
PROTECTION IN LANGUAGES FOR REAL TIME PROGRAMMING

P. Ancilotti
Istituto di Elaborazione della
Informazione,CNR, via S. Maria

Pisa - Italy

M. Boari
Istituto di Automatica, Facoltg
di Ingegneria, Viale Risorgimento

Bologna - Italy

N. Lijtmaer
Istituto di Elaborazione della
Informazione,CNR, via S. Maria

Pisa - Italy

ABSTRACT

A protection mechanism which may be embedded in an object oriented

language for real time programming permitting definition of abstract

data types, is proposed in this paper.

This mechanism provides support for designing highly reliable concur

rent programs; in fact it allows the detection at compile time of a

large class of time dependent errors. To verify the versatility of

the proposed mechanism it is firstly characterized abstractly in terms

of a protection model; then some linguistic features enforcing prote~

tion are defined.

238

I. Introduction

The role of a protection mechanism in a programmed system is to pre-

vent processes from acceding to the objects defined in the system in

an unauthorized or undesirable way; a protection mechanism must ther E

fore guarantee that each process may both accede only those objects

for which it has legitimate rights and perform only meaningful acce~

ses to those objects.

Protection mechanisms are usually supported by operating systems. Re-

cently, however, the opportunity to incorporate protection facilities

in programming languages has been recognized. In fact software relia-

bility may be considerably enhanced if access control restrictions a-

re expressed directly in the language and enforced by the compiler of

that language. Thus, access control errors can be captured at compile

time so that programs may be written to be well-behaved with respect

to access control restrictions [Wul 74,76; Jon 76]

A mechanism suitable for incorporation in object oriented languages

was presented in [Jon 76]. Such a proposal is based on capability

protection mechanisms provided by some operating systems.

Following this approach, a protection mechanism, which may be embed-

ded in an object oriented language for real time programming provid-

ing abstract data type definition, is proposed in this paper. This

mechanism also provides support for designing highly reliable concu~

rent programs; in fact it allows the detection at compile time of a

large class of time dependent errors.

Unlike some real time languages recently proposed [Bri 75, Wir 77] ,

the possibility that objects may be dynamically allocated to proces-

ses is considered. The protection mechanism must guarantee, also in

this case, a compile time checking of access control. To verify the

versatility of the proposed mechanism it is firstly characterized ab-

stractly in terms of a protection model; then some linguistic featu-

res enforcing protection are defined.

2. PROTECTION% A MODEL

The versatility of protection mechanisms can be abstractly character-

ized in terms of a protection model. A protection model sees the sys-

tem as a collection of components. System components may be partition

ed in two disjoint subsets, namely, subjects, that is.processes and

objects, that is resources. Furthermore, a protection model defines

239

the access rights of each subject to each object. Following Lampson's

proposal on 1971, a protection model can be represented in the form of

a protection matrix. Subjects are associated with rows of the matrix,

while objects are associated with columns [Lam 71]. Given a pair sub_

ject-object, the corresponding entry of the matrix defines the set,

possibly empty, of access rights that the subject has to the object.

A protection domain defines the set of access rights that one subject

has to the objects of the system.

A first aspect of the protection mechanism is related to the enforce-

ment of protection. It means that , at any time, a subject can exerc!

se only those access rights that belong to its domain. In terms of the

protection model a subject can accede an object if and only if the ma-

trix entry, corresponding to the pair subject-object, is not empty.

Furthermore the subject can exercise on that object only those access

rights specified in the matrix entry. This aspect of a protection me-

chanism is called the enforcement rule [Jon 73].

As far as system reliability is concerned it should be convenient to

maintain protection domains as small as possible in order to restrict

the number of objects that a subject can use to those significant to

the performed activity. This concept has been called the "principle of

least privilege" [Lin 76].

While a small program operates on a small number of objects, a larger

one normally needs to operate on a great number of them. To conciliate

this characteristic with the principle of least privilege, a large pr~

gram must run in many different protection domains and then it must be

able to switch protection domains during execution. In this way the

protection domain in which a program runs, can be held time to time

as small as possible.

Domain switching represents the second aspect of a protection mecha-

nism and it is called the domain binding rule [Jon 73].

From the model point of view since a subject may run in more than one

protection domain, it cannot be represented by only one row of the

protection matrix. Thus, rows coincide with domain and a subject must

be specified by a pair process-domain.

Fig. 2.1 shows that each process P running in the protection domain

D i can exercise access rights a and ~ on the object Rj while object

is not accessible.

240

resources

Di

Fig. 2.1

When a process needs to change its current domain to acquire or re-

lease a limited number of rights, but one wants to avoid the complete

domain switching, the protection mechanism must be able to transfer

rights into and out of domains. This is the third and last aspect to

be covered by the protection mechanism and it is called the transfer

r~ghts rule [Jon 731 •

In terms of the model we must then allow changes in the protection

matrix. This aspect, related to the assignment of access rights to

domains, is strongly connected with the problem of resource alloca-

tion in the operating system sense.

