 20 years. Con- 

sidering the resurgence of the use of rather pr imit ive techniques of 

assembly and even numeric coding one tends to agree. 

Yet I prefer to see recent trends in an opposite perspective. The 

microprocessor spreads the ava i l ab i l i t y  of computing in an unforeseen 

degree. Hence, i t  also spreads the need for programming know-how and 

tools. In fact ,  i t  makes adequate programming techniques not only an 

advantageous convenience but an indispensable asset. Economically i t  be- 

comes the longer the more penny-wise and pound-foolish to use antiquated 

programming techniques in order to save a few cheap chips. However, we 

must not make the mistake of adopting this doctrine to a degree that we 

ignore poss ib i l i t i es  to use modern programming methods and save chips at 

the same time. This, I think, is the true challenge of computer engineer- 

ing today. 

PrograMming appears as an ac t i v i t y  in many contexts. When ! sub- 

sequently use the word "programming", I refer to the construction of 

re la t i ve ly  complex systems for long-time use, rather than the formulation 

of a small program which is discarded and forgotten af ter the intended 

result  has been computed. As such, programming is computer engineering. 

Computers, i .e .  the hardware, are unique among the products of 

modern technology in many respects, but perhaps thei r  most unique 

character ist ic  is the i r  incompleteness. A so-called complete hardware 

system is an u t te r ly  useless gadget without software, i .e .  programs. 

Each program extends the hardware creating that machine which is capable 

of computing or behaving in the desired manner. Hence programming is con- 

struct ing that machine, s tar t ing from the basis of some given mul t i -  



purpose elements. These elements may indeed be specif ic hardware compo- 

nents of a given kind. But the modern view is that they are the constructs 

which are offered by a programming language. Hence we tend to abstract 

from a given concrete machine and to work with idealized building blocks. 

We have recognized that abstraction allows us to suppress (to hide) 

detai ls that are i r re levant to our ultimate goal, a process that is in- 

dispensable in the construction of complex machinery. The div is ion of a 

computing system into hardware and software was and is the most clear- 

cut borderline that hides detai ls (of the hardware from the software 

and vice versa). I t  appears that we need a large number of such border- 

l ines,  and that the one usually given between hard- and software is by 

no means a good one. 

As a side remark, le t  me point out that the mentioned incompleteness 

of computers is also the key to thei r  f l e x i b i l i t y  and universal i ty .  As i t  

i s ,  against widespread bel iefs,  much more cost ly to real ize a given 

system ent i re ly  in hardware than par t ly  with software, the tendency is to 

implement as hardware only those parts that are very universal ly appl i -  

cable. Therefore i t  is possible to produce components in very large 

quantit ies necessary to become cost-effect ive. As a consequence, the trend 

is to increase the percentage of a system implemented by software. And 

th is is the reason for steadi ly increasing software cost and decreasing 

hardware cost. 

I have t r ied to motivate my view of (system) programming languages 

as abstract tool sets for the construction of computing machinery. This 

is in strong contrast to the view of a language as a medium of communica- 

t ion between man and machine. Admittedly this la t te r  view is not only 

more common but has also coined the term "programming language", which 

in my opinion is i l l -chosen and misleading. "Program notation" would 

be eminently more appropriate. 



Histor ica l  development 

Let us now consider in which ways programming languages aid the 

system designer in his task to develop complex machinery, and in pa r t i -  

cular to hide deta i ls  of  some part from other parts. 

The f i r s t  step with th is  goal in mind has been the introduct ion 

of subroutines in Fortran. Their purpose had always been proclaimed 

as avoidance of code rep l i ca t ion  (and saving the programmer from having 

to wr i te  so much]). But equally important is the fact  that a subroutine 

can be accompanied with objects (var iables) that are unknown to other 

subroutines. 

This aspect was c lear ly  recognized by the designers of Algol 60. 

I t  resulted in the concepts of l o c a l i t y  and block structure.  I t  is 

noteworthy that a necessary ingredient was the insistence on e x p l i c i t  

declarat ion of objects,  a rule that has been heavily c r i t i c i zed  by 

Fortran programmers, but nevertheless has proved to be extremely help- 

ful in discovering mistakes at an early stage by the compiler. Blocks 

in Algol 60 are properly nested, i . e .  each block is f u l l y  contained 

in another one (except of course the outermost block). 

BEGIN INTEGER a, b ; 

S1 ; 

BEGIN REAL c 

S2 

END 

S3 ; 

BEGIN BOOLEAN d, b ; 

OWN INTEGER e 

54 

END 

$5 

END 

a b e 

c 

I 
d,b V 

I 
! 



In Algol 60, v i s i b i l i t y  and existence are int imately connected: When- 

ever an object is v is ib le ,  i t  exists ( i .e .  is allocated) and vice-versa. 

There are, however, two exceptions to this intentional rule, one being 

accidental, the other planned but unsatisfactory. The accidental ex- 

ception is shown in Fig. 1 by the integer variable b: in statement $4 

i t  is inv is ib le ,  although i t  ex ists,  because the iden t i f i e r  b is there 

taken to denote a local Boolean variable. The intended exception is the 

concept of own variables. As i t  proved to be an unsatisfactory solut ion, 

we shall not pursue i t  any further here. 

