RATIONAL RELATIONS OF BINARY TREES

Masako Takahashi
Tokyo Institute of Technology

By extending the idea behind transductions by Elgot \& Mezei [1965] (or equivalently, K-transductions by Nivat [1968], a-transducers by Ginsburg \& Greibach [1969], or rational relations by Eilenberg [1974]), we define a class of tree transformations called rational relations of binary trees. They may be considered intuitively as the relations between input and output trees recognized simultaneously by "two-tape" tree automata that process in each step multi-level (possibly zero-level) branches. The formal definition is given by using recognizable sets (of binary trees) and a certain type of tree functions called tree-morphisms. The tree-morphisms here are meant to be a treeversion of homomorphisms, characterized by the feature of preserving subtree construction (possibly with permutation) as well as that of sending "null tree" to itself. (They do not duplicate branching edges.)

A result obtained is the closure property under composition of the class of rational relations. As a corollary to this, we get the fact that the recognizable sets (of binary trees) are preserved not only by tree-morphisms but also by their inverses.

In section 1, we give basic definitions of trees, tree-morphisms, rational relations, and other related concepts. In section 2, we develop preliminary results, and in section 3 present our main results.

Throughout the paper we restrict our attention to binary trees in the sense of Knuth [1968].

1. Definitions
1.1 (Trees and indexed trees)

Let Σ be a finite alphabet. The set \mathcal{J}_{Σ} of (binary) trees over Σ is defined as the smallest set satisfying;

$$
\begin{aligned}
& \# \in \mathscr{J}_{\Sigma} \\
& \text { if } \sigma \in \Sigma \text { and } t_{1}, t_{2} \in \mathscr{J}_{\Sigma} \text { then } \sigma<t_{1}, t_{2}>\in J_{\Sigma} .
\end{aligned}
$$

The \#, as a member of σ_{Σ}, may be termed as null tree.
Objects like trees but some frontier nodes may be labeled by symbols other than \# are called indexed trees. Formally, the set $\mathscr{J}_{\Sigma, \Omega}$
of indexed trees over Σ with index alphabet Ω is defined as the smallest set such that
$\Omega \cup\{\#\} \subset J_{\Sigma, \Omega}$
if $\sigma \in \Sigma$ and $t_{1}, t_{2} \in \mathcal{J}_{\Sigma, \Omega}$ then $\sigma<t_{1}, t_{2}>\in \mathcal{J}_{\Sigma, \Omega}$.
With each $t \in \mathcal{J}_{\Sigma, \Omega}$ we associate a subset $D(t)$ of $\{1,2\} *$ (the set of finite strings over alphabet $\{1,2\}$, including null string ε) such that

$$
\begin{aligned}
& \text { if } t \in \Omega \cup\{\#\} \text { then } D(t)=\{\varepsilon\}, \\
& \text { if } t=\sigma\left\langle t_{1}, t_{2}\right\rangle, \sigma \in \Sigma \text { and } t_{1}, t_{2} \in \mathcal{J}_{\Sigma, \Omega} \text { then } \\
& \qquad D(t)=\{\varepsilon\} \cup\{1\} \cdot D\left(t_{1}\right) \cup\{2\} \cdot D\left(t_{2}\right) .
\end{aligned}
$$

Each member d of $D(t)$ specifies the "address" of a node in t, and we write $t(d)$ to mean the symbol ($\in \Sigma \cup \Omega \cup\{\#\}$) at the node. In this respect, $t \in \mathcal{J}_{\Sigma, \Omega}$ is viewed as a mapping from $D(t)$ to $\Sigma \cup \Omega \cup\{\#\}$ such that

```
if t\in\Omega\cup{#} then t(\varepsilon)=t,
if }t=\sigma<\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}>,\sigma\in\Sigma\mathrm{ and }\mp@subsup{t}{1}{},\mp@subsup{t}{2}{}\in\mp@subsup{\mathscr{J}}{\Sigma,\Omega}{}\mathrm{ then
```

$t(\varepsilon)=\sigma$ and $t(i \cdot d)=t_{i}(d) \quad\left(d \in D\left(t_{i}\right), i=1,2\right)$.
$\operatorname{Fr}(t)$ of $t \in \sigma_{\Sigma, \Omega}$ is the set of addresses of frontier nodes of t. I.e., $\operatorname{Fr}(t)=\left\{d \in D^{2}(t) \mid\{d\}\{1,2\}^{+} \cap D(t)=\varnothing\right\}$ where $\{1,2\}^{+}=\{1,2\}^{*}$ - $\{\varepsilon\}$.

Yield (t) of $t \in \mathscr{T}_{\Sigma, \Omega}$ stands for the concatenation of symbols at the frontier nodes of t (in order). I.e., Yield(t) $=t$ if $t \in \Omega \cup\{\#\} ;$ Yield $\left(\sigma<t_{1}, t_{2}>\right)=$ Yield $\left(t_{1}\right) \cdot$ Yield $\left(t_{2}\right)$ if $\sigma \in \Sigma$ and $t_{1}, t_{2} \in \mathscr{J}_{\Sigma, \Omega}$.

Suppose $t \in J_{\Sigma, \Omega}$ and $d \in D(t)$. The subtree of t at d, denote by t / d, is the member t^{\prime} of $J_{\Sigma, \Omega}$ such that

$$
\begin{aligned}
& D\left(t^{\prime}\right)=\left\{d^{\prime} \mid d d^{\prime}{ }^{2} \in D(t)\right\}, \\
& t^{\prime}\left(d^{\prime}\right)=t\left(d d^{\prime}\right) \quad \text { for each } d^{\prime} \in D\left(t^{\prime}\right)
\end{aligned}
$$

Replace(t,d+t') stands for the result obtained from t by replacing its subtree at d^{\prime} by $t^{\prime} . ~ I . e ., ~ R e p l a c e\left(t, d r t^{\prime}\right)=t^{\prime \prime}$ where

$$
\begin{aligned}
& D\left(t^{\prime \prime}\right)=\left(D(t)-\{d\}\{I, 2\}^{*}\right) \cup\{d\} \cdot D\left(t^{\prime}\right), \\
& t^{\prime \prime}\left(d^{\prime \prime}\right)=t\left(d^{\prime \prime}\right) \quad \text { for each } d^{\prime \prime} \in D(t)-\{d\}\{I, 2\}^{*}, \\
& t^{\prime \prime}\left(d^{\prime}\right)=t^{\prime}\left(d^{\prime}\right) . \quad \text { for each } d^{\prime} \in D\left(t^{\prime}\right) .
\end{aligned}
$$

We also write Replace ($t, d_{1}+t_{1}, d_{2}+t_{2}$) to mean the result of double replacement Replace (Replace ($t, \mathrm{a}_{1}+t_{1}$), $\mathrm{d}_{2}+t_{2}$).

Now we take two specific symbols X_{1} and $X_{2}(\notin \Sigma \cup\{\#\})$, let $\Omega=$ $\left\{X_{1}, X_{2}\right\}$, and define subsets of $\sigma_{\Sigma, \Omega}$ as follows;

$$
\begin{aligned}
& A_{\Sigma}=\left\{\tau \in \mathcal{J}_{\Sigma, \Omega} \mid \text { Yield }(\tau) \in\{\#\}^{*}\left\{X_{1}\right\}\{\#\}^{*}\left\{X_{2}\right\}\{\#\}^{*}\right\}, \\
& A_{\Sigma}=\left\{\tau \in \mathcal{J}_{\Sigma},\left\{\text { Yield }(\tau) \in\{\#\} *\left\{X_{2}\right\}\{\#\} *\left\{X_{1}\right\}\{\#\}^{*}\right\},\right. \\
& \mathcal{B}_{\Sigma}=A_{\Sigma} \cup \mathcal{A}_{\Sigma}
\end{aligned}
$$

Each member τ of $\mathcal{\beta}_{\Sigma}$ aan be taken as a binary function $\tau: \mathscr{J}_{\Sigma} \times \mathscr{J}_{\Sigma} \rightarrow$ J_{Σ} such that

$$
\tau\left(t_{1}, t_{2}\right)=\operatorname{Replace}\left(\tau, d_{1}+t_{1}, d_{2}+t_{2}\right) \quad\left(t_{1}, t_{2} \in J_{\Sigma}\right)
$$

where d_{1} and d_{2} indicate the addresses of index symbols X_{1} and X_{2} (resp.) in τ. That is, d_{j} is the (unique) element of $D(\tau)$ satisfying $\tau\left(d_{j}\right)=$ $X_{j}(j=1,2)$. The pair $\left(d_{1}, d_{2}\right)$ will be denoted by Index (τ).

