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By extending the idea behind transductions by Elgot & Mezei [1965] 

(or equivalently, K-transductions by Nivat [1968], a-transducers by 

Ginsburg & Greibach [1969], or rational relations by Eilenberg 

[1974]), we define a class of tree transformations called rational 

relations of binary trees. They may be considered intuitively as the 

relations between input and output trees recognized simultaneously by 

"two-tape" tree automata that process in each step multi-level (possibly 

zero-level) branches. The formal definition is given by using recog- 

nizable sets (of binary trees) and a certain type of tree functions 

called tree-morphisms. The tree-morphisms here are meant to be a tree- 

version of homomorphisms, characterized by the feature of preserving 

subtree construction (possibly with permutation) as well as that of 

sending "null tree" to itself. (They do not duplicate branching edges.) 

A result obtained is the closure property under composition of the 

class of rational relations. As a corollary to this, we get the fact 

that the recognizable sets (of binary trees) are preserved not only by 

tree-morphisms but also by their inverses. 

In section I, we give basic definitions of trees, tree-morphisms, 

rational relations, and other related concepts. In section 2, we 

develop preliminary results, and in section 3 present our main results. 

Throughout the paper we restrict our attention to binary trees in 

the sense of Knuth [1968]. 

i. Definitions 

i.i (Trees and indexed trees) 

Let Z be a finite alphabet. The set ~Z of (binary) trees over 

is defined as the smallest set satisfying; 

if ~ E Z and tl,t 2 ~ ~Z then ~<tl,t2 > E ~Z" 

The #, as a member of ~Z' may be termed as null tree. 

Objects like trees but some frontier nodes may be labeled by 

symbols other than # are called indexed trees. Formally, the set ~Z,~ 
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of indexed trees over Z with index alphabet ~ is defined as the 

smallest set such that 

if ~ ~ ~ and tl,t 2 ~ ~Z,~ then a<tl,t2 > E ~Z,~ " 

With each t E ~Z,~ we associate a subset D(t) of {1,2}* (the set 

of finite strings over alphabet {1,2}, including null string s) such 

that 

if t ~ ~ u {#} then D(t) = (~}~ 

if t = ~<tl,t2 >, ~ ~ Z and tl,t 2 ~ ~Z,~ then 

D(t) = {a} u {1}-D(tl) u {2}.D(t2) 

Each member d of D(t) specifies the "address" of a node in t, and we 

write t(d) to mean the symbol (E Z u ~ u {#}) at the node. In this 

respect, t E ~Z,~ is viewed as a mapping from D(t) to Z u ~ u {#} 

such that 

if t E ~ u {#} then t(s) = t, 

if t = ~<tl,t2 >, ~ ~ Z and tl,t 2 ~ ~Z,~ then 

t(s) = ~ and t(i-d) = ti(d) (d ~ D(ti) , i=1,2). 

Fr(t) of t e ~Z,~ is the set of addresses of frontier nodes of t. 

l.e., Fr(t) = {d e D(t) I {d}(l, 2)+ n D(t) = ~} where {1,2} + = {1,2}* 

- {~}. 

Yield(t) of t c ~Z,~ stands for the concatenation of symbols at 

the frontier nodes of t (in order). I.e., Yield(t) = t if t E ~ u (#}; 

Yield(~<tl,t2>) = Yield(tl)-Yield(t 2) if aEZ and tl,t 2 E ~Z,~" 

Suppose t e ~Z and d ~ D(t). The subtree of t at d, denote by 

t/d, is the member t' of ~Z,~ such that 

D(t') = {d' I dd' c D(t)}, 

t'(d') = t(dd') for each d' c D(t'). 

Replace(t,d+t') stands for the result obtained from t by replacing its 

subtree at d by t' l.e., Replace(t,d+t') = t" where 

O(t") = (D(t) - {d}{l,2}*) u {d}'D(t'), 

t"(d") = t(d") for each d" ~ D(t) - (d}{l,2)*, 

t"(dd') = t'(d'), for each d' E D(t'). 

We also write Replace (t,dl÷tl~d2÷t2) to mean the result of double 

replacement Replace(Replace(t,dl+tl),d2÷t2). 

Now we take two specific symbols X I and X 2 (~ Z u {#}), let ~ = 

{XI,X2} , and define subsets of ~Z,~ as follows; 

~Z = {T ~ ~Z,~ I Yield(T) ~ {#}*{XI}{#}*{X2}{#}*} , 

~Z = {T e ~Z,~ I Yield(T) ~ {#}*{X2}{#}*{XI}{#}*} , 

Each member ~ of ~Z can be taken as a binary function ~: ~ x ~ 'Z  ~ 

~Z such that 
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T(tl,t2) = Replace(T,dl+tl,d2+t2 ) (tl,t 2 E ~) 

where d I and d 2 indicate the addresses of index symbols X I and X 2 (resp.) 

in T. That is, dj is the (unique) element of D(T) satisfying T(dj) = 

Xj (j=l,2). The pair (dl,d 2) will be denoted by Index(T). 