Block structure proved to be an extremely important concept and 

was adopted by v i r t ua l l y  al l  subsequently designed programming languages, 

notably PL/I and Pascal. 

Yet i t  became apparent that Algol 60's in t r igu ing ly  simple rule 

of "whenever an object exists,  i t  is also v is ib le"  was inappropriate 

in certain si tuat ions. Simula was the language that presented a construct 

which departed from this rule, although the language, based on Algol 60, 

retained most of i ts  ancestor's characterist ics [2] I refer to the 

concept of the class. A class is defined simi lar  to a procedure; i t  

specifies a set of local objects, a set of parameters and a statement 

body. In contrast to the procedure, however, the statement body repre- 

sents a coroutine, i .e .  a process that is executed concurrently with 

other processes in the realm of abstraction, but in time-interleaved 

fashion in rea l i t y .  Hence, a coroutine can be suspended and la ter  re- 

sumed. During the period of suspension, i ts  local objects ex is t ,  but 

are inv is ib le .  This rule follows very natural ly from the premise that 

one process' local data should not be manipulated by other processes 

(even when suspended). The intended exception from the rule is provided 

by the external access ib i l i ty  of a class' parameters. 

The class structure of Simula was inspired by pert icular  require- 

ments of discrete event simulation. From the point of view of program- 

ming language theory i t  represents a feature which combines several 

d is t inc t  concepts, and this conglomeration makes i t  rather d i f f i c u l t  

to understand. With respect to Algol, the novel concepts introduced 



by the Simula class feature are 

- concurrency (or quasi-concurrency) of execution 

def in i t ion of a class, i .e .  of a template of data objects associated 

with executable statements vs. creation of instances of this class 

- d is t inc t ion between v i s i b i l i t y  and existence of objects 

- access of class instances via pointers, and exp l i c i t  f a c i l i t i e s  

to manipulate pointers (instead of referenced objects). 

The process of disentangling these concepts took considerable time 

in the history of language development, as i t  was only slowly recognized 

that such a separation of issues would add useful f l e x i b i l i t y  to langua- 

ges. 

Algol W introduced the class idea i n t o a  purely sequential language 

and disconnected the data template from i t s  association with a body of 

executable statements. This resulted in the so-called record class 

[4, 8] The Algol W class declaration defines a template of data 

(records) without associated statements. However, i t  retains the rule 

that instances of this record class are accessed exclusively via exp l i c i t  

pointers, whereas al l  other data are accessed d i rec t ly .  

The following are examples of Algol W record class declarations: 

RECORD Node (REFERENCE (Node) l e f t ,  r ight )  

RECORD Person (STRING name; 

INTEGER age; 

LOGICAL male; 

REFERENCE (Person) father,  mother) 

An instance of the class is generated by use of the class name and 

argument of the generated element's pointer to a reference variable: 

REFERENCE (Node) root 

REFERENCE (Person) p 

root := Node (NIL, NIL) 

p := Person ( "Alber t " ,  O, TRUE, pl ,  p2) 



Pascal went a step fu r ther ,  disentangling also the concepts of access, 

s t ructure,  and ins tan t ia t ion  of data: a l l  variables can be e i ther  

accessed d i rec t l y  or via pointers,  be unstructured or structured ( i . e .  

be arrays, records, or sets) ,  be defined as a single instance or by 

a template of which many instances can be created. The record class, 

in fact ,  led to the general izat ion of the template declarat ion, cal led 

type de f in i t i on  in Pascal [9].  

The gradual process of disentangling these d i s t i nc t  concepts led 

to one de f i n i t e l y  remarkable discovery. C.A.R. Hoare and P. Brinch 

Hansen recognised that the association of data and procedure declara- 

t ion as embodied in the class concept would be an ideal frame for  pro- 

moting the idea of program design with various levels of abstract ion. 

I f  the class body is regarded as an i n i t i a l i z a t i o n  statement of local 

data instead of as a coroutine, and i f  the procedures are made global ly  

accessible instead of local to the coroutine body, and i f  the associated 

variables are local ,  i .e .  hidden from the environment of the class 

declarat ion, then such a structure would be an ideal tool for  represen- 

ting abstract objects in terms of more concrete deta i ls .  This was the 

or ig in  of the idea of the abstract data type. 

In fact  the class concept with hidden variables and v is ib le  (publ ic) 

procedures was inspired by considerations of multiprogramming needs. The 

grouping of those variables that are accessed by several concurrent pro- 

cesses together with the procedures that embody these accesses created 

the concept of  a so-cal led monitor [ I ,  5]. I t  enables a compiler to 

automatical ly inser t  inter locks (among the processes) at the appropriate 

places in the program, namely at a l l  entr ies and exi ts  of a monitor's 

procedures (instead of upon each individual reference to a shared 

var iable) .  Such inter locks are a su f f i c i en t  means to guarantee the 

absence of unintended process interference (mutual exclusion),  which 

in turn is a su f f i c i en t  condit ion to assert the i n teg r i t y  of  the shared 

data. 