1.2 (Expansive tree-morphisms)

Let P and Σ be alphabets not containing symbols $\#, X_{1}$ and X_{2}, and ${ }^{\tau}{ }_{\gamma}$ for each $\gamma \in \Gamma$ be a binary function: $\sigma_{\Sigma} \times \sigma_{\Sigma} \rightarrow \sigma_{\Sigma}$ that belongs to \mathcal{B}_{Σ}. Let $\mathrm{f}: \boldsymbol{J}_{\Gamma} \rightarrow \mathscr{J}_{\Sigma}$ be the function defined inductively as

$$
\mathrm{f}(\#)=\#,
$$

$$
f\left(\gamma<t_{1}, t_{2}>\right)=\tau_{\gamma}\left(f\left(t_{1}\right), f\left(t_{2}\right)\right) \quad\left(\gamma \in \Gamma, t_{1}, t_{2} \in \sigma_{\Gamma}\right)
$$

We call such function f an expansive tree-morphism (etm for short), and call the mapping $f: \Gamma \rightarrow \beta_{\Sigma}$ such that $f(\gamma)=\tau_{\gamma}(\gamma \in \Gamma)$ the basis of f . In particular when $f(\Gamma) \subset A_{\Sigma}$ (i.e., Yield $\left.\left(\tau_{\gamma}\right) \in\{\#\} * X_{1}\right\}\{\#\}^{*}\left\{X_{2}\right\}$ \{\#\}* for each $\gamma \in \Gamma$) we say the etm f is simple. Moreover if $\xlongequal[\underline{I}(r) \subset ~]{\text { (}}$ $\left\{\sigma<X_{1}, X_{2}>\mid \sigma \in \Sigma\right\}$ we call the etm a projection. In the latter case, instead of writing $\underset{\underline{f}}{f}(\gamma)=u<X_{1}, X_{2}>$ we may simply write $\underset{\underline{E}}{ }(\gamma)=\sigma$. The basis $£$ of projection f is then seen to be a mapping from Γ to Σ.

In literature, "linear nondeleting homomorphisms" by Engelfriet [1975] or equivalently "homomorphismes linéaires complets stricts" by Arnold \& Dauchet [1976], when both restricted to binary trees, are coextensive with our etm. The notion of simple etm coincides with the restriction to binary trees of the notion of "simple pure transformations" by Thatcher [1969].

It should be noticed that by application of these functions trees never get "smaller". In this respect the etm (expansive tree-morphisms) are compared to ε-free homomorphisms of strings. Then what would be the right notion of "tree-morphisms" which can really be compared to general, not necessarily e-free, homomorphisms? Hopefully the notion should enjoy nice mathematical properties such as the preservation of recognizable sets, the same property of their inverses, composability, etc., besides laying down a reasonable base for theory of tree transformations. To answer the question, we remind the case of strings; there we have the null string, i.e., the unit element of the underlying algebraic structure, and by allowing the basis functions to send symbols to the unit element we can obtain homomorphisms not necessarily expansive. In the case of trees the situation seems more complicated; there is no "unit" element in J_{Σ} to begin with. However we find it possible to bring in certain entities to the universe of trees and let them behave somehow like null string. "Dummy node" is the name given for the constituents of such entities.

1.3 (Trees with dummy nodes)

Suppose λ is a distinct symbol (to mark the dummy nodes), and let $\Lambda=\{\lambda\}$. We assume that $\lambda \notin \Sigma \cup\left\{\#, X_{1}, X_{2}\right\}$. Let $U=\mathcal{J}_{\Lambda}$, and U_{Σ} be the smallest subset of $\mathscr{J}_{\Sigma U_{\Lambda}}$ such that
(1) $\# \in U_{\Sigma}$
(2) if $\sigma \in \Sigma$ and $u_{1}, u_{2} \in u_{\Sigma}$ then $\sigma<u_{1}, u_{2}>\in u_{\Sigma}$
(3) if $u \in U$ and $u \in \mathcal{U}_{\Sigma}$ then $\lambda<u, u^{\prime}>\in \mathcal{U}_{\Sigma}$ and $\lambda<u$ ', $u>\in U_{\Sigma}$. For example, $u_{1}=a<\lambda<\lambda<\#, \#>, b<\#, c<\#, \# \ggg, \lambda<\#, \# \gg$ (Fig. 1) is a member of $U_{\{a, b, c\}}$, but $u_{2}=a\langle\lambda\langle b\langle \#, \#\rangle, c<\#, \#>\rangle, \#\rangle$ is not. Note that $J_{\Sigma} c$ u_{Σ} (by rules (1) and (2)), and $u \subset u_{\Sigma}$ (by rules (I) and (3)).

Fig. 1. Examples of an element and a non-element of U_{Σ}, and an application of φ (see below).

Let \Rightarrow be the weakest partial ordering in $\sigma_{\Sigma U \Lambda}$ such that if $t \in \mathcal{J}_{\Sigma U \Lambda}$ and $u \in \mathcal{U}$,
then $\lambda<t, u>\Rightarrow t$ and $\lambda<u, t>\Rightarrow t$,
if $\alpha \in \Sigma \cup \Lambda, \quad t_{1}, t_{2}, t_{1}{ }^{\prime}, t_{2}{ }^{\prime} \in J_{\Sigma \cup \Lambda}$ and $t_{i} \Rightarrow t_{i}^{\prime} \quad(i=1,2)$, then $\alpha<t_{1}, t_{2}>\Rightarrow \alpha<t_{1}^{\prime}, t_{2}^{\prime}>$.
By means of relation \Rightarrow, the subsets u and u_{Σ} of $J_{\Sigma U \Lambda}$ can be characterized as

$$
\begin{aligned}
& u=\left\{u \in J_{\Sigma \cup \Lambda} \mid u \Rightarrow \#\right\}, \\
& u_{\Sigma}=\left\{u \in J_{\Sigma \cup \Lambda} \mid u \Rightarrow t \text { for some } t \in \mathscr{J}_{\Sigma}\right\} .
\end{aligned}
$$

Since in $J_{\Sigma}\left(\subset J_{\Sigma U_{\Lambda}}\right)$ the relation \Rightarrow is nothing but the identity, for each $u \in \mathcal{U}_{\Sigma}$ the tree $t \in \mathcal{J}_{\Sigma}$ such that $u \Rightarrow t$ is unique, which we will denote by $\dot{\varphi}(u)$. For $u \in \sigma_{\Sigma U \Lambda}-U_{\Sigma}$ we leave $\varphi(u)$ undefined. Thus $\varphi: \mathscr{J}_{\Sigma U \Lambda} \rightarrow J_{\Sigma}$ is set to be a partial function with domain u_{Σ}. Intuitively an application of φ means to contract trees by cutting off dummy branches. For example, by contracting the u_{1} above one gets
$\varphi\left(u_{1}\right)=a\langle b\langle \#, c\langle \#, \#\rangle\rangle, \#\rangle \quad(F i g \cdot 1)$.

1.4 (Tree-morphisms)

Given etm $f^{\prime}: J_{\Gamma} \rightarrow J_{\Sigma U \Lambda}\left(\right.$ where $\Sigma \cap \Lambda=\varnothing$), let $f: \mathscr{J}_{\Gamma} \rightarrow \mathcal{J}_{\Sigma}$ be a partial function such that

$$
f(t)= \begin{cases}\varphi\left(f^{\prime}(t)\right) & \text { if } f^{\prime}(t) \in \mathcal{U}_{\Sigma} \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Such partial function f, written as $f_{f} f^{\prime}$, is called a tree-morphism, and the function f^{\prime} is called its ground. The domain of f, Domain(f), is equal to $\left(f^{\prime}\right)^{-1}\left(\ell_{\Sigma}\right)$. Tree-morphisms which have simple grounds (i.e., grounds which being simple etm) are called simple tree-morphisms.