1.2 (Expansive tree-morphisms) 

Let F and Z be alphabets not containing symbols #, X I and X2, and 

~y for each y ~ F be a binary function: ~ x ~ + ~ that belongs to 

O Z. Let f: ~F ÷ ~Z be the function defined inductively as 

f(#) = #, 

f(Y<tl,t2 >) = ~y(f(tl),f(t2) ) (y e F, tl,t 2 e ~). 

We call such function f an expansive tree-morphism ' (etm for short), 

and call the mapping ~:F ÷ ~Z such that ~(y) = Ty (y E T) the basis 

of f. In particular when f(F) m ~ (i.e., Yield(~ 7) ~ {#}*{XI}{#}*{X 2} 

{#}* for each y e F) we say the etm f is simple_e. Moreover if ~(r) c 

{~<XI,X2 > I o e Z} we call the etm a prqjeqtion, In the latter case, 

instead of writing ~(y) = u<XI,X2 > we may simpl~ write f(y) = ~. The 

basis ~ of projection f is then seen to be a mapping from F to Z. 

In literature, "linear nondeleting homomorphisms" by Engelfriet 

[1975] or equivalently "homomorphismes lineamres complets stricts" by 

Arnold & Dauchet [1976], when both restricted to binary trees, are 

coextensive with our etm. The notion of simple etm coincides with 

the restriction to binary trees of the notion of "simple pure trans- 

formations" by Thatcher [1969]. 

It should be noticed that by application of these functions trees 

never get "smaller". In this respect the etm (expansive tree-morphisms) 

are compared to s-free homomorphisms of strings. Then what would be 

the right notion of "tree-morphisms" which can really be compared to 

general, not necessarily s-free, homomorphisms? Hopefully the notion 

should enjoy nice mathematical properties such as the preservation of 

recognizable sets, the same property of their inverses, composability, 

etc., besides laying down a reasonable base for theory of tree trans- 

formations. To answer the question, we remind the case of strings; 

there we have the null string, i.e., the unit element of the underlying 

algebraic structure, and by allowing the basis functions to send symbols 

to the unit element we can obtain homomorphisms not necessarily expansive. 

In the case of trees the situation seems more complicated; there is no 

"unit" element in ~Z to begin with. However we find it possible to 

bring in certain entities to the universe of trees and let them behave 

somehow like null string. "Dummy node" is the name given for the con- 

stituents of such entities. 
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1.3 (Trees with dummy nodes) 

Suppose i is a distinct symbol (to mark the dummy nodes), and 

let A = {I}. We assume that I ~ Z u {#,XI,X2}. Let L6= ~A' and %~Z 

be the smallest subset of ~UA such that 

(1) # e ~z 

(2) if a E E and Ul,U 2 ~ ~Z then U<Ul,U2> E ~Z 
(3) if u e ~ and u' e ]~Z then l<u,u'> e ~Z and l<u',u> e ~Z" 

For example, u I = a<l<l<#,#>,b<#,c<#,#>>>,l<#,#>> (Fig. l) is a member 

of l[{a,b,c }, but u 2 = a<l<b<#,#>,e<#,#>>,#> is not. Note that ~Z c 

~-Z (by rules (I) and (2)), and ~ c %£Z (by rules (I) and (3)). 

u, y ,  °, y ,  

" b ' \  , \  , \  / \  / \  

7, 

9(ui) = a 

/ \  
# 

/ ,  

Fig. I. Examples of an element and a non-element 
of ~J[~, and an application of ~ (see below). 

Let ~ be the weakest partial ordering in ~ZUA such that 

if t ~ ~UA and u E ~, 

then ~<t,u> ~ t and l<u,t> ~ t, 

if ~ ~ Z U A, tl,t2,tl',t 2' E ~ZUA and t i ~ t i' (i=1,2), 

then ~<tl,t2 > ~ ~<tl',t2'>. 

By means of relation ~, the subsets t~ and ~Z of ~ZUA can be charac- 

terized as 

= {u ~ O'zu A [ u ~  #}, 
~z-- {u~ ~SUA [ u~t for some t c ~Z}. 

Since in ~ (c ~ZUA ) the relation ~ is nothing but the identity, for 

each u e ~Z the tree t e ~Z such that u ~ t is unique, which we will 

denote by ~(u). For u E ~EUA - ~Z we leave (f(u) undefined. Thus 

90: ~ZuA ÷ ~Z is set to be a partial function with domain t~ Z. 