TYPE Stack = 

CLASS i : INTEGER 

el : ARRAY [ I . . N ]  OF INTEGER ; 

PROCEDURE push (x : INTEGER) ; 

BEGIN i := i + 1 ; e l [ i ]  := x END ; 

PROCEDURE pop : INTEGER ; 

BEGIN pop := e l [ i ]  ; i := i - 1 END ; 

PROCEDURE nonempty : BOOLEAN ; 

BEGIN nonempty := i > 0 END ; 

BEGIN (* i n i t i a l i z e  *)  i := 0 

END 

Once postu lated,  the concept of the abstract  data type led to a 

considerable amount of  research a c t i v i t i e s .  Only a few matured in to  

implemented systems [6, 7]. I t  was soon recognized that  a t r u l y  useful 

f a c i l i t y  would have to o f f e r  parameters to type d e f i n i t i o n s ,  whose 

actual values could vary from one i n s t a n t i a t i o n  to another. This 

genera l izat ion,however ,  has considerable imp l ica t ions  on the complexity 

of  implementation. At t h i s  t ime, the question about the p rac t i ca l  use- 

fulness of the abst ract  data type to the programmer is s t i l l  not 

s e t t l e d ,  and factua l  experience wi th th i s  concept is  l a rge l y  missing. 

TYPE Stack (n : INTEGER ; T : TYPE) = 

CLASS i : INTEGER ; 

el : ARRAY [ l . . n ]  OF T ; 

PROCEDURE push (x : T) ; 

BEGIN (* assume i < n ~) 

i := i + 1 ; e l [ i ]  := x 

END 

END 

A carefu l  observer w i l l  not ice that  in sp i te  of the enthusiasm 

wi th which the abst ract  data type was received,  there are r e l a t i v e l y  

few successful app l i ca t ions .  They are therefore widely used as t yp i ca l  

examples (e.g.  the stack and the queue). This is  in strong contrast  to 



the general data and statement structures ear l ie r  introduced by high- 

level languages. The reason for this lack of proven applications may 

l ie  in the current lack of good implementations of data type f a c i l i t i e s ;  

perhaps i t  also points out that i t  is inherently d i f f i c u l t  to discover 

suitable abstract data types for a given problem. 

Modules 

In Modula [ I 0 ] ,  we proposed another, s imi lar  construct for informa- 

t ion hiding, namely the so-called module. The guiding idea was once again 

the separation of issues. Whereas the class of Concurrent Pascal (and 

Portal) combines both a f a c i l i t y  for information hiding ( i .e .  a class 

declaration establishes a scope of iden t i f ie rs )  and for defining a 

template of data ( i .e .  a type) for possible instant ia t ion,  the module 

represents a f a c i l i t y  serving the f i r s t  purpose only. The module con- 

cept is oriented towards the need of separating large programs into 

part i t ions with re la t i ve ly  " thin" connections, and to make the elements 

establishing th is connection more evident in the program text .  

The module is e f fec t ive ly  a bracket around a group of (type, 

variable, procedure, etc.)  declarations establishing a scope of ident i -  

f iers .  In the f i r s t  instance, we may regard this bracket as an impenetrable 

wall ,  objects declared outside of the module are inv is ib le  inside i t ,  and those 

declared inside are inv is ib le  outside. This wall is punctured select ively by 

two l i s t s  of ident i f ie rs :  the import l i s t  contains those ident i f ie rs  de- 

fined outside which are to be v is ib le  inside too, and the export l i s t  

contains the ident i f ie rs  defined inside that are to be v is ib le  outside. 

This scheme is of a very a t t ract ive conceptual s impl ic i ty .  As a conse- 

quence, i t  is re la t i ve ly  easy to f ind appropriate applications and to 

develop a methodology (a style?) for i t s  usage. Implementation is quite 

manageable, although not t r i v i a l .  

As the module allows grouping of data and procedure declarations and 

making only selected elements of this group external ly v is ib le ,  i t  

may also serve to define "abstract data types" that can be instant iated 

in arb i t rary  numbers. 



10 

As an example, the f o l l o w i n g  Concurrent Pascal c lass dec la ra t i on  

TYPE C = CLASS 

VAR x,  y : T ; 

PROCEDURE p ; 

BEGIN . . .  x . . .  y . . .  END p ; 

PROCEDURE q ; 

BEGIN . . .  x . . .  y . . .  END q 

END 

can be expressed by a module as 

MODULE M ; 

!MPORT T ; 

EXPORT p, q, C ; 

TYPE C = RECORD x,  y : T END ; 

PROCEDURE p (c : C) ; 

BEGIN . . .  c .x  . . .  c .y  . . .  END p ; 

PROCEDURE q (c : C) ; 

BEGIN . o . c . x  . . .  c .y . . °  END q 

END M 

For c rea t ing  two instances of  the class ( type) C we declare 

"VAR a, b : C" in Concurrent Pascal as we l l  as in  Modula. In order to 

invoke a procedure appl ied to a class ob jec t ,  we w r i t e  p (a) ,  q(b) in a 

convent ional  manner, instead of  a.p,  b.q as in  Concurrent Pascal. 