Tree-morphisms preserve subtree construction in a sense that if t is in the domain of treemorphism f and t^{\prime} is a subtree of t, then $f^{\prime}\left(t^{\prime}\right)$ is also defined, is included in $f(t)$ as a subtree, and in fact unless $f\left(t^{\prime}\right)=\#$ the subtree image $f\left(t^{\prime}\right)$ is uniquely traceable in $f^{\prime}(t)$. If fis a simple tree-morphism, it keeps left-to-right relation between non-overlapping subtrees, provided their images are not null.

1.5 (Rational relations)

Suppose T is a recognizable set in $\mathscr{J}_{\mathrm{T}}, \Sigma \cap A=\varnothing$, and $f_{1}, f_{2}: \mathcal{J}_{\Gamma}$ $\rightarrow \mathcal{J}_{\Sigma}$ are tree-morphisms such that $I \subset \operatorname{Domain}\left(f_{1}\right) \cap \operatorname{Domain}\left(f_{2}\right)$. Then the relation R such that

$$
R=\left\{\left(f_{1}(t), f_{2}(t)\right) \mid t \in \mathbb{I}\right\}
$$

is called a rational relation (of binary trees).
In connection with the rational relation R, we often need in later sections to refer to a relation of form

$$
R^{\prime}=\left\{\left(f_{1}^{\prime}(t), f_{2}^{\prime}(t)\right) \mid t \in \mathbb{T}\right\}
$$

where $f_{i}{ }^{\prime}: J_{\Gamma} \rightarrow \mathcal{J}_{\Sigma \cup \Lambda}$ is a ground of tree-morphism $f_{i}(i=1,2)$. We will call such relation R^{\prime} a ground of R. In case where both f_{1}^{\prime} and f_{2}^{\prime} are projections, R^{\prime} is named a fine ground. When both $f_{1}{ }^{\prime}$ and f_{2}^{\prime} are simple, R^{\prime} is said to be simple. Simple rational relations are rational relations which have simple grounds.

Though we have defined rational relations by using a novel idea of tree-morphisms, it turns out that the class of rational relations has a concise characterization in terms of some familiar concepts: The class is identical with the restriction to binary trees of class LHOM^{-1} oFTAOLHOM $\left(=\mathrm{LB}-\mathrm{FST}^{-1}\right.$ oLB-FST), in the terminology of Engelfriet [1975]; or with the restriction of $B(H L, H L)$, in the notation of Arnold \& Dauchet [1976]. The concept of "linear homomorphisms" (denoted here by LHOM in the former case and by HI in the latter) has been so common in literature that the characterization of rational relations thereby
may be more intelligible. However for our purposes in theoretical development tree-morphisms are convenient, and we will stay with our formulation. The proof of the characterization just mentioned is given in Appendix.

1.6 (Miscellaneous)

Suppose $\left(t_{1}, t_{2}\right)$ be a pair of trees in σ_{Σ} such that $D\left(t_{1}\right)=D\left(t_{2}\right)$. Then we write $\pi\left(t_{1}, t_{2}\right)$ for their product $t\left(\epsilon J_{\Sigma \times \Sigma}\right)$ which is defined by

$$
\begin{array}{ll}
D(t)=D\left(t_{1}\right) & \\
t(d)= \begin{cases}\left(t_{1}(d), t_{2}(d)\right) & \text { for } d \in D(t)-\operatorname{Fr}(t), \\
\# & \text { for } d \in \operatorname{Fr}(t)\end{cases}
\end{array}
$$

The mapping in the opposite direction, sending $\pi\left(t_{1}, t_{2}\right)$ to t_{1} (or to t_{2}), is denoted by π_{1} (or π_{2}, resp.). In other words $\pi_{i}: \sigma_{\Sigma \times \Sigma} \rightarrow \sigma_{\Sigma}$ is the projection such that $\mathbb{I}_{i}\left(\sigma_{1}, \sigma_{2}\right)=\sigma_{i}(i=1,2)$ for each $\sigma_{1}, \sigma_{2} \in \Sigma$.

As for the products of elements of B_{Σ}, providing a pair $\left(\tau_{1}, \tau_{2}\right)$ $\in \beta_{\Sigma} \times B_{\Sigma}$ satisfies both $D\left(\tau_{1}\right)=D\left(\tau_{2}\right)$ and Yield $\left(\tau_{1}\right)=\operatorname{Yield}\left(\tau_{2}\right)$, we will write $\pi\left(\tau_{1}, \tau_{2}\right)$ for the element τ of $\beta_{\Sigma \times \Sigma}$ such that

$$
\begin{aligned}
& D(\tau)=D\left(\tau_{1}\right), \\
& \tau(d)= \begin{cases}\left(\tau_{1}(d), \tau_{2}(d)\right) & \text { for } d \in D(\tau)-\operatorname{Fr}(\tau) \\
\tau_{1}(d)\left(=\tau_{2}(d)\right), & \text { for } d \in \operatorname{Fr}(\tau)\end{cases}
\end{aligned}
$$

In this situation we also write $\pi_{i}(\tau)=\tau_{i}(i=1,2)$.
The relation \Rightarrow defined in $\S 1.3$ for trees in $\mathcal{J}_{\Sigma U \Lambda}$ is now extended to the members of $\beta_{\Sigma U \Lambda}$ as follows;

$$
\tau \Rightarrow \tau^{\prime} \text { iff for any } t_{1}, t_{2} \in J_{\Sigma \cup \Lambda} \tau\left(t_{1}, t_{2}\right) \Rightarrow \tau^{\prime}\left(t_{1}, t_{2}\right)
$$

For binary relation R, we write
$\operatorname{Domain}(R)=\{x \mid(x, y) \in R$ for some $y\}$,
Range $(R)=\{y \mid(x, y) \in R$ for some $x\}$.
The composition $R_{2} R_{1}$ of binary relations R_{1} and R_{2} is defined by $R_{2} R_{l}=\left\{(x, z) \mid(x, y) \in R_{1}, \quad(y, z) \in R_{2}\right.$ for some $\left.y\right\}$. (The right component is applied first.)

In what follows unless otherwise specified we exclude symbols \#, X_{1} and X_{2} from alphabets that we use (such as $\Sigma, \Gamma, \triangle, \Sigma \times \Sigma, \ldots$). In addition, whenever relation \Rightarrow and applications of partial function φ are involved,symbol λ is also excluded from our alphabets, except Λ which is constantly set to $\{\lambda\}$.
2. Preliminary Results
2.1 PROPOSITION If T is a recognizable set in $\mathcal{J}_{\Sigma \cup \Lambda}$ such that $T C$ U_{Σ} then $\varphi(T)$ is a recognizable set in σ_{Σ}.
(Proof) Recognizable sets are identical with the projective images of local sets (of trees). (A local set in T_{Γ} is the set of trees generated by a tree-gramman $G=(\Gamma \cup\{\#\}, P, I)$ where $\Gamma \cup\{\#\}$ specifies the vocabulary of $G, P\left(C\left\{\gamma<\gamma_{1}, \gamma_{2}>\mid \gamma \in \Gamma, \gamma_{1}, \gamma_{2} \in \Gamma \cup\{\#\}\right\} \cup\{\#\}\right)$ is the set of branches, and $I(C \Gamma \cup\{\#\})$ is the set of root symbols. We write JG for the local set generated by G. For more details consult with Takahashi [1975].)