Intuitively an application of ~ means to contract trees by cutting off 

dummy branches. For example, by contracting the u I above one gets 
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(Ul) = a<b<#,c<#~#>>~#> (Fig. i). 

1.4 (Tree-morphisms) 

Given etm f': ~r ÷ ~UA (where Z n A = ~), let f: ~F + ~Z be a 

partial function such that 

f(t) = ~ (f'(t)) if f'(t) ~ ~ 
[ undefined otherwise. 

Such partial function f, written as ~f', is called a tree-morphism, 

and the function f' is called its ground. The domain of f, Domain(f), 

is equal to (f')-l(~z). Tree-morphisms which have simple grounds (i.e., 

grounds which being simple etm) are called si___mple t ree-mor~hisms. 

Tree-morphisms preserve subtree construction in a sense that if 

t is in the domain of tree-morphism f and t' is a subtree of t, then 

f(t') is also defined, is included in f(t) as a subtree, and in fact 

unless f(t') = # the subtree image f(t') is uniquely traceable in f(t). 

If f is a simple tree-morphism, it keeps left-to-right relation between 

non-overlapping subtrees, provided their images are not null. 

1.5 (Rational relations) 

Suppose T is a recognizable set in ~F' Z n A = ~, and fl,f2: ~F 

÷ ~Z are tree-morphisms such that T c Domain(fl) n Domain(f2). Then 

the relation R such that 

R = ((fl(t),f2(t)) I t E T) 

is called a rational relation (of binary trees). 

In connection with the rational relation R, we often need in later 

sections to refer to a relation of form 

R' = {(fl'(t),f2'(t)) I t E T} 

where f'': ~Fm + ~ZUA is a ground of tree-morphism f.l (i=1,2). We will 

call such relation R' a ground of R. In case where both fl' and f2' 

are projections, R' is named a fi~ ground. When both fl' and f2' are 

simple, R' is said to be simple. Simple rational relations are rational 

relations which have simple grounds. 

Though we have defined rational relations by using a novel idea 

of tree-morphisms, it turns out that the class of rational relations 

has a concise characterization in terms of some familiar concepts: 

The class is identical with the restriction to binary trees of class 

LHOM-IoFTAoLHOM (= LB-FST-IoLB-FST), in the terminology of Engelfriet 

[1975]; or with the restriction of B(HL,HL), in the notation of Arnold 

& Dauchet [1976]. The concept of "linear homomorphisms" (denoted here 

by LHOM in the former case and by HL in the latter) has been so common 

in literature that the characterization of rational relations thereby 
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may be more intelligible. However for our purposes in theoretical 

development tree-morphisms are convenient, and we will stay with our 

formulation. The proof of the characterization just mentioned is given 

in Appendix. 

1.6 (Miscellaneous) 

Suppose (tl,t 2) be a pair of trees in ~Z such that D(t I) = D(t2). 

Then we write w(tl,t 2) for their product t (E ~Z×~ ) which is defined 

by 

D(t) = D(t I ) 

t(d) = { (tl(d),t2(d)) for d E D(t) - Fr(t), 

# for d ~ Fr(t). 

The mapping in the opposite direction, sending ~(tl,t 2) to tl( or to t2) , 

is denoted by ~i (or 72, resp.). In other words ~i: ~ZxZ + ~ is the 

projection such that ~i(al,~2) = a i (i=1,2) for each ~l,a2 c Z. 

As for the products of elements of ~Z' providing a pair (TI,T 2) 

~Z x ~Z satisfies both D(T I) = D(T 2) and Yield(T I) = Yield(T2) , we 

will write ~(TI,T 2) for the element T of ~ZxZ such that 

D(T) = D(TI) , 

T(d) = ~ (Tl(d),T2(d)) for d ~ D(T) - Fr(~) 
[ Tl(d) (= T2(d)) for d ~ Fr(T). 

In this situation we also write wi(T) = T i (i=1,2). 

The relation ~ defined in §1.3 for trees in ~ZuA is now extended 

to the members of #3ZU A as follows; 

T ~ T' iff for any tl,t 2 e~'Zu A T(tl,t 2) ~ T'(tl,t2). 

For binary relation R, we write 

Domain(R) = (x I (x,y) ~ R for some y}, 

Range(R) = (y I (x,y) e R for some x}. 

The q ompositiqn R2R ! of binary relations R I and R 2 is defined by 

R2R I = ((x,z) I (x,y) E RI, (y,z) E R 2 for some y}. 

(The right component is applied first.) 

In what follows unless otherwise specified we exclude symbols #, 

X ! and X 2 from alphabets that we use (such as Z,r,A,Z×Z, ...). In 

addition, whenever relation ~ and applications of partial function 

are involved,symbol ~ is also excluded from our alphabets, except A 

which is constantly set to {~}. 