Let us now characterize objects in relation to the way in which ac-

cess rights are assigned to domains. If access rights to use an ob-

ject are allocated to domains during the initialization phase and these

rights are no longer modifiable, then the object is statically allocak

ed. Otherwise, if a domain may acquire or release rights to accede an

object, this object is dynamically allocated.

If access rights to accede an object belong to only one domain this ob

ject is said a dedicated resource. In particular a dedicated resource

statically allocated to a domain represents a private resource of that

domain. If access rights belong to more than one domain the object is

called a shared resource.

In order to avoid time dependent errors, concurrent accesses to the

same objects must be generally avoided. For this purpose we will sup-

pose that at most one process at a time can run in a protection domain.

Furthermore shared resources will require exclusive access and synchr~

nization among processes competing for their use.

24I

3. LANGUAGE ENFORCED PROTECTION

The main goal of this paper is to show how a protection mechanism m~

deled as described can be embedded in an object oriented language for

real time applications. Concurrent Pascal has been chosen as the re-

ference language [Bri 75].

From a linguistic point of view, an object or resource is defined as

a uniquely distinguishable structured encoding of information. An a~

cees to a resource is ~n algorithm to reference the resource in order

to transform it or to extract information encoded within it. The ac-

cess algorithm depends upon the internal representation of those re-

sources to which the algorithm can be applied. Thus the set of all r~

sources is partitioned into equivalence classes, each called a type.

The type of a resource determines the accesses that can potentially

be applied to that resource.

Any description of a resource type is completely specified by the d E

finitions of applicable accesses. Knowledge of the internal represe~

tation of resources need not be available outside the access algo-

rithms [Jon 73].

Then each resource type may be conceived as an abstract data type ILls

75].

Following Concurrent Pascal notation, a dedicated resource type is de

fined as a class:

type dedicated-resource-type = class (.,.,.,.);

begin end;

Each instance of a class represents a dedicated resource to which on-

ly the accesses specified by entry procedures can be applied.

Analogously, a shared resource type may be defined as a monitor:

type shared-resource-type = monitor (.,.,.j.);

begin end;

In this case the entry procedures are mutually exclusive, so that at

most one process can be active in a monitor, at any time. Furthermore,

queue variables are allowed as part of the shared data base of a mon-

itor in order to permit the specification of the coordination among

processes competing for this resource [Bri 75, Hoa 74].

Note that instances of abstract data types correspond to columns of

the protection matrix.

242

Scope rules of the language establish that local objects of abstract

data types are accessible only by the procedures of those types. Then

each instance of an abstract data type identifies a particular domain

represented by a row in the protection matrix.

Each protection domain can be conceived as a capability list, where

capability is a token that identifies an object and a set of access

rights; possession of the token confers those access rights for that

object. From the model point of view a capability is represented by

an entry of the protection matrix.

The syntax of a capability declaration is:

var v: T {~ }

The semantics of such a declaration specifies that a resource of type

T is accessible through the capability v; a, 8,.. are the only proce-

dural accesses available to refer or alter that resource through v.

They correspond to a subset Of procedure entries of type T.

The concept of capability does not correspond to the traditional con-

cept of variable as an object containing a value that can be modified

by means of assignments. A capability can be conceived rather as a

pointer that can be bound to a particular object containing the val-

ue [Jon 76].

Rules to bind capabilities to objects are different from assignment

rules involving traditional variables. In fact, the first ones correspond

to assignment rules involving variables of type pointer. A capability,

bound to an object, can be conceived as an access path for the object.

Both, the type of the object and the type of the capability must be

the same, in order to guarantee a correct binding.

For simplicity we will use the notation resource or object x of type

X instead of resource or object referred by the capability x of type X.

A process can refer and use a resource if and only if it executes in a

domain owning an access right to that resource, that is a capability

bound to the resource.

As stated in the previous paragraph assignment rules of access rights

to domains may be either static or dynamic, and then static and dyna~

ic binding of capabilities to resources must be provided.

Nevertheless while resources can be dynamically allocated they are cre

ated statically and will exist forever after the system initialization;

that is no dynamic resource creation is considered in this paper.

243

First of all the static assignment of access rights to domains, that

is the static capability binding, is considered. There are two diffe

rent ways to statically bind a capability to a resource:the first one

corresponds to the allocation of a dedicated resource, while the sec-

ond one allows resource sharing.

A capability y of type Y is created in any domain containing the de-

claration:

var y: Y {a,~ }

that is, in any instance of an abstract data type containing the pre-

vious declaration.

A resource of type Y, that is an instance of an abstract data type Y,

is created during the initialization of y:

init y .