With the characterization of recognizable sets in mind, what is to be shown is as follows; given tree-grammar $G=(\Gamma \cup\{\#\}, P, I)$ and projection $p: \mathscr{J}_{\Gamma} \rightarrow J_{\Sigma \cup \Lambda}$ such that $T=p\left(J_{G}\right) \subset U_{\Sigma}$, one can find a tree-grammar $G^{\prime}=\left(\Gamma^{\prime} \cup\{\#\}, P^{\prime}, I^{\prime}\right)$ and a projection $p^{\prime}: \mathscr{J}_{\Gamma}, \rightarrow \mathcal{J}_{\Sigma}$ such that $p^{\prime}\left(\sigma_{J} G^{\prime}\right)=\varphi(T)=\varphi\left(p\left(\sigma_{G}\right)\right) . \quad$ Let $\Gamma_{0}=\{\gamma \in \Gamma \mid \underline{p}(\gamma)=\lambda\}$ and $\Gamma_{I}=\Gamma-\Gamma_{0}$ (where $\underline{p}: \Gamma \rightarrow \Sigma \cup \Lambda$ is the basis of projection p). With each $\gamma \in \Gamma_{0}$ we associate a context-free grammar $G_{\gamma}=\left(\Gamma_{0}, \Gamma_{I} \cup\{\#\}, R, \gamma\right)$ where Γ_{0} is the set of nonterminal symbols of $G_{\gamma}, \Gamma_{1} \cup\{\#\}$ is that of terminal symbols, the set R of production rules is defined by

$$
R=\left\{\gamma_{0} \rightarrow \gamma_{1} \gamma_{2} \mid \gamma_{0}<\gamma_{1}, \gamma_{2}>\in P, \quad \gamma_{0} \in \Gamma_{0}, \quad \gamma_{1}, \gamma_{2} \in \Gamma \cup\{\#\}\right\},
$$

and γ is the initial symbol of G_{γ}. Note that $L\left(G_{\gamma}\right) \subset\{\#\}^{*} \Gamma_{1}\{\#\}^{*} \cup\{\#\}+$ for each $\gamma \in \Gamma_{0}$, unless γ is useless (where $L\left(G_{\gamma}\right)$ is the contextfree language generated by G_{γ}). Let

$$
A_{\gamma}=\left\{\alpha \in \Gamma_{\mathcal{I}} \cup\{\#\} \mid L\left(G_{\gamma}\right) \cap\{\#\}\{\alpha\}\{\#\} * \neq \varnothing\right\}
$$

for each $\gamma \in \Gamma_{0}$. As for symbols γ in $\Gamma_{1} \cup\{\#\}$ we simply set $A_{\gamma}=\{\gamma\}$. Finally by setting

$$
\begin{aligned}
P^{\prime}= & \left.\left\{\gamma<\gamma_{1}, \gamma_{2}\right\rangle \mid \gamma\left\langle\gamma^{\prime}, \gamma^{\prime \prime}\right\rangle \in P, \quad \gamma \in \Gamma_{1}, \quad \gamma_{1} \in A_{\gamma^{\prime}}, \quad \gamma_{2} \in A_{\gamma}\right\} \\
& \cup\{\#\}, \\
I^{\prime}= & \bigcup_{\gamma \in T} A_{\gamma},
\end{aligned}
$$

we define tree-grIammar $G^{\prime}=\left(\Gamma_{I} \cup\{\#\}, F^{\prime}, I^{\prime}\right)$. Then applying the same projection p as above we can get $p\left(\sigma G^{\prime}\right)=\varphi(p(J G))=\varphi(T) . \quad::$ (Remark: In the proof each A_{γ} can be obtained effectively from given G, and hence so is G^{\prime}.)
2.2 COROLLARY If f is a tree-morphism and T is a recognizable set in Domain(f), then $f(T)$ is also recognizable. $:$: (Proof) It is known that an etm preserves recognizable sets (Thatcher [1969]). Combine this with proposition 2.1. : :
2. 3 COROLLARY For rational relation R, Domain(R) and Range (R) are recognizable sets. :
2.4 PROPOSITION A rational relation is simple if and only if it has a fine ground.
(Proof) "If" part is obvious by definition. Verifying "only if" part amounts to show that given simple rational relation R one can find a recognizable set $T \subset \mathscr{J}_{\Delta}$ and projections $p_{1}, p_{2}: \Im_{\Delta} \rightarrow J_{\Sigma \cup \Lambda}$ such that $p_{1}(T) \cup p_{2}(T) \subset U_{\Sigma}$ and $R=\left\{\left(\varphi p_{1}(t), \varphi p_{2}(t)\right) \mid t \in T\right\}$.

Suppose $R=\left\{\left(\varphi f_{1}(t), \varphi f_{2}(t)\right) \mid t \in T_{0}\right\}$, where T_{0} is a recognizable set in \mathscr{J}_{Γ} and $f_{1}, f_{2}: \mathscr{J}_{\Gamma} \rightarrow \mathscr{J}_{\Sigma \cup \Lambda}$ are simple etm satisfying $f_{1}\left(T_{0}\right) u$ $\mathrm{f}_{2}\left(\mathrm{~T}_{0}\right) \subset 2 \ell_{\Sigma}$.

For each $\gamma \in \Gamma$, let $\tau_{\gamma, i}={\underline{\underline{f_{i}}}}(\gamma)(i=1,2)$. Since f_{1} and f_{2} are simple, each $\tau_{\gamma, i}$ belongs to \mathcal{A}_{Σ}. The pair ($\tau_{\gamma, 1}, \tau_{\gamma, 2}$) then can be converted to a pair $\left(\theta_{\gamma, I}, \theta_{\gamma, 2}\right)$ of members of $\mathscr{A}_{\Sigma U A}$ satisfying conditions;
(1) ${ }_{\gamma}{ }_{\gamma}, i{ }^{\tau}{ }^{\tau}{ }_{\gamma}, i \quad(i=1,2)$,
(2) $D\left(\theta_{\gamma, I}\right)=D\left(\theta_{\gamma, 2}\right)$,
(3) Yield $\left(\theta_{\gamma, 1}\right)=Y$ Yield $\left(\theta_{\gamma}, 2\right)$.
(This fact is verified in next subsection.)
Obtain the product $\pi\left(\theta_{\gamma, 1}, \theta_{\gamma, 2}\right)$ of binary functions $\theta_{\gamma, 1}$ and $\theta_{\gamma, 2}$ and name it θ_{γ}. θ_{γ} is then a binary function in $\mathbb{A}_{\Sigma}{ }^{\prime} \times \Sigma$, where $\Sigma^{\prime}=$ $\Sigma \cup \Lambda$. Let $g: \sigma_{\Gamma} \rightarrow g_{\Sigma^{\prime} \times \Sigma}$, be the simple etm with basis $g(\gamma)=\theta_{\gamma}$ $(\gamma \in \Gamma)$, and $g_{i}: \mathscr{J}_{\Gamma} \rightarrow \mathscr{J}_{\Sigma^{\prime}}$ be the simple etm with basis $\underline{g}_{i}(\gamma)=\theta_{\gamma, i}$ $(\gamma \in \Gamma, i=1,2)$. From the construction, clearly $g_{i}(t)=\pi_{i} g(t)$ for each $t \in \mathscr{J}_{\Gamma}(i=1,2) . \quad\left(\pi_{i}\right.$ is the projection $: J_{\Sigma}{ }^{\prime} \times \Sigma, \rightarrow \mathcal{J}_{\Sigma}$, to take the i-th component of product trees.) We also know from condition (1) (which is equivalent to; $\theta_{\gamma, i}\left(t_{1}, t_{2}\right) \Rightarrow{ }^{\tau} \gamma_{Y, i}\left(t_{1}{ }^{\prime}, t_{2}{ }^{\prime}\right)$ holds for each t_{1}, $t_{2}, t_{i}^{\prime}, t_{2}^{\prime} \in J_{\text {EUA }}$ provided $\left.t_{i} \Rightarrow t_{i}^{\prime} \quad(i=1,2)\right)$ that $g_{i}(t) \Rightarrow f_{i}(t)$ and hence $g_{i}(t) \in U_{L}$ hold for each $t \in \mathbb{T}_{0}(i=1,2)$. This means that $\varphi g_{i}(t)$ is defined and is equal to $\varphi \mathrm{f}_{\mathrm{i}}(\mathrm{t})$ for each $t \in \mathbb{T}_{0}(i=1,2)$. These observations yield

$$
\begin{aligned}
R & =\left\{\left(\varphi f_{1}(t), \varphi f_{2}(t)\right) \mid t \in \mathbb{T}_{0}\right\} \\
& =\left\{\left(\varphi g_{1}(t), \varphi g_{2}(t)\right) \mid t \in \mathbb{T}_{0}\right\} \\
& =\left\{\left(\varphi \pi_{1} g(t), \varphi \pi_{2} g(t)\right) \mid t \in \mathbb{T}_{0}\right\} \\
& =\left\{\left(\varphi \pi_{1}\left(t^{\prime}\right), \varphi \pi_{2}\left(t^{\prime}\right)\right) \mid t^{\prime} \in \mathbb{T}\right\}
\end{aligned}
$$