2. Preliminary Results 

2.1 PROPOSITION If T is a recognizable set in ~ZUA such that T c 

~Z then ~(T) is a recognizable set in ~Z. 
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(Proof) Recognizable sets are identical with the projective images 

of local sets (of trees). (A local set in ~F is the set of trees 

generated by a tree-grammar G = (F u {#},P,I) where F u {#} specifies 

the vocabulary of G, P (c [y<yi,Y2 > I Y e F, yl,¥ 2 e F u (#}} u {#}) 

is the set of branches, and I (c F u {#}) is the set of root symbols. 

We write ~G for the local set generated by G. For more details consult 

with Takahashi [1975].) 

With the characterization of recognizable sets in mind, what is 

to be shown is as follows; given tree-grammar G = (F u {#},P,I) and 

projection p: ~y + ~ZuA such that T = p(~G) c ~Z' one can find a 

tree-grammar G' = (F' u (#},P',i') and a projection p': ~F' ÷ ~ such 

that p'(~G') = ~(T) = ~(p(~G)). Let F 0 = {7 ~ F I ~(7) = X} and 

F I = F - F 0 (where ~:F ÷ Z u A is the basis of projection p). With 
= each 7 E F 0 we associate a context-free grammar G 7 (F0,F I u {#),R,y) 

where F 0 is the set of nonterminal symbols of G7, F I u {#} is that of 

terminal symbols, the set R of production rules is defined by 

R = {yO + 7172 I 70<71,72 > E P, 70 e FO, 71,72 E F u {#}}, 

and Y is the initial symbol of Gy. Note that L(G 7) c {#}*FI(#}* u (#}+ 

for each y E FO, unless y is useless (where L(Gy) is the context- 

free language generated by G7). Let 

A 7 = (e e F 1 u (#} I L(G 7) n {#}*{~}{#}* ~ ~} 

for each 7 e F O. As for symbols 7 in F 1 u (#} we simply set A 7 = (7}- 

Finally by setting 

P' = {7<71'72 > I y<y',y"> E P, y e FI, 71 e Ay, , 72 e A7,,} 
u (#}, 

I' = u A 
7E 7" 

we define tree-grammar G' = (F 1 u {#},P',I'). Then applying the same 

projection p as above we can get p(~G') = ~(p(~G)) = ~(T). :: 

(Remark: In the proof each A can be obtained effectively from given 
7 

G, and hence so is G'.) 

2.2 COROLLARY If f is a tree-morphism and T is a recognizable set 

in Domain(f), then f(T) is also recognizable. :: 

(Proof) It is known that an etm preserves recognizable sets 

(Thatcher [1969]). Combine this with proposition 2.1. :: 

2.3 COROLLARY For rational relation R, Domain(R) and Range(R) are 

recognizable sets. :: 

2.4 PROPOSITION 

has a fine ground. 

A rational relation is simple if and only if it 
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(Proof) "If" part is obvious by definition. VerifYing "only if" 

part amounts to show that given simple rational relation R one can find 

a recognizable set T c ~A and projections pl~P2: ~A ÷ ~ZUA such that 

Pl(T) u P2(T ) c LfZ and R : {(~Pl(t),~P2(t)) I t E T}. 

Suppose R = {(~fl(t), ~f2(t)) I t e TO} , where T O is a recognizable 

set in ~r and fl,f2: ~£ + ~ZUA are simple etm satisfying fl(T0) u 

f2(T0) c ~Z" 
For each y e F, let Ty~ i = ~i(y) (i=!,2). Since fl and f2 are 

simple, each T¥, i belongs to ~Z" The pair (~y,i,Ty,2) then can be 

converted to a pair (ey,l,ey~ 2) of members of 9~ZU A satisfying condi- 

tions; 

(2) ,i ) = D(ey,2) , 

(3) Yield(ey, I) = Yield(ey,2). 

(This fact is verified in next subsection.) 

Obtain the product ~(ey,l,ey, 2) of binary functions ey, 1 and By, 2 

. is then a binary function in ~Z,×Z, where Z' = and name it ey ey 

Z u A. Let g: ~F + ~Z'xZ' be the simple etm with basis g(y) = 8 
= y 

(y e £), and gi: ~F ÷ ~Z' be the simple etm with basis ~i(y) = ey, i 

(y e F, i=1,2). From the construction, clearly gi(t) = wig(t) for each 

t 6 ~F (i=1,2). (w i is the projection : ~Z'xZ' ÷ ~' to take the 

i-th component of product trees.) We also know from condition (i) 