The init statement allocates space for private variables of the re-

source,initializes them and binds the capability y to the resource

[Bri 75].

Thus, given a domain associated with an instance x of type X, in or-

der to statically allocate to x the access rights ~, B,... to a pri-

vate resource of type Y, where Y must be a class, it is sufficient to

declare the capability:

vat y:Y {a,8,..}

into type X. During the initialization of x its local variables, in-

cluded the variable y, are allocated in the name space of x and are

initialized. That implies the initialization of y, that is the crea-

tion of a resource of type Y and the binding of y to this resource.

The static allocation of shared resources involves the definition of

a resource for which more than one, statically declared, access path

exists.

The problem now is to allow a set of domains associated with instances

Xl,X2,...,x n of types XI,X2,...,X n respectively, to share a resource

of type Y, where Y must be a monitor. For this purpose the capability:

war y:Y {~,B,..}

is declared in the main program. As stated above, during the initia-

lization of y a resource of type Y is created and y is bound to it.

244

Then, in order to statically assign to each domain xi(i = l...n) the

access rights eli ' gli ... to the resource y, a formal parameter of type

Y with access rights eli ' Bli °o. is associated to the system type Xi,

for instance:

type X i = (...... z : Y {eli ,Bli }...)

and y is declared as the actual parameter during the initialization of

x. :
l

init x i (.... y).

In this way, a capability z : Y {ali,~li,...} is allocated in the name

space of xi, and, during the initialization of xi, z is bound to the

resource y.

Note that {ali,~li } must be a subset of {e, B } in order to gua[

antee the correct binding of z to the resource y.

In order to allow dynamic resource allocation, bindings between capa-

bilities and resources must be delayed until execution time. If a re-

source of type Y is dynamically requested by an instance x of type X

it means that x, initially, does not own any access path to accede to

the resource. A path must be granted to x only when the resource is nee~

ed and then the path must be reclaimed. For this purpose the capability:

vat y : Y {e,~,..} empty

is declared in the abstract data type X. In this way the capability y

is created in any domain associated with an instance x of type X.

During the initialization of x all its capabilities, identified by the

key word empty, are not bound to a particular resource. The domain x

can acquire the access rights e,~,.., to use a resource of type Y.

For this purpose the capability y must be bound to the resource.

Assignments between capabilities, that is new bindings of capabilities

to resources, may appear only in instances of a particular type called

manager with the following restrictions:

a) Each manager may modify only bindings between capabilities and

resources of a particular type.

b) Only an empty variable may appear as the left member of an as-

signment involving capabilities. Then bindings statically de-

clared cannot be modified.

245

c) The set of access rights associated with the left member of an

assignment involving capabilities must be a subset of the ac-

cess rights associated with the right member [Jon 76].

In this way a manager can both bind an empty capability y : Y {a,~,...}

to a specific resource of type Y - resource allocation - and assign the

value nil to the empty capability - resource reclaim. In other words a

manager handles the dynamic allocation of resources of a particular

type. This type can be either a class or a monitor.

The syntax of a manager definition is similar to that of a monitor or

a class definition [Sil 77, Anc 77a, Anc 77b] . The main difference re

sides in the form of the heading. In fact, together with the identi-

fier of the defined type, the identifier of the resource type handled

by the manager is also required.

type <identifier> = manager of <resource type identifier>

(formal parameters);

<local declarations> ;

<entry procedures> ;

<lOcal procedures> ;

begin <initialization> end;

Let us resume the most important characteristics of the proposed meth-

od for dynamic binding of capabilities to resources:

i) A declared manager of resources of type Y is able to modify

bindings among capabilities and resources of type Y. Then the

manager must have ~ccess rights to a certain number n of re-

sources of type Y. For this reason n capabilities of type Y

are declared into the body of the manager. In other words any

instance of a manager represents a domain with access rights

to a certain number of resources of type Y. By means of capa-

bilities assignments a manager can transfer its access rights

to other domains. Following the previous restriction c) a man

ager is able to transfer only its own access rights.

ii) Two entry procedures~ each of them with an empty capability

246

of type Y as a formal parameter, are declared into each man-

ager handling resources of type Y. The first procedure allo-

cates one of the resources handled by the manager and there-

fore in that procedure one of the capabilities of type Y is

assigned to the formal parameter. The second procedure deal-

locates the resource by assigning the value nil to the form-

al parameter.

iii)If the capability:

var y : Y {a,B } empty

is declared into a system type X, then X has a formal param-

eter whose type corresponds to a manager of resources of type

Y. Each instance x of type X requires the manager to allocate

a resource of type Y in order to operate on it. This reauest

is done by calling the allocation procedure of the manager.

When the resource is no longer needed, it must be released by

calling the deallocation procedure of the manager. The varia-

ble y is passed as an actual parameter to both procedures.