where $T=g\left(T_{0}\right)$. The set T is recognizable by proposition 2.2. : :
2.5 LEMMA Given τ_{1} and τ_{2} in $\&_{\text {LUA }}$, one can find θ_{1} and θ_{2} in $4_{\text {LUN }}$ satisfying
(1) $\theta_{i} \Rightarrow \tau_{i} \quad(i=1,2)$,
(2) $D\left(\theta_{1}\right)=D\left(\theta_{2}\right)$,
(3) Yield $\left(\theta_{1}\right)=Y i e l d\left(\theta_{2}\right)$.
(Proof) The basic idea is very simple: Divide both τ_{i} 's into three parts $\tau_{i 0}, \tau_{i 1}$ and $\tau_{i 2}$ as illustrated in Fig.2(a) where $\tau_{i 1}$ is the largest subtree of τ_{i} containing symbol X_{1} but not $X_{2}, \tau_{i 2}$ is its dual with respect to symbols X_{1} and X_{2}, and $\tau_{i 0}$ is the rest ($i=1,2$). Then obtain
θ_{1} from τ_{1} by attaching at d_{11} (the address at which X_{1} resides in τ_{1}) a copy of τ_{21} with labels changed to λ, and similarly at α_{12} (where X_{2} resides) a copy of τ_{22} with labels also changed to λ, and then at d_{1} (the address of the node under which two subtrees τ_{11} and τ_{12} start) insert a copy of τ_{20} with labels also changed to λ. Likewise, θ_{2} is constructed from τ_{2} by inserting copies of three parts $\tau_{10}, \tau_{11}, \tau_{12}$ of τ_{1} at appropriate places (cf. Fig. 2(b)). Technical details which are dropped from the informal description are now presented.

Suppose $\operatorname{Index}\left(\tau_{i}\right)=\left(d_{i 1}, d_{i 2}\right)$, and d_{i} be the longest common initial segment of $d_{i 1}$ and $d_{i 2}(i=1,2)$. Then $d_{i j}=d_{i} e_{i j}$ for some $e_{i j} \in\{j\}\{1,2\}^{*}$ (i $j=1,2$). We define $\theta_{1}, \theta_{2} \in \mathbb{A}_{\Sigma U \Lambda}$ so that they satisfy conditions (1) - (3), as follows:

$$
\begin{aligned}
D\left(\theta_{1}\right)=D\left(\theta_{2}\right)= & \left(D\left(\tau_{1}\right)-\left\{d_{1}\right\}\{1,2\}^{*}\right) \\
& \cup\left\{d_{1}\right\}\left(D\left(\tau_{2}\right)-\left\{d_{2}\right\}\{1,2\}^{*}\right) \\
& \cup\left\{d_{1} d_{2} d d_{1} d \in D\left(\tau_{1}\right)\right\} \\
& \cup\left\{d_{1} d_{2} e_{11} d \mid d_{2} d \in D\left(\tau_{1}\right), \quad d \in\{1\}\{1,2\}^{*}\right\} \\
& \cup\left\{d_{1} d_{2} e_{12} d \mid d_{2} d \in D\left(\tau_{2}\right), \quad d \in\{2\}\{1,2\}^{*}\right\} .
\end{aligned}
$$

(a) Division of τ_{i} into three parts $\tau_{i 0}, \tau_{i 1}$ and $\tau_{i 2}$.
(b) Construction of θ_{i}. The shaded area $\tau_{i, j}^{\prime}$ shows a copy of $\tau_{i j}$ with labels changed to λ.

Fig. 2. Conversion of $\left(\tau_{1}, \tau_{2}\right)$ to $\left(\theta_{1}, \theta_{2}\right)$.

The labels $\theta_{i}(d)\left(d \in D\left(\theta_{i}\right), i=1,2\right)$ are set to λ except
$\theta_{1}(d)=\tau_{1}(d) \quad$ if $d \in D\left(\tau_{1}\right)-\left\{d_{1}\right\}\{1,2\}^{*} ;$
$\theta_{1}\left(d_{1} d_{2} d\right)=\tau_{1}\left(d_{1} d\right) \quad$ if $d_{1} d \in D\left(\tau_{1}\right)-\left\{d_{11}, d_{12}\right\}$,
$\theta_{1}\left(d_{1} d_{2} e_{1 j} e_{2 j}\right)=X_{j} \quad(j=1,2)$
$\theta_{2}\left(d_{1} d\right)=\tau_{2}(d) \quad$ if $d \in D\left(\tau_{2}\right)-\left\{d_{2}\right\}\{1,2\}{ }^{+}$,
$\theta_{2}\left(d_{1} d_{2} e_{I j} d\right)=\tau_{2}\left(d_{2}{ }^{d}\right)$
if $d_{2} d \in D\left(\tau_{2}\right)$ and $d \in\{j\}\{1,2\}^{*} \quad(j=1,2)$,
$\theta_{i}(d)=\# \quad$ if $d \in \operatorname{Fr}\left(\theta_{i}\right)-\left\{\alpha_{1} d_{2} e_{1 j} e_{2 j} \mid j=1,2\right\} \quad(i=1,2) . \quad::$
2.6 PROPOSITION If T is a recognizable set in J_{Σ} then so is
$\varphi^{-1}(T)\left(c g_{\Sigma U \Lambda}\right)$.
(Proof) Let $T=p\left(\mathcal{J V}_{\mathrm{G}}\right)$ where $\mathrm{p}: \mathscr{J}_{\Gamma^{\prime}} \rightarrow \mathscr{J}_{\Sigma}$ is a projection and $G=$ ($\Gamma \cup\{\#\}, P, I$) is a tree-grammar. Then we can construct a tree-grammar $G^{\prime}=\left(\Gamma^{\prime} \cup\{\#\}, P^{\prime}, I^{\prime}\right)$ and a projection $p^{\prime}: J_{\Gamma^{\prime}} \rightarrow J_{\Sigma U \Lambda}$ satisfying $p^{\prime}\left(J G^{\prime}\right)=\varphi^{-1}(T)=\varphi^{-1}(p(J G))$, as follows:

$$
\Gamma^{\prime}=\left\{\gamma, \gamma^{\prime} \mid \gamma \in \Gamma\right\} \cup\left\{\#^{\prime}\right\}
$$