(which is equivalent to; ey,i(tl,t 2) ~ Ty,i(tl',t2') holds for each tl, 

t2,tl,,t 2, E "~ZuA provided t i ~ t i' (i=1,2)) that gi(t) ~ fi(t) and 

hence gi(t) e ~Z hold for each t e T O (i=1,2). This means that ~gi(t) 

is defined and is equal to ~fi(t) for each t e T O (i=1,2). These ob- 

servations yield 

R = {(~fl(t), ~f2(t)) I t e T O } 

= {(~gl (t), ~g2 (t)) I t e T O } 

= {(~Wl g(t), ~w2 g(t)) I t ~ T O } 

= {( ~I (t')' ~w2 (t')) I t' E T} 
where T = g(T0). The set T is recognizable by proposition 2.2. :: 

2.5 LEMMA Given ~I and T 2 in ~ZuA ' one can find e I and 6 2 in 

5~Zu A satisfying 

(i) e i ~ T i (i=l,2), 

(2) h(e l) : D(e2) , 

(3) Yield(e I ) = Yield(e2). 

(Proof) The basic idea is very simple: Divide both Ti's into three 

parts TiO,Til and Ti2 as illustrated in Fig.2(a) where Til is the largest 

Subtree of T i containing symbol X I but not X2, Ti2 is its dual with 

respect to symbols X I and X2, and TiO is the rest (i=1,2). Then obtain 
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e I from T I by attaching at dll (the address at which X I resides in TI) 

a copy of T21 with labels changed to X~ and similarly at d12 (where X 2 

resides) a copy of T22 with labels also changed to X, and then at d I 

(the address of the node under which two subtrees TII and TI2 start) 

insert a copy of T20 with labels also changed to X. Likewise, 82 is 

constructed from ~2 by inserting copies of three parts TI0,~II,TI2 of 

T I at appropriate places (cf. Fig.2(b)). Technical details which are 

dropped from the informal description are now presented. 

Suppose Index(T i) = (dil,di2) , and d i be the longest common initial 

segment of dil and di2 (i=1,2). Then dij = dieij for some eij e {j}{l,2}* 

(i j=l,2). We define 81,82 e ~ZUA so that they satisfy conditions 

(i) - (3), as follows: 

D(81) = D(82) = (D(T I) - {dl}{l,2}*) 

u {dl}(D(T2) - {d2}{1,2}* ) 

u {dld2d I dld e D(TI)} 

u {dld2elld I d2d e D(Xl) , d m {1}{1,2}*} 

u {dld2el2d I d2d e D(~2) , d e {2}{1,2}*}. 

< idl d2 

XI=TI (dll) X2=TI (d12) XI=T2 (d21) X2=T2 (d22) 

(a) Division of T. i 
into three parts 

Ti0,Til and Ti2. 

Xl X2 X1 X2 

(b) Construction 

of e.. The shaded 
i 
~'.. shows a area IJ 

copy of Ti] with 

labels changed to 

Fig. 2. Conversion of (TI,T 2) to (81,82)- 
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The labels @i(d) (d E D(@i) ~ i=1,2) are set to ~ except 

81(d) = ~l(d) if d 6 D(TI) - {dl){l,2)* ~ 

01(dld2d) = Tl(dld) if dld E D(TI) . {dll,dl2}, 

81(dld2elje2j) = Xj (j=l,2) 
2 + 82(dld) = T2(d) if d E D(Y2) - {d2}{l , ) , 

@2(dld2eljd) = ~2(d2d) 

if d2d e D(T 2) and de {j}{l,2}* 

ei(d) = # 

(j=l,2), 

if d ~ Fr(8 i) - {dld2elje2j I j=l,2} (i=1,2). 

2.6 PROPOSITION If T is a recognizable set in ~Z then so is 

<f-l(T) (c ~ZUA ). 
(Proof) Let T = p(~G) where p: ~F + ~Z is a projection and G = 

(F u {#}~P,I) is a tree-grammar. Then we can construct a tree-grammar 

G' = (r' u {#},P',i') and a projection P': ~r' ÷ ~ZuA satisfying 

p'(~G') = ~-I(T) = ~-l(p(~G)), as follows: 

r '  = { v , v '  I x ~ r}  u { # , }  

(where we assume that symbols added differ each 

other and differ from those already in r u {#}), 

p' = {y<yi,Y2 >, Y<YI',Y2 >, Y<YI,Y2 '>, Y<YI',Y2 '> 

I Y<~l,Y2 > e p, y E F, yi,y 2 e F u {#}} 
U {y'<y',#'>, y'<y,#'>, y'<#',y'>, ~'<#',y>, 

Y'<Y' ,#> ,  Y'<Y,#>, Y '<# ,Y '> ,  ¥ '<#,Y> I Y e r} 
u {#'<#',#'>, #'<#,#'>, #'<#',#>, #'<#,#>, #} 

I' = {Y,Y' I y e I}, 

p'(y) = p(y) for each y e F, 
= = 

p'(y') = k for each y e F U {#}. 
= 

(p' is the projection with basis ~':r' ÷ Z u A so defined.) :: 

÷ + are tree- 27 PROPOSITION If fl: and f2:  2 
morphisms, so is the composed partial function f = f2fl : ~ZI + ~Zs" 

If fl and f2 are simple tree-morphisms, then f is also simple. 