This analogy between module and class hides one important ingre -  

d ien t  o f  the abst rac t  data type concept tha t  must be mentioned fo r  the 

sake of  fa i rness  and c l a r i t y .  A c ruc ia l  idea o f  the abs t rac t  data type 

is  t ha t  each instance is  governed by some cond i t i on  ( ca l l ed  the type 's  

i n v a r i a n t )  which holds fo r  the hidden data at  a l l  times (more s p e c i f i c a l l y :  

whenever cont ro l  is  outs ide the procedures def ined w i t h i n  the c lass ) .  This 

i n v a r i a n t  is es tab l ished as soon as an instance is created by some 

i n i t i a l i z a t i o n  body of  the class dec la ra t i on  (not shown above). In the 

s o l u t i o n  using a module, t h i s  i n i t i a l i z a t i o n  would have to be performed 

by an a d d i t i o n a l ,  e x p l i c i t  procedure declared w i t h i n  M. I t s  ca l l  might 



11 

be forgotten by a programmer - missing i n i t i a l i z a t i o n  is indeed a 

common error  - whereas for  the class instance i t  is automatical ly 

implied by i t s  declarat ion. 

The sacr i f i ce  of th is benef i t  perhaps shows that in choosing the 

module in place of the class, formal ve r i f i ca t i on  techniques have not 

been foremost on our mind. Instead, our motivation was to provide 

a f a c i l i t y  whose purpose is unique and easy to understand. Experience 

with programming in Modula - designing compilers and other large 

programs - has j u s t i f i e d  the presence of the module f a c i l i t y  in a very 

convincing manner. Most of us would never wish to design another large 

program without an encapsulation feature such as the module. A re- 

vealing fact  was also that in the average only a few percent of the 

modules occurring in a program serve in the sense of an abstract data 

type as template with several instances. More important is the possi- 

b i l i t y  to nest modules. The d i s t i nc t  asset, however, is the simple but 

general ru le about import and export, the freedom to select objects for  

import and export,  and to have the same rule govern procedures as well 

as var iables,  types, and other objects. 

In spi te of these v i r tues,  the module as described so far  has i t s  

shortcomings. We have t r ied  to overcome some of them in Modula-2 [ I I ]  

and during these e f fo r ts  came to the conclusion that the be l i e f  in the 

existence of an ideal solut ion sat is fy ing a l l  needs is not only too 

opt imis t ic  but mistaken. 

Let me nevertheless present a few points of controversy and point 

out our choices for  Modula-2, a language oriented towards system pro- 

gramming. 

Pr imari ly i f  programs are to be composed from col lect ions of 

ex is t ing modules, i .e .  i f  the wr i te r  of a module may not know the 

environment' in which his modules w i l l  be embedded, the described 

solut ion is unsat isfactory.  For, i f  two inner modules export, by 

coincidence, the same i d e n t i f i e r s ,  a con f l i c t  ar ises: 



12 

MODULE M ; 

MODULE MO ; 

EXPORT x 

VAR x : CARDINAL ; 

o . o 

END MO 

MODULE Ml ; 

EXPORT x ; 

VAR x : BOOLEAN 

END M1 

(* at  th is  point  x denotes two d i f f e r e n t  var iab les  *)  

END M. 

In order to disambiguate the above s i t u a t i o n ,  a q u a l i f i c a t i o n  of  

x is introduced. In the above example, x must be exported in so- 

ca l led  q u a l i f i e d  mode. In th is  case (see below), no naming c o n f l i c t  

a r i ses ,  because the Cardinal va r iab le  x is  to be re fer red to as MO.x, 

and the Boolean as Ml :x .  

Qua l i f i ed  export  has i t s  drawbacks too, however, and in our ex- 

perience i t  is  used almost exc lus i ve l y  in the case of  u t i l i t y  modules onl~ 

Typ i ca l l y ,  modules are named by r e l a t i v e l y  long i d e n t i f i e r s .  They 

have to be used whenever an object exported in q u a l i f i e d  mode is re-  

ferenced. This resu l t s  in a "heavy" and cumbersome notat ion.  

In Modula-2, we have eased t h i s  s i t u a t i o n  by provid ing a f a c i l i t y  

with an e f f ec t  s i m i l a r  to that  of a WITH statement for  records, 



13 

Consider the f o l l ow ing  example: 

MODULE M ; 

MODULE MO ; 

EXPORT QUALIFIED x,  y ; . . .  

END MO ; 

MODULE M1 ; 

EXPORT QUALIFIED x,  y ; . . .  

END M1 ; 

MODULE M2 ; 

FROM MO IMPORT x ; 

FROM M1 IMPORT y ; 

. . .  x . . .  y . . .  

END M2 ; 

. . .  MO.x . . .  Ml .y  . . .  

END M. 

An import l i s t  of  the form 

FROM M IMPORT x 

w i l l  a l low reference by unqua l i f i ed  x ,  al though x has been exported 

from M in  q u a l i f i e d  mode. 