(where we assume that symbols added differ each other and differ from those already in $\Gamma \cup\{\#\})$,
$P^{\prime}=\left\{\gamma\left\langle\gamma_{1}, \gamma_{2}\right\rangle, \gamma\left\langle\gamma_{1}{ }^{\prime}, \gamma_{2}\right\rangle, \gamma\left\langle\gamma_{1}, \gamma_{2}{ }^{\prime}\right\rangle, \gamma\left\langle\gamma_{1}{ }^{\prime}, \gamma_{2}{ }^{\prime}\right\rangle\right.$
$\left.\mid \gamma<\gamma_{1}, \gamma_{2}>\in P, \quad \gamma \in \Gamma, \gamma_{1}, \gamma_{2} \in \Gamma \cup\{\#\}\right\}$
$\cup\left\{\gamma^{\prime}\left\langle\gamma^{\prime}, \#^{\prime}\right\rangle, \gamma^{\prime}\left\langle\gamma, \#^{\prime}\right\rangle, \gamma^{\prime}\left\langle \#^{\prime}, \gamma^{\prime}\right\rangle, \gamma^{\prime}<\#^{\prime}, \gamma\right\rangle$,
$\left.\gamma^{\prime}<\gamma^{\prime}, \#>, \gamma^{\prime}<\gamma, \#>, \gamma^{\prime}<\#, \gamma^{\prime}>, \gamma^{\prime}<\#, \gamma>\mid \gamma \in \Gamma\right\}$
U \{\#'<\#', \#'>, \#'<\#,\#'>, \#'<\#',\#>, \#'<\#,\#>, \#\}
$I^{\prime}=\left\{\gamma, \gamma^{\prime} \mid \gamma \in I\right\}$,
$\begin{array}{ll}p^{\prime}(\gamma)=p(\gamma) & \text { for each } \gamma \in \Gamma, \\ \overline{\underline{p}}^{\prime}\left(\gamma^{\prime}\right)=\lambda & \text { for each } \gamma \in \Gamma \cup\{\#\} .\end{array}$
(p^{\prime} is the projection with basis $\underline{\underline{p}}^{\prime}: \Gamma^{\prime} \rightarrow \Sigma \cup \Lambda$ so defined.) $\quad::$
2.7 PROPOSITION If $f_{1}: J_{\Sigma_{1}} \rightarrow J_{\Sigma_{2}}$ and $f_{2}: J_{\Sigma_{2}} \rightarrow J_{\Sigma_{3}}$ are treemorphisms, so is the composed partial function $f=f_{2} f_{1}: \mathcal{J}_{\Sigma_{1}}+J_{\Sigma_{3}}$. If f_{1} and f_{2} are simple tree-morphisms, then f is also simple. (Proof) Let $f_{i}^{\prime}: J_{\Sigma_{i}} \rightarrow J_{\Sigma_{i} \cup \Lambda}$ be a ground of $f_{i}(i=1,2)$. In case of $f_{1}=f_{1}$ (i.e, f_{1} is an etm such that $f_{1}\left(\mathscr{J}_{\Sigma_{1}}\right) \subset \mathscr{J}_{\Sigma_{2}}$), the composition $f^{\prime}=f_{2}^{\prime} f_{1}^{\prime}: \sigma_{\Sigma_{1}} \rightarrow \sigma_{\Sigma_{3} \cup \Lambda}$ is an etm, and can serve as a ground of f. (The closure of etm under composition is easily shown by a constructive proof.) In case where $f_{1} \neq f_{1}{ }^{\prime}$, extend the domain of f_{2} ' to $J_{\Sigma_{2} \cup \Lambda}$ by setting ${\underset{=}{f}}_{2}^{\prime}(\lambda)=\lambda<X_{1}, X_{2}>$. Then the extended function $f_{2}^{\prime}: \mathscr{J}_{\Sigma_{2} \cup \Lambda} \rightarrow \mathscr{J}_{\Sigma_{3} \cup \Lambda}$ is an etm satisfying $\varphi_{\mathrm{f}_{2}}{ }^{\prime}(u)=\varphi_{f_{2}}{ }^{\prime}(\varphi(u))$ for each $u \in \varphi^{-1}$ (Domain $\left(f_{2}\right)$), because $f_{2}^{\prime}(u) \Rightarrow f_{2}^{\prime}(\varphi(u)) \stackrel{\varphi}{\Rightarrow} f_{2}^{\prime}(\varphi(u))$. Hence whenever $f(t)$ is defined we have $f(t)=f_{2}\left(f_{1}(t)\right)=\varphi f_{2}^{\prime}\left(\varphi f_{1}^{\prime}(t)\right)$ $=\varphi f_{2}^{\prime} f_{1}^{\prime}(t)$. This implies that f is a tree-morphism with ground
$f_{2} f_{1}^{\prime}: \mathscr{J}_{\Sigma_{1}} \rightarrow J_{\Sigma_{3} \cup \Lambda}$. The preservation of simplicity (of grounds) under composition should be obvious. ::
2.8 COROLLARY If R is a rational relation, and f_{I} and f_{2} are treemorphisms such that $R \subset \operatorname{Domain}\left(f_{1}\right) \times \operatorname{Domain}\left(f_{2}\right)$, then complex relation $R^{\prime}=\left\{\left(f_{1}\left(t_{1}\right), f_{2}\left(t_{2}\right)\right) \mid\left(t_{1}, t_{2}\right) \in R\right\}$ is rational. In case where R, f_{1} and f_{2} are simple, so is the complex relation R^{\prime}. ::

3. Main Results

3.1 THEOREM The class of simple rational relations is closed under composition.
(Proof) Given simple rational relations R_{1} and R_{2}, take recognizable sets $T_{i}\left(c J_{\Gamma}\right)$ and projections $p_{i 1}, p_{i 2}: \sigma_{\Gamma} \rightarrow \mathcal{J}_{\Sigma U \Lambda}$ such that $p_{i 1}\left(T_{i}\right)$ $\cup p_{i 2}\left(T_{i}\right) \subset u_{\Sigma}$ and $R_{i}=\left\{\left(\varphi p_{i 1}(t), \varphi p_{i 2}(t)\right) \mid t \in T_{i}\right\}(i=1,2)(\$ 2.4)$. To see that the composition

$$
\begin{aligned}
& R_{2} R_{I}=\left\{\left(\varphi p_{11}\left(t_{1}\right), \varphi p_{22}\left(t_{2}\right)\right) \mid\right. t_{i} \in T_{i}(i=1,2), \\
&\left.\varphi p_{12}\left(t_{1}\right)=\varphi p_{21}\left(t_{2}\right)\right\}
\end{aligned}
$$

is rational it suffices (by corollary 2.8) to verify that relation

$$
\mathrm{R}=\left\{\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \in \mathrm{T}_{1} \times \mathrm{T}_{2} \mid \varphi \mathrm{p}_{1}\left(\mathrm{t}_{1}\right)=\varphi \mathrm{p}_{2}\left(\mathrm{t}_{2}\right)\right\}
$$

is a simple rational relation where $p_{1}=p_{12}$ and $p_{2}=p_{21}$. For the purpose, first let us extend the domain of projections p_{1} and p_{2} from σ_{Γ} to $\sigma_{\Gamma \cup \Lambda}$ by setting $\underline{p}_{1}(\lambda)=\underline{p}_{2}(\lambda)=\lambda$, and let

$$
R^{\prime}=\left(\left(\varphi\left(u_{1}\right), \varphi\left(u_{2}\right)\right) \prod_{i} \in \varphi^{-1}\left(\mathbb{T}_{1}\right) \quad(i=1,2),\right.
$$

$$
\left.p_{1}\left(u_{1}\right)=p_{2}\left(u_{2}\right)\right\}
$$

Then we can observe that R equals R^{\prime}. (To see $R \subset R^{\prime}$, let $T_{i}{ }^{\prime}$ be the set of all subtrees of trees in $T_{i}(i=1,2)$. Then we have $p_{1}\left(T_{1}{ }^{\prime}\right) \cup$ $p_{2}\left(T_{2}{ }^{\prime}\right) \subset U_{\Sigma}$ since $p_{1}\left(T_{1}\right) \cup p_{2}\left(T_{2}\right) \subset U_{\Sigma}$ and U_{Σ} is "subtree-closed," i.e., subtrees of trees in U_{Σ} are also contained in u_{Σ}. Now we can verify by induction on the total number of nodes in trees that for each pair $\left(t_{1}, t_{2}\right) \in T_{1}^{\prime} \times T_{2}$ such that $\varphi p_{1}\left(t_{1}\right)=\varphi p_{2}\left(t_{2}\right)$, there exists a pair $\left(u_{1}, u_{2}\right) \in U_{\Gamma} \times U_{\Gamma}$ satisfying
(1) $\left\{\begin{array}{l}u_{i} \Rightarrow t_{i} \quad(i=1,2), \text { and } \\ p_{1}\left(u_{1}\right)=p_{2}\left(u_{2}\right) .\end{array}\right.$