~Z ÷ ~ be a ground of f (i=1,2) In case (Proof) Let fi': i ZiUA i " 

of fi = fl' (i.e., fl is an etm such that fl(~Z1) c ~Zz), the compo- 

sition f' = f2'fl': ~ZI ÷ ~Z3u A is an etm, and can serve as a ground 

of f. (The closure of etm under composition is easily shown by a 

constructive proof.) In case where fl ~ fl'' extend the domain of f2' 

to ~Z2U A by setting ~2'(~) = ~<XI,X2 >. Then the extended function 

f2': ~ZzU A ÷ ~Z3uA is an etm satisfying ~f2'(u) = ~f2' (~(u)) for 

each u e ~-~(Domain(f2)) , because f2'(u) ~ f2'(~(u)) ~ ~f2'(~(u)). 

Hence whenever f(t) is defined we have f(t) = f2(fl(t)) = ~f2'(~fl'(t)) 

= ~ f2'fl'(t). This implies that f is a tree-morphism with ground 
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f2'fl ': ~ZI + ~Z~UA" The preservation of simplicity (of grounds) under 

composition should he obvious. :: 

2.8 COROLLARY If R is a rational relation, and fl and f2 are tree- 

morphisms such that R c Domain(f I) × Domain(f2) , then complex relation 

R' = {(fi(tl),f2(t2)) I (tl,t 2) e R} is rational. In case where R, 

fl and f2 are simple, so is the complex relation R'. :: 

3. Main Results 

3.1 THEOREM The class of simple rational relations is closed under 

composition. 

(Proof) Given simple rational relations R I and R2, take recognizable 

sets T i (c ~) and projections Pil,Pi2: ~r + ~ZuA such that Pil(Ti) 

u Pi2(Ti) c L~Z and R i = {(~Pil(t)~Pi2(t)) I t E Ti} (i=1,2) (§2.4). 
To see that the composition 

R2R I = {(~Pll(tl),~P22(t2 )) I t i ~ T i (i=l, 2), 

9 Pl2(tl ) = 9 P21(t2 )} 
is rational it suffices (by corollary 2.8) to verify that relation 

R = {(tl,t 2) E T I × T 2 I 9Pl(tl ) = ~P2(t2 )) 

is a simple rational relation where Pl = P12 and P2 = P21" For the 

purpose, first let us extend the domain of projections Pl and P2 from 

~r to ~FuA by setting El(X) = ~2(X) = X, and let 

R' = {(~(Ul) , ~(u2)) I u i E ~-l(Ti) (i=1,2), 

Pl(Ul) = P2(U2)}. 
Then we can observe that R equals R' (To see R c R' let T.' be the 

• ' 1 

set of all subtrees of trees in T i (i=1,2). Then we have Pl(Tl') u 

P2(T2') c ~Z since PI(TI) u P2(T2) c ~Z and ~Z is "subtree-closed," 

i.e., subtrees of trees in ~Z are also contained in ~Z" Now we can 

verify by induction on the total number of nodes in trees that for 

each pair (tl,t 2) e T I' × T 2' such that ~Pl(tl) = ~P2(t2), there 

exists a pair (Ul,U 2) e t~ F × ~/F satisfying 

(I) [ ui ~ ti (i=1,2), and 

Pl(Ul) = P2(U2). 
The inductive process goes as follows: If t i = Yi<til,ti2 > (Yi E F, 

tij E ~F (i'j=l'2)) and ~l(Yl ) ~ I # ~2(Y2 ), then we should have 

~l(Yl ) = ~2(Y2 ) and ~Pl(tlj) = ~P2(t2j) (j=l,2). Assuming that we 

get pairs (Ulj,U2j) E ~r × ~F satisfying condition (I) for the pair 

(tlj,t2j) (j=l,2), set u i = Yi<Uil,Ui2 > (i=1,2). Then the pair (Ul,U 2) 

fulfils condition (i) for original pair (tl,t2). If t I = Yl<tll,ti2 > 

with ~l(Yl ) = I, then we must have either Pl(tll) e'~ or Pl(tl2) e 
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since Pl(tl) E Z~ Z. If Pl(tll) = u Egg we set u I = ~,l<tll,Ul'> and 

u 2 = X<u,u2'> where (Ul',U2 T) ~ ~F x L~ F is a pair satisfying condition 

(i) for (ti2,t2). Note that in this case we have ~Pl(tl2) = ~Pl(tl) 