The simple expor t  ru les ind ica ted  above have consequences tha t  are 

undesirable in  some s i tua t i ons ,  l f  a module is  employed to implement an 

abst rac t  data type as ind ica ted  above, then externa l  v i s i b i l i t y  o f  the 

record f i e l d  i d e n t i f i e r s  x and y is  d e f i n i t e l y  undesi rable.  A s t r i c t  

i n t e r p r e t a t i o n  o f  the given ru l es ,  however, exports x and y au tomat i ca l l y  

together w i th  C. Here we are confronted wi th  the dilemma of  t ransparent  

vs. obscure expor t  o f  types. In Modula, we had decided f o r  obscure export  

to cater  fo r  the view of  abst rac t  data types - in Modula-2 we opted 

fo r  t ransparent  expor t ,  which not on ly  al lows f o r  a simple expor t  r u l e ,  

but is h i gh l y  des i rab le  in many p rac t i ca l  cases. 



14 

MODULE M ; 

MODULE M1 ; 

EXPORT A, R, P ; 

TYPE A = ARRAY 0. .9  OF CHAR ; 

TYPE R = RECORD x, y : CARDINAL END ; 

PROCEDURE P (a : A ; r : R) ; 

END P ; 

" ° 5  

END Ml ; 

VAR aO, al : A ; rO, r l  : R ; 

BEGIN . . .  

( *  assume obscure type export  *)  

aO[ i ]  := a l [ j ]  ; 

(*  i l l e g a l  because i t  is unknown here that  aO, al are arrays *)  

rO.x := r l . y  ; 

(*  i l l e g a l  because i t  is unknown here that  rO, r l  are records;  

x, y are here unknown i d e n t i f i e r s  *)  

P(aO, r l )  (*  legal cal l  *)  

END M. 

Our experience has been that  t ransparent  export  is ra ther  the normal 

case, and obscure export  is des i red,  i f  the module is designed in the 

sense o f  an abst rac t  data type. Modula-2 o f fe rs  t ransparent  type export  

as de fau l t ,  and obscure expor t  in special  cases (see below). 

Separate modules 

Large systems are b u i l t  in layers wi th a h ie ra rch ica l  s t ruc tu re .  

The very large number of elementary components asks fo r  a f a i r  number of  

log ica l  layers ,  each being described by a set of  abst ract ions and by 

condi t ions governing them. I t  would indeed be su rp r i s i ng ,  i f  the same 

constructs would be opt imal ly  sui ted fo r  the decomposition on a l l  leve ls  

o f  the h ierarchy.  But of  course, a carefu l  designer has a natural  tendency 

not to int roduce d i f f e r e n t  concepts and mechanisms fo r  each l eve l ;  in f ac t ,  



15 

one should l ike to use the same concept for a l l  layers. 

We feel that a certain compromise may y ie ld the best resul ts ,  and 

recognize a primary d is t inct ion of requirements between the level on 

which components are designed and implemented by d i f ferent  people, and 

the levels below i t .  I f  d i f ferent  people are involved, the incentive 

to specify thin interfaces, and to nail them by binding agreements, is 

very much more pronounced, than i f  the parts are designed, combined, 

and tested by one person. In the former case, i t  appears desirable to 

separate the specif ications of a program from the specif icat ion of the 

interface, i .e .  of those items that are exported and imported. Such a 

separation has the decisive advantage that the interface specif icat ion 

can be widely d is t r ibuted,  whereas the actual program is kept private 

to i ts  implementor. Such a scheme is used in MESA [3]. 

This scheme is par t icu lar ly  useful i f  a compiler is designed to 

check for the consistency of the individual program parts. I t  must ver i fy  

that a program is consistent with i ts  specified interface, and that 

users of a module M are consistent with M's interface. Only in this way 

can i t  be determined whether or not changes in a program P can be 

implemented without changes in any of the users of P; the condition 

is that P's interface remains unchanged. 

At this point, we have quiescently abandoned the view of a system 

defined by a program wri t ten on one piece of paper. Instead, i t  is 

specified by many such pieces (we call them modules) designed and 

developed by d i f ferent  people. For several reasons, i t  is desirable 

to be able to compile these modules separately. This f a c i l i t y ,  belonging 

ent i re ly  to the realm of technical real izat ion should, however, not 

influence the conceptual design of the language. A program, being a 

piece of tex t ,  must be understood without resort to explanations of 

i ts  execution and preparation. I f  i t  consists of several pieces, i t  

must be regarded as a concatenation of these pieces, and the language 

rule must cover this case. 



16 

In Modula-2 we regard the concatenated modules as able to export 

into and to import from a vacuous environment. Typica l ly ,  such a con- 

catenation consists of one module representing the so-cal led main pro- 

gram and a set of modules with data and procedures used by the primary 

module. The primary module imports only, the others export and may 

import. From the foregoing i t  fol lows that only the secondary modules 

have reason to be speci f ied in two parts, namely as an inter face speci- 

f i ca t ion  and a program implementation. We have decided that they must 

be speci f ied in two parts,  and therefore obtain three d i f f e ren t  species 

of modules: 

The "normal" module° I t  can be nested. I f  i t  occurs as a separate 

piece of t ex t ,  i t  cannot export and is regarded as a main program. 