The inductive process goes as follows: If $t_{i}=\gamma_{i}<t_{i l}, t_{i 2}>\left(\gamma_{i} \in r\right.$, $\left.t_{i j} \in J_{\Gamma}(i, j=1,2)\right)$ and $p_{1}\left(\gamma_{1}\right) \neq \lambda \neq \underline{p}_{2}\left(\gamma_{2}\right)$, then we should have $\underline{\underline{p}}_{1}\left(\gamma_{1}\right)=\underline{\underline{p}}_{2}\left(\gamma_{2}\right)$ and $\varphi p_{1}\left(t_{1 j}\right)=\varphi p_{2}\left(t_{2 j}\right)(j=1,2)$. Assuming that we get pairs $\left(u_{1 j}, u_{2 j}\right) \in U_{\Gamma} \times U_{\Gamma}$ satisfying condition (l) for the pair $\left(t_{1 j}, t_{2 j}\right)(j=1,2)$, set $u_{i}=\gamma_{i}<u_{i 1}, u_{i 2}>(i=1,2)$. Then the pair ($\left.u_{1}, u_{2}\right)$ fulfils condition (I) for original pair (t_{1}, t_{2}). If $t_{1}=\gamma_{1}<t_{11}, t_{12}>$ with $\underline{p}_{1}\left(\gamma_{1}\right)=\lambda$, then we must have either $p_{1}\left(t_{11}\right) \in U$ or $p_{1}\left(t_{12}\right) \in U$
since $p_{1}\left(t_{1}\right) \in U_{\Sigma}$. If $p_{1}\left(t_{11}\right)=u \in U$ we set $u_{1}=\gamma_{1}\left\langle t_{11}, u_{1}{ }^{\prime}\right\rangle$ and $u_{2}=\lambda<u, u_{2}{ }^{\prime}>$ where $\left(u_{1}{ }^{\prime}, u_{2}{ }^{\prime}\right) \in U_{\Gamma} \times \hat{U}_{\Gamma}$ is a pair satisfying condition (1) for $\left(t_{12}, t_{2}\right)$. Note that in this case we have $\varphi p_{1}\left(t_{12}\right)=\varphi p_{1}\left(t_{1}\right)$ $=\varphi \mathrm{p}_{2}\left(\mathrm{t}_{2}\right)$ and $\left(\mathrm{t}_{12}, \mathrm{t}_{2}\right) \in \mathrm{T}_{1}{ }^{\prime} \times T_{2}^{\prime}$, and hence we can find such ($u_{1}{ }^{\prime}, u_{2}{ }^{\prime}$) for $\left(t_{12}, t_{2}\right)$ by inductive hypothesis. Other cases (where $p_{1}\left(t_{12}\right) \in \mathcal{U}$ or where $t_{2}=\gamma_{2}\left\langle t_{21}, t_{22}>\right.$ with $\underline{p}_{2}\left(\gamma_{2}\right)=\lambda$) can be worked out in the same principle. Finally when $\left(t_{1}, t_{2}\right)=(\#, \#)$ let $\left(u_{1}, u_{2}\right)=(\#, \#)$. Since the first part of condition (1) implies that $\varphi\left(u_{i}\right)=t_{i}$, this completes the proof of $R \subset R^{\prime}$. The converse is easy; just remark that $\varphi p_{i}\left(\varphi\left(u_{i}\right)\right)$ $=\varphi p_{i}\left(u_{i}\right)$ for each $\left.u_{i} \in \varphi^{-1}\left(T_{i}\right) \subset \varphi^{-1} p_{i}^{-1}\left(U_{\Sigma}\right)(i=1,2).\right)$

Next, to see that R^{\prime} is rational we consider the subset U of $J_{\Sigma^{\prime} \times \Sigma}\left(\right.$ where $\left.\Gamma^{\prime}=\Gamma \cup A\right)$ defined by

$$
U=\left\{\pi\left(u_{1}, u_{2}\right) \mid u_{i} \in \varphi^{-1}\left(T_{i}\right)(i=1,2), p_{1}\left(u_{1}\right)=p_{2}\left(u_{2}\right)\right\}
$$

(Since p_{1} and p_{2} are projections, $p_{1}\left(u_{1}\right)=p_{2}\left(u_{2}\right)$ impiies $D\left(u_{1}\right)=D\left(u_{2}\right)$ and hence $\pi\left(u_{1}, u_{2}\right)$ is defined.)
Let

$$
\Delta=\left\{\left(\alpha_{1}, \alpha_{2}\right) \in \Gamma^{\prime} \times \Gamma^{\prime} \mid \underline{\underline{p}}_{1}\left(\alpha_{1}\right)=\underline{\underline{p}}_{2}\left(\alpha_{2}\right)\right\}
$$

Then the set U can be written as

$$
U=J_{\Delta} \cap \pi_{1}^{-1}\left(\varphi^{-1}\left(T_{1}\right)\right) \cap \pi_{2}^{-1}\left(\varphi^{-1}\left(T_{2}\right)\right)
$$

Here the sets $\mathscr{J}_{\Delta}, \mathrm{T}_{1}$ and T_{2} are recognizable, and operations $\cap, \pi_{1}{ }^{-1}$, π_{2}^{-1} and φ^{-1} are known to preserve recognizable sets (Thatcher \& Wright [1968], and proposition 2.6). Therefore U is recognizable.

Finally by noting equality

$$
R^{\prime}=\left\{\left(\varphi \pi_{1}(u), \varphi \pi_{2}(u)\right) \mid u \in U\right\}
$$

we can conclude that R^{\prime} is a simple rational relation. :

3.2 THEOREM The class of rational relations is closed under

 composition.(Proof) Suppose $R_{i}=\left\{\left(f_{i 1}(t), f_{i 2}(t)\right) \mid t \in \mathbb{T}_{i}\right\}$ ($i=1,2$) are rational relations where T_{1}, T_{2} are recognizable sets and $f_{11}, f_{12}, f_{21}, f_{22}$ are tree-morphisms such that $T_{i} \subset \operatorname{Domain}\left(f_{i j}\right)$. We assume here that f_{12} and f_{21} are simple. (Otherwise, flipping suitable branching edges of trees in T_{i} and exchanging accordingly the symbols X_{1} and X_{2} shown in the bases $f_{i j}$ ' of the grounds $f_{i j}$ ' of $f_{i j}$ one can convert the recognizable sets T_{i} and tree-morphisms $f_{i j}(i, j=1,2)$ so that they meet the assumption.) Apply theorem 3.1 to simple rational relations $R_{1}{ }^{\prime}=\left\{\left(t, f_{12}(t)\right)\right.$ $\left.\mid t \in \mathbb{T}_{1}\right\}$ and $R_{2}^{\prime}=\left\{\left(f_{21}(t), t\right) \mid t \in T_{2}\right\}$, and then apply corollary 2.8. : :
3.3 COROLLARY If R is a rational relation and T is a recognizable set, then the image of T by R

$$
R(T)=\{y \mid(x, y) \in R \text { for some } x \in \mathbb{T}\}
$$

is recognizable.
(Proof) Consider the composition $R R_{I}$ of rational relations where $R_{1}=\{(x, x) \mid x \in T\}$. Then the image $R(T)$ is equal to Range $\left(R R_{1}\right)$. Apply theorem 3.2 and corollary 2.3. :
3.4 COROLLARY The inverses of tree-morphisms preserve recoginizability. (Proof) The inverse of etm $f: J_{\Gamma} \rightarrow J_{\Sigma}$ preserves recognizabillty, since $R=\left\{(f(t), t) \mid t \in J_{\Gamma}\right\}$ is a rational relation and $R(T)=f^{-1}(T)$ for each $T \subset J_{\Sigma}$. Then the inverse of tree-morphism φf^{*} where $f: J_{\Gamma} \rightarrow J_{\Sigma U A}$ is an etm is shown to have the same property because $\left(\varphi f^{-1}=f^{-1} \varphi^{-1}\right.$: :

APPENDIX

A linear homomorphism (of binary trees), abbreviated by Ih, is a function $h: J_{\Gamma} \rightarrow J_{\Sigma}$ defined as

$$
\begin{aligned}
& h(\#)=h(\#), \\
& h\left(\gamma<t_{1}, t_{2}>\right)=h(\gamma)\left(h\left(t_{1}\right), h\left(t_{2}\right)\right) \quad\left(\gamma \in \Gamma, \quad t_{1}, t_{2} \in J_{\Gamma}\right)
\end{aligned}
$$

by giving its basis $h: H^{\prime} \cup\{ \} \rightarrow \mathcal{C}_{\Sigma}$ satisfying $h(\#) \in \mathcal{J}_{\Sigma}$. Here $e_{\Sigma}=\left\{\tau \in \bar{\sigma}_{\Sigma,\left\{X_{1}, X_{2}\right\}} \mid\right.$ Yield (τ) contains X_{1} and X_{2} at most once, respectively\} ,
and each τ in e_{Σ} is viewed as a binary function sending (t_{1}, t_{2}) \in $J_{\Sigma} \times J_{\Sigma}$ to the tree that is obtained from indexed tree τ by replacing its index symbol X_{j}, if any, by $t_{j}(j=1,2)$. For example, $\sigma<X_{2}, X_{1}>\left(t_{1}, t_{2}\right)$ $=\sigma<t_{2}, t_{1}>, X_{1}\left(t_{1}, t_{2}\right)=t_{1}, \#\left(t_{1}, t_{2}\right)=\#$.