= ~ P2(t2) and (tl2,t 2) 6 T !' x T 2', and hence we can find such (Ul' ,u 2') 

for (tl2,t 2) by inductive hypothesis. Other cases (where Pl(tl2) e L[ 

or where t 2 = 72<t21,t22 > with p2(Y2 ) = X) can be worked out in the same 

principle. Finally when (tl,t 2) = (#,#) let (Ul,U 2) = (#,#). Since 

the first part of condition (I) implies that ~(u i) = ti, this completes 

the proof of R c R'. The converse is easy; just remark that 9~pi (~(ui)) 

= ~ Pi(Ui) for each u i e ~-I(T i) c (#-Ipi'l (%~Z) (i=1,2).) 

Next, to see that R' is rational we consider the subset U of 

~Z'xZ' (where F' = F U A) defined by 

U = {W(Ul,U2)I U i E ~ - l ( T i )  ( i = ! , 2 ) ,  Pl(Ul)= P 2 ( U 2 ) } .  
(Since Pl and P2 are projections, Pl(Ul) = P2(U2) implies D(u I) = D(u 2) 

and hence W(Ul,U 2) is defined.) 

Let 

A = { ( m l , m  2) e F' × F' I P__l(ml ) = P2((~2 ) } -  
Then the set U can be written as 

u = TAn ~l-l(~-L(TI)) n ~2-1(~-L(T2)). 
Here the sets ~A' TI and T 2 are recognizable, and operations n,~!-i , 

-I 9-i z2 and are known to preserve recognizable sets (Thatcher & Wright 

[1968], and proposition 2.6). Therefore U is recognizable. 

Finally by noting equality 

R' = {(~I(U),~W2(U)) I U E U}, 

we can conclude that R' is a simple rational relation. :: 

3.2 THEOREM The class of rational relations is closed under 

composition. 

(Proof) Suppose R i = {(fil(t),fi2(t)) I t ~ T i} (i=1,2) are rational 

relations where TI,T 2 are recognizable sets and fll,f12,f21,f22 are 

tree-morphisms such that T i c Domain(fij). We assume here that f12 and 

f21 are simple. (Otherwise, flipping suitable branching edges of trees 

in T i and exchanging accordingly the symbols X I and X 2 shown in the 

bases fij T of the grounds fij' of fij one can convert the recognizable 

sets T. and tree-morphisms f.. (i,j=l,2) so that they meet the assump- m m$ 
tion.) Apply theorem 3.1 to simple rational relations R I' = {(t,fl2(t)) 

I t E TI} and R 2' = {(f21(t),t) I t E T2} , and then apply corollary 

2 . 8 .  : :  

3.3 COROLLARY If R is a rational relation and T is a recognizable 

set, then the image of T by R 



536 

R(T) = {y I (x,y) e R for some x e T} 

is recognizable. 

(Proof) Consider the composition RR I of rational relations where 

R 1 = {(x,x) I x e T}. Then the image R(T) is equal to Range(RRl). 

Apply theorem 3.2 and corollary 2.3, :: 

3.4 COROLLARY The inverses of tree-morphisms preserve recoginlzability. 

(Proof) The inverse of etm f: ~F + ~Z preserves recognizability, since 

R = {(f(t),t) I t e ~F} is a rational relation and R(T) = f-l(T) for each 

T a ~Z" Then the inverse of tree-morphism ~f where f: ~F ÷ ~ZuA is 

an etm is shown to have the same property because (~f)-i = f-±~-±. :: 

APPENDIX 

A linear h omqmorPhism (of binary trees), abbreviated by l h, is a 

function h: ~F + ~Z defined as 

h(#) = h(#), 

h(y<tl,t2 >) = ~(y)(h(tl),h(t2) ) (y e F, tl,t 2 ~ ~F), 

by giving its basis ~:F u {#} + ~ satisfying h(#)= e ~[7 Z. Here 

CZ = {T e ~Z,{Xi,X2} I Yield(T) contains X I and X 2 

at most once, respectively) , 

and each T in ~Z is viewed as a binary function sending (tl,t 2) e 

~Z × ~Z to the tree that is obtained from indexed tree T by replacing 

its index symbol Xj, if any, by tj (j=l,2). For example, o<X2,Xl>(tl,t 2) 

= o<t2,tl> , Xl(tl,t 2) = tl, #(tl,t 2) = #. 

If hl,h2: ~F ÷ ~Z are lh, and T is a recognizable set in ~F F , 

then binary relation {(hl(t),h2(t)) I t e T} is termed as a linear hi- ' 

morphism (l_bb, for short). 