- The de f i n i t i on  module. I t  speci f ies the in ter face of a module, in 

par t i cu la r  a l l  objects that are exported. (Modula-2 allows qua l i f ied  

export only in th is  case.) 

The implementation module. I t  belongs to the de f i n i t i on  module 

carrying the same name. I t  contains the bodies of the procedures 

whose headings are l i s tea  in the de f i n i t i on  module, and possibly 

declarations of fu r ther  objects that are loca l ,  i . e .  not exported. 

Def in i t ion  and implementation modules occur as pairs and as sepa- 

rate pieces of tex t ,  i . e .  they cannot be nested in some other module. 

The implementation module is assumed to import a l l  objects defined in i t s  

associated de f i n i t i on  module. 

DEFINITION MODULE 10 ; 

EXPORT put, get ; 

PROCEDURE put (ch : CHAR) ; 

PROCEDURE get ( ) : CHAR ; 

END I0. 

IMPLEMENTATION MODULE I0 ; 

VAR inbuf,  outbuf : ARRAY 0..15 OF CHAR ; 

PROCEDURE put (ch : CHAR) ; 

BEGIN (* body of put *) END put ; 

PROCEDURE get ( ) : CHAR ; 

BEGIN (* body of get *) END get 

BEGIN (* i n i t i a l i z a t i o n  of data *) 

END I0. 



17 

MODULE Main ; 

FROM I0 IMPORT put, get ; 

VAR ch : CHAR ; 

BEGIN 

. . .  put (ch) . . .  ch := get ( ) . . .  

END Main. 

The separation into de f in i t i on  and implementation modules y ie lds 

an unexpected benef i t .  I t  solves the problem of transparent vs. 

obscure export of types in a most natural manner: I f  a type is f u l l y  

speci f ied in the de f in i t i on  module, th is  signals transparent export. 

Obscure export is achieved by l i s t i ng  merely the i d e n t i f i e r  in the 

de f in i t i on  module and by "hiding" the fu l l  declarat ion wi th in the 

implementation module. 

DEFINITION MODULE M ; 

EXPORT TO, TI . . . .  ; 

TYPE TO ; (~ obscure type export *) 

TYPE T1 = ARRAY 0..15 OF CHAR ; (* transparent export *) 

END M. 

IMPLEMENTATION MODULE M; 

TYPE TO = POINTER TO 

RECORD x, y : CARDINAL ; 

END ; 

END M. 

The use of the module f a c i l i t y  

I t  is a well-known t ruth that any new f a c i l i t y  requires not only 

an appropriate formulation and spec i f i ca t ion ,  but also a "theory and 

pract ice" of i t s  use. Although well-motivated examples for  the 

pr inc ip le  of information hiding have been c i rcu la t ing  for  some time, 

and although they appeared to demonstrate convincingly where classes 

and modules would be useful ,  we have experienced that i t  is by no means 



18 

an easy task to determine the best modularization of a program in develop- 

ment. This is pa r t i cu la r l y  the case for  the larger pa r t i t i ons ,  except 

perhaps when a hierarchical  structure of procedure layers is f a i r l y  evident,  

such as e.g. in the case of input/output u t i l i t i e s ,  f i l e  handlers, and 

dr ivers.  

In general, a module is established whenever a co l lec t ion of pro- 

cedures share a set of variables that is accessed exclusively by these 

procedures. (These variables are t yp i ca l l y  ow___n_n in the sense of Algol 60). 

We have gradually sh i f ted ,  however, from the view of a module being a 

co l lec t ion  of procedures sharing common variables towards the view of 

a data structure whose access is res t r i c ted  by having to occur via a 

small set of operators. Hence, the data rather than the procedures move 

into the foreground of a t tent ion.  A module is t yp i ca l l y  characterized by 

the data i t  contains (and perhaps hides) rather than by i t s  set of 

exported procedures° 

Often - in the case of larger par t i t i ons  - these data are structured 

in qui te complex manners. In pa r t i cu la r ,  structures with several d i f f e ren t  

kinds of elements occur. I t  therefore is inappropriate to characterize a 

module as a type. Instead, the exported procedures often access and a l te r  

data elements of several types. This fact  may explain par t ly  the ea r l i e r  

mentioned lack of pract ical  success of the class structure which e f f ec t i ve l y  

exports a single type only. The module does not suf fer  from th is  r e s t r i c t i v e -  

ness; i t  allows a rb i t ra ry  de f i n i t i on  of many data types and structures,  

and export of a l l  of them i f  desired. 

In essence~ then, the recognit ion of a useful modularization of 

the involved data structure is the key to f inding the appropriate de- 

composition of a program into modules. As any experienced programmer 

knows, th is  is the hardest task; often one discovers the r igh t  data 

structures only while developing the ent i re  program. Without experience 

and fores ight ,  one is condemned to restructure a program's module de- 

composition from time to time. The obvious a l te rna t ive  i s ,  of course, 

not to bother to improve the program. 