The set {~,B,...} must be a subset of the access rights asso-

ciated with the formal parameters of the allocation procedure

of the manager.

In order to guarantee completely controlle~ accesses to resources at

compilation time, the programmer must specify for each dynamically a !

located resource R all the program regions in which R is referred. In

this way the compiler is able to establish, for each access to a re-

source R, whether the access rights will belong to the domain in which

the requesting process is running.

For this purpose we can use the notation of critical regions introdu~

ed by Brinch Hansen [Bri 73] in connection with the mutual exclusion

problem. In fact we can assume that references to a dynamically allo-

cated resource R may appear only within structured statements called

allocation regions. An allocation region is represented by the nota-

tion:

region v do S;

where v is an empty capability. The allocation region associates a

statement S with the empty capability v. This notation enables the

compiler to check that empty capabilities are used only inside allo-

cation regions and to place a call to the appropriate allocation pro

cedure before the statement S and a call to the deallocation proce-

247

dure after S. Obviously these procedures must belong to a manager

handling resources of the same type of the empty capability v.

Let the empty capability:

vat v : V {~,S } empty

belong to a domain C. If more instances ml,m2,...,m k of manager hand-

ling resources of type V are accessible to C, then for each allocaticn

region associated with the capability v, the name m i of the manager

instance,to which requests will be directed, must be passed to the re

gion as a parameter.

region (m i) v do S;

Since resources may be reauired in a nested way, nesting of alloca-

tion regions must be allowed.

To conclude let us show how the three protection aspects presented in

the previous paragraph are implemented by the proposed mechanism.

i) The enforcement rule is implemented by the scope rules of

the language.

ii) The domain binding rule is implemented by the calling proc~

dure mechanism of the language; in fact a domain switching

takes place every time a procedure entry of an abstract da-

ta type is called.

iii) The transfer rights rule is implemented by introducing in

the language new features, namely: empty capabilities, man-

agers and allocation regions. In fact the manager allows the

dynamic allocation of access rights to those domains in which

an empty capability was declared. Furthermore, the alloca-

tion region enforces the correct sequence of request use and

release of access rights.

CONCLUSION

In this paper we have proposed a general protection mechanism to be

embedded in an object oriented language for real time programming.

Some linguistic features have been introduced to allow compile time

checking of access rights. Moreover dynamic allocation of access rights

to protection domains is permitted.

248

REFERENCES

[Anc 77a]

[Anc 77b]

[Bri 73]

[Bri 75]

[Hoa 74]

[Son 73]

[Jon 76]

[Lam 71]

[Lin 76]

[Lis 75]

[Sil 77]

[Wir 77]

[Wul 74]

[Wul 76]

Ancilotti,P., Boari,M., Lijtmaer,N. - Dynamic resource man
agement in a language for real time programming - AICA 7T
Pisa, Italy, October 1977.

Ancilotti,P., Boari,M., Lijtmaer,N. - A mechanism for al-
locating resources and controlling accesses in languages
for real time programming - Internal Report n. B77-23; IEI
CNR, Pisa, Italy, December 1977.

Brinch Hansen,P. - Operating System Principles - Prentice
Hall, 1973.

Brinch Hansen,P. - The programming language Concurrent
Pascal - IEEE Transac. on Software Engineering, VoI.SE-I,
n. 2, June 1975.

Hoare,C.A.R. - Monitors: an operating system structuring
concept - Comm. ACM n. 10, October 1974.

Jones,A.K. - Protection in programmed systems - Dept. of
Computer Science, Carnegie-Mellon Univ., Pittsburgh - June73L

Jones,A.K., Liskov,B.H. - A language extension for contro~
ling access to shared data - IEEE Transactions on Software
Engineering, vol. SE-2, December 1976.

Lampson,B.W. - Protection - Proc. Fifth Annual Princeton
Conf. on Information Sciences and Systems, 1971.

Linden,T.A. - Operating System structures to support secu
rity and reliable software - AOM Computing Surveys, Dec. 76.

Liskov,B., Zilles,S. - Specifications techniaues for data
abstractions - IEEE Trans. on Software Engineering, Vol. i,
n. i, March 1975.

Silberschatz,A., Kieburtz,R.B., Bernstein,A. - Extending
Concurrent Pascal to allow dynamic resource management.
IEEE Transactions on Software Engineering, Vol. SE-3, n.3,
~y 1977.

Wirth,N. - Modula: a Language for modular multiprogramming -
Software-Practice and Experience, i, 1977.

Wulf,W.A. - Toward a language to support structured pro-
grams - Tech. Report Carnegie-Mellon Univ.,Pittsurgh, Pa.
April 1974.

Wulf,W.A., London,R.L., Shaw,M. -.Abstraction and verifi-
cation in Alphard: introduction to language and methodo!o
gy - Techn. Report, Carnegie-Mellon Univ., Pittsburgh 19T6.