Now we prove the equivalence of the notions of ib and of rational 

relations. 

PROPOSITION An ib is a rational relation. 

(Proof) Given ib R, one can find a tree-grammar G = (F u {#},P,I) 

and lh hl~h2: ~F ÷ ~FZ such that R = {(hl(t),h2(t)) I t e ~G). 

Assuming that no symbols in F are useless (i.e., ~G ~ ~F' for any 

proper subset F' of F), we define tree-grammar G' = (A u {#},P',I') as 

follows; 

a' = (F U {#,,}) × (F U {#,,}) where , ~ F U {#}, 

I' = {(y,y) I Y e I}, 
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p, = { ( y , y ) < ( [ y l ] % l  , 

(.Y,*)<([YI]Y,I , 
(*,Y)<( , , 

I Y<TI,Y2 > e p} 
(#,,)<(*,*),(*, 

(*,*)<#,#>, #} 

where [Yj]Y,i stands for either 

rains Xj or not, respectively. 

as follows; 

fi(Yi,Y2 ) = 

Then it can be verified that fi(~G ') c '~Z 

~f2(t)) I t e ~G'}. : :  

[ YI ] y~ 2 ) 
) 

[ Y i ] y , 2  ) 
u {(#,# 

*)>, (* 

yj or 

Next we 

~i(Yi) 

~<hi(T i) ,X2> 

k<hi(Y i),Xl> 

k<__hi (Y i ), k< XI, X2 >> 

~<XI,X2> 

~([Y2]~, l,[Y2]~,2 )>, 
, -  72J7,i , * )>, 

, (  * , [ Y 2 1 7 , 2  )> 
)<( . * , * ) , ( , , * )> ,  
,#)<(*,*),(*,*)>, 

depending on whether ~i(y) con- 

define etm fi: ~A + ~ZuA (i:I,2), 

if Yi c F and hi(Y i) con- 

tains both X I and X2, 

if Yi e F and =mh'(~i ) con- 

tains X I but not X2, 

if Yi ~ F and hi(Y i) con- 

tains X 2 but not XI, 

if Yi e F u {#} and hi(~' i) 

contains neither X I nor X2, 

if ¥i = *" 

(i=1,2) and R = {(~fl(t), 

PROPOSITION A rational relation is an lb. 

(Proof) It is observed that any etm f: ~r ÷ ~z can be decomposed 

into the form f = f"f' where f': ~F ÷ ~A is a simple etm, and f": ~A 

+ ~Z is an etm satisfying f"(A) c {a<XI,X2>,~<X2,XI > [ a e Z}. From 

this combined with proposition 2.4, given rational relation R one can 

find tree-grammar G = (r u {#),P,l) and etm fl,f2: ~F + ~EuA satisfying 

=lf'(r) c {~<XI,X2>,~<X2,XI > I ~ E Z u A} (i=1,2) 

fi(~a) c ~ (i=I,2), 

R = {(~fl(t),~f2(t)) I t e ~G}. 

Assuming that no symbols in F are useless, let Gy = (F u {#},P,{y}) for 

each Y e 2, and ~i = {#} u {y e F I ~fi(~[TGy) = {#}} (i=1,2). Then 

if fi(Y) e {I<XI,X2>,I<X2,X! >} and y<y',y"> e P, we have either y' E r i 

or Y" e ri, because fi(~.G) c ~Z (i=1,2). Based on the observation 

we now define tree-grammar G' = (A u {#},P',I') and lh hl'h2:~A + ~Z' 

so that they satisfy R = {(hl(t),h2(t)) I t e ~TG'}, as follows; 

z~ = { [v ,v , ,v ,, ] I v<v',v ''> e P}, 

P' = {[~,Y',Y"]<E~,~',~"],EB,B',B"] > t ~'= ~. Y" = B} 

u {[y,~',~"]<[~,~',~"],#> I Y' = ~, ¥" = #} 

u {[Y,~",y"]<#,EI3,B',B"]> I ~' = #, Y" = B} 

u {[Y,y',y"]<#,#> I Y' =Y" = #} u {#} 
where [Y,~F',Y"], [~,~',~"] and [B,B',B"] run over A, 
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I' = {[y,y',y"] e A I Y e I} u (I n {#}), 

X I if gi(7) e ¢, y' ~ r i and y" ~ ri, 
h. ([y,y',y"]) = y, y,, 
=m X 2 if =mf'(Y) e ¢, e F.l and ~ Fi, 

# if $i(y) ~ ¢ and y',y" e Fi, 

where @ = {I<XI,X2>,I<X2,XI>}, [7,yt,y ''] e A, i=1,2, 

~1(#) = b2(#) = #. :: 
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