19 

But I must draw attention to the fact that - owing to the exp l i c i t  

modules - the inappropriateness of a program's structure is much more 

obvious than i t  is (or was) when wri t ten in a language without modules. 

Programming with a module f a c i l i t y  is indeed more d i f f i c u l t ,  as i t  

forces the programmer to reason from the star t  more careful ly about 

a program's structure. However, the benefit is that such programs are - 

once designed - easier to reason about, to change, to document, and 

to understand. For system programs, which in general are expected to 

have a long l i f e  span, the gain in "maintainabi l i ty"  is well worth a 

heavier investment in the e f fo r t  of the i r  design. In many cases, f inding 

the r ight  structure i n i t i a l l y  is not merely a benefit ,  but simply a 

matter of success or fa i lu re .  

The module also appeared as an aid towards a solution of another 

longstanding problem typical of systems programming languages. I refer 

to the use of low-level,  perhaps machine-dependent f a c i l i t i e s  in a high- 

level language with program-defined data types. Whereas machine-dependent 

f a c i l i t i e s  such as special operators and data types l ike WORD or BYTE 

are v i r t ua l l y  indispensable in, for example, a disk dr iver ,  we strongly 

wish to hide them from most program parts. The module provides exactly 

this hiding capabi l i ty ,  and therefore emerges as the means to make 

a l l  levels of  a system expressible in one and the same language, 

without being res t r i c t i ve  in low-level modules, nor being too "per- 

missive" in high-level modules. 

In Modula-2, we have postulated a (machine-dependent) pseudo- 

module, called SYSTEM, that is typ ica l l y  imported in low-level modules 

on l y . l t  contains data types such as ADDRESS, WORD, and procedures corre- 

sponding to specialized machine instruct ions. Moreover, i t  also contains 

the primit ives used for coroutine handling, from which typ ica l l y  a process 

scheduler could be programmed. We call  th is a pseudo module, because 

i ts  components must be known to the compiler, which acts according to special 

rules (e.g. generates the specialized instruct ions instead of regular 

procedure ca l ls ) .  



2O 

Of importance besides the a v a i l a b i l i t y  of the system module are 

the addit ional compat ib i l i ty  rules of these system types with other 

types. For example, the type ADDRESS is said to be compatible with a l l  

pointer types. This holds for  both assignment and actual-formal para- 

meter subst i tu t ion .  Compatibi l i ty also exists between the types WORD 

and INTEGER (or CARDINAL). Thus i t  becomes possible to perform a r i t h -  

metic operation on pointers,  but only in the low-level module, where 

the pointers are typed as addresses (such as e.g. in a storage manager, 

see below). 

MODULE Storage ; 

FROM SYSTEM IMPORT ADDRESS ; 

EXPORT new ; 

VAR LastAdr : ADDRESS 

PROCEDURE new (VAR a : ADDRESS ; size : CARDINAL) ; 

BEGIN a := LastAdr 

LastAdr := LastAdr + size 

END new 

BEGIN LastAdr := 0 

END Storage. 

MODULE Main 

IMPORT Storage 

TYPE T = , . .  ; 

VAR p : POINTER TO T ; 

BEGIN °°. 

Storage.new (p, SIZE(T)) . . .  

END Main. 

(Note: The decomposition of the module Storage into de f i n i t i on  and 

implementation parts is not shown here). 

Exception handling 

When a programmer is experienced in the use of a structured 

language with s u f f i c i e n t l y  f l e x i b l e  control statements (such as IF, 

WHILE, e t c . ) ,  the GO TO statement w i l l  appear as quite dispensable to 



21 

him. The introduct ion of modules, however, in par t i cu la r  of separate modules, 

reintroduces the need for  a jump. The major need arises from the handling 

of exceptional cases, i . e .  of ex i t  jumps from procedures. Although th is  

case might be handled by the passing of addit ional output parameters, 

the exceptional ex i t  jump is desirable,  because parameters would cause 

addi t iona l ,  unacceptable overhead upon each ca l l .  A regular GO TO 

statement is inadequate, however, i f  the point of  resumption is unknown 

in the module where the exceptional condit ion arises. 

For th is  purpose, Modula-2 provides a feature cal led exception. 

I t  is worth emphasizing that the need for  i t  is mainly a consequence 

of the module f a c i l i t y .  We dist inguish between three constructs, cal led 

exception declarat ion, exception ca l l ,  and exception handler. 

The fol lowing example i l l u s t r a tes  the i r  use: 

MODULE M ; 

EXCEPTION ex ; (* declarat ion *) 

PROCEDURE p ; 

BEGIN . . .  

ex (* t ransfer  to Sl, which is i nv i s ib le  here *) 

END p ; 

PROCEDURE q ; 

BEGIN . . .  p ; . . .  

WHEN ex DO Sl (* exception handler *) 

END q ; 

BEGIN . . .  q ; . . .  

ex ; (* exception ca l l ,  handled by $2 *) 

, ° °  

WHEN ex DO $2 

END M. 

When an exception is cal led,  control ex i ts  the cal led procedures 

up to the f i r s t  one which provides a corresponding handler. This 

handler is executed, whereupon the procedure is terminated and 

execution resumes at the point of i t s  ca l l .  The handlers (WHEN . . . )  

occur at the end of procedure bodies. They can be regarded l i ke  

procedures; however, when called, the search follows the dynamic history 



22 

of procedure activations instead of the s ta t i c ,  nested scopes of 

i den t i f i e r  v i s i b i l i t y .  

Implementation 

A pleasant property of the module concept as described here is 

that i t  does not present any major problems to implementors. In essence, 

i ts  influence is restr ic ted pr imari ly  to the mechanisms for symbol table 

access in the compiler. In ef fect ,  the module structure is inv is ib le  

in the code ul t imately generated, as i t  only concerns the scopes 

( v i s i b i l i t y  ranges) of objects, but not the semantics of a program. 

Large modules specified as separate ent i t ies  should be separately 

compilable. This requirement complicates matters to a considerable ex- 

tent;  i t  does not merely require the generation of relocatable instead 

of absolute code. The emphasis is on separate compilation in contrast 

to independent compilation. Thereby we understand that upon compilation, 

syntax and type consistency checks are performed regardless of whether 

or not a program is presented in i t s  ent i re ty  or in separate pieces. 

As a consequence, a compiler processing a module M must have access to 

information about a l l  modules imported by M. Acutal ly, th is informa- 

t ion can be rest r ic ted to the items exported and, in order to expedite 

matters, can be stored in a compiled form. A compiler now does not only 

generate an object (code) f i l e  and a l i s t i n g ,  but addi t ional ly  (in the 

case of a def in i t ion module) a symbol table f i l e  describing al l  ex- 

ported objects. I t  not only reads from a source f i l e ,  but also inputs 

compiled symbol table f i l es  of a l l  modules i t  imports. 

This implies that a module MO being used by M1 must be compiled 

pr ior  to compilation of MI. Circular references are thereby prohibited. 

Fortunately, the sp l i t  into def in i t ion and implementation parts solves 

th is problem, i f  perhaps not f u l l y ,  then at least for the prac t ica l ly  

relevant cases. A def in i t ion  module is compiled - result ing in a 

symbol table f i l e  - before i t s  corresponding implementation module is 

compiled. I f  two modules both contain references to the other, then 

these imports belong to the implementation parts. Hence, both def in i t ion 



23 

parts can be compiled separately (in any sequence), whereupon both 

implementation parts are processed, yielding the actual code f i les .  

An important consideration is that a compiler should have to 

consult only the symbol table f i les of direct ly imported modules. 

For example, i f  M2 imports M1 which in turn imports MO, then the table 

of M1 should contain processed information on those selected objects 

of MO that are referenced in MI. I f  this were not the case, M2 would 

have to consult the tables of both M1 and MO. In practical cases, this 

might quickly lead to an unacceptably large volume of tables to be 

loaded for modules on higher levels. 

Although the complications induced on a compiler by a scheme 

of separate compilation is by no means minor, a separate compilation 

f ac i l i t y  for modules is v i r tua l ly  indispensable for the construction 

of large systems. The simple solution of replacing separate by 

independent compilation is unacceptable, as i t  would eliminate type 

consistency checking across module boundaries, thereby giving away 

one of the most effective assets of a structured language. 



24 

References 

[l] P. Brinch Hansen. The programming language Concurrent Pascal. 

IEEE Trans. Software Eng., l ,  2, 199-207 (1975) 

[2] O.J. Dah], K. Nygaard. Simula - An Algol-based simulat ion language. 

Comm. ACM 9, 9, 671-678 (Sept. 1966) 

[3] Ch. M. Geschke, J.H. Morr is,  E.H. Satterthwaite.  Early experience 

with Mesa. Comm. ACM, 20, 8, 540-553 (Aug. 1977) 

[4] C.A.R. Hoare. Record handl ing; in Programming Languages, F. Genuy~, 

Ed.,London and New York, 1968. (pp. 291-347) 

[5] C.A.R. Hoare. Monitors: An operating system s t ruc tur ing  concept. 

Comm. ACM, 17, lO, 549-557 (1974) 

[6] H. Lienhard. The real- t ime programming language PORTAL. R. Schi ld. 

Paral le l  processes in PORTAL, exemplif ied in a group project .  

Landis & Gyr Review 25, 2, 2-16 (1978) 

[7] B. Liskov e~ al .  CLU Reference Manual. Computation Structures Group 

Memo 161. MIT Lab. for  Comp. Sci. July 1978 

[8] N. Wirth and C.A.R. Hoare. A cont r ibu t ion  to the development of 

Algol .  Comm. ACM, 9, 6, 413-432 (June 1966) 

[9] N. Wirtho The programming language Pascal. Acta Informatica l ,  

35-63 (1971). 

[ lO] N. Wirtho Modu!a: A language for  modular multiprogramming. 

Software - Practice and Experience, 7, 3-35 (1977) 

[ I I ]  N. Wirth. Modu!a-2. Techo Report 27, I n s t i t u t  fur  Informatik ETH. 

ZUrich, Dec. 1978. 