If $h_{\perp}, h_{2}: \mathscr{J}_{\Gamma} \rightarrow \mathcal{J}_{\Sigma}$ are $1 h$, and T is a recognizable set in J_{Γ}, then binary relation $\left[\left(h_{1}(t), h_{2}(t)\right) \mid t \in T\right\}$ is termed as a linear bimorphism (1b, for short).

Now we prove the equivalence of the notions of $I b$ and of rational relations.

PROPOSITION An $1 b$ is a rationel relation.
(Proof) Given $I b \quad R$, one can find a tree-grammar $G=(\Gamma \cup\{\#\}, P, I)$ and $1 h h_{1}, h_{2}: J_{\Gamma} \rightarrow J_{\Sigma}$ such that $R=\left\{\left(h_{1}(t), h_{2}(t)\right) \mid t \in \mathcal{J G}\right\}$. Assuming that no symbols in Γ are useless (i.e., JJG $\notin \mathcal{J}_{\Gamma}$, for any proper subset Γ^{\prime} of $\left.P^{\prime}\right)$, we define tree-grammar $G^{\prime}=\left(\Delta U\{\#\}, P^{\prime}, I^{\prime}\right)$ as follows;

$$
\begin{aligned}
& \Delta^{\prime}=(\Gamma \cup\{\#, *\}) \times(\Gamma \cup\{\#, *\}) \text { where } * \notin \Gamma \cup\{\#\}, \\
& I^{\prime}=\{(\gamma, \gamma) \mid \gamma \in I\}
\end{aligned}
$$

$$
\begin{aligned}
& P^{\prime}=\left\{(\gamma, \gamma)<\left(\left[\gamma_{1}\right]_{\gamma, I},\left[\gamma_{1}\right]_{\gamma, 2}\right),\left(\left[\gamma_{2}\right]_{\gamma, 1},\left[\gamma_{2}\right]_{\gamma, 2}\right)\right\rangle, \\
& (\gamma, *)<\left(\left[\gamma_{1}\right]_{\gamma, 1}, *^{*}\right),\left(\left[\gamma_{2}\right]_{\gamma, 1}, *^{*}\right)>\text {, } \\
& (*, \gamma)<\left(*,\left[\gamma_{1}\right]_{\gamma, 2}\right),\left(*,\left[\gamma_{2}\right]_{\gamma, 2}\right)> \\
& \left.\mid \gamma<\gamma_{1}, \gamma_{2}>\in \mathrm{P}\right\} \cup\{(\#, \#)<(*, *),(*, *)>, \\
& \text { (\#, *) < (*, *) , (*, *) >, (*, \#) < (*, *) , (*, *) >, } \\
& \text { (*,*)<\#,\#>, \#\} }
\end{aligned}
$$

where $\left[\gamma_{j}\right]_{\gamma, i}$ stands for either γ_{j} or $*$ depending on whether $h_{i}(\gamma)$ contains X_{j} or not, respectively. Next we define etm $f_{i}: \mathscr{J}_{\Delta} \rightarrow \mathscr{J}_{\Sigma U \Lambda}(i=1,2)$, as follows;

$$
{\underset{i}{f}}_{\underline{f}}\left(\gamma_{1}, \gamma_{2}\right)=\left\{\begin{array}{l}
\underline{\underline{h}}_{i}\left(\gamma_{i}\right) \\
\lambda<\underline{\underline{h}}_{i}\left(\gamma_{i}\right), x_{2}> \\
\lambda<\underline{\underline{h}}_{i}\left(\gamma_{i}\right), X_{1}> \\
\lambda<\underline{\underline{h}}_{i}\left(\gamma_{i}\right), \lambda<X_{1}, X_{2} \gg \\
\lambda<X_{1}, x_{2}>
\end{array}\right.
$$

if $\gamma_{i} \in \Gamma$ and $h_{i}\left(\gamma_{i}\right)$ contains both X_{I} and X_{2}, if $\gamma_{i} \in \Gamma$ and $\underline{\underline{h}}_{i}\left(\gamma_{i}\right)$ contains X_{1} but not X_{2}, if $\gamma_{i} \in \Gamma$ and $\wp_{i}\left(\gamma_{i}\right)$ contains X_{2} but not X_{1},
if $\gamma_{i} \in \Gamma \cup\{\#\}$ and $\underline{h}_{i}\left(\gamma_{i}\right)$ contains neither X_{1} nor X_{2}, if $\gamma_{i}=*$.
Then it can be verified that $f_{i}\left(\sigma^{\prime}\right) \subset U_{\Sigma}(i=1,2)$ and $R=\left\{\left(\varphi f_{1}(t)\right.\right.$, $\left.\varphi f_{2}(t)\right) \mid t \in G^{\prime} G^{\prime} . \quad::$

PROPOSITION A rational relation is an 1 b .
(Proof) It is observed that any etm $f: \mathscr{J}_{\Gamma} \rightarrow J_{\Sigma}$ can be decomposed into the form $f=f^{\prime \prime} f^{\prime}$ where $f^{\prime}: \sigma_{\Gamma} \rightarrow \mathcal{J}_{\Delta}$ is a simple etm, and $f^{\prime \prime}: \mathscr{J}_{\Delta}$
$\rightarrow \mathscr{T}_{\Sigma}$ is an etm satisfying $\stackrel{\rho}{\underline{\prime \prime}}^{\prime \prime}(\Delta) \subset\left\{\sigma<X_{1}, X_{2}>, \sigma<X_{2}, X_{1}>\mid \sigma \in \Sigma\right\}$. From this combined with proposition 2.4, given rational relation R one can find tree-grammar $G=(\Gamma \cup\{\#\}, P, I)$ and etm $f_{1}, f_{2}: \mathscr{J}_{\Gamma} \rightarrow J_{\Sigma U \Lambda}$ satisfying

$$
\begin{aligned}
& {\underset{\Xi}{i}}^{(\Gamma) \subset\left\{\alpha<X_{1}, X_{2}>, \alpha<X_{2}, X_{1}>\mid \alpha \in \Sigma \cup \Lambda\right\} \quad(i=1,2),} \\
& f_{i}(G G) \subset U_{\Sigma}(i=1,2), \\
& R=\left\{\left(\varphi f_{1}(t), \varphi f_{2}(t)\right) \mid t \in \mathscr{J}\right\} .
\end{aligned}
$$

Assuming that no symbols in Γ are useless, let $G_{\gamma}=(\Gamma \cup\{\#\}, P,\{\gamma\})$ for each $\gamma \in \Gamma$, and $\Gamma_{i}=\{\#\} u\left\{\gamma \in \Gamma \mid \varphi f_{i}\left(J G_{\gamma}\right)=\{\#\}\right\} \quad(i=1,2)$. Then if $\left.f_{i}(\gamma) \in\left\{\lambda<X_{1}, X_{2}\right\rangle, \lambda<X_{2}, X_{1}>\right\}$ and $\gamma\left\langle\gamma^{\prime}, \gamma^{\prime \prime}\right\rangle \in P$, we have either $\gamma^{\prime} \in \Gamma_{i}$ or $\gamma^{\prime \prime} \in \Gamma_{i}$, because $\left.f_{i}(J) G\right) \subset \mathbb{U}_{\Sigma} \quad(i=1,2)$. Based on the observation we now define tree-grammar $G^{\prime}=\left(\Delta \cup\{\#\}, P^{\prime}, I^{\prime}\right)$ and Ih $h_{1}, h_{2}: \mathscr{J}_{\Delta} \rightarrow V_{\Sigma}$, so that they satisfy $R=\left\{\left(h_{1}(t), h_{2}(t)\right) \mid t \in \mathscr{G} G^{\prime}\right\}$, as follows;

$$
\begin{aligned}
\Delta= & \left\{\left[\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right]\left|\gamma^{\prime} \gamma^{\prime}, \gamma^{\prime \prime}\right\rangle \in P\right\}, \\
P^{\prime}= & \left\{\left[\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right]<[\alpha, \alpha \prime, \alpha "],\left[\beta, \beta^{\prime}, \beta^{\prime \prime}\right]>\mid \gamma^{\prime}=\alpha, \gamma^{\prime \prime}=\beta\right\} \\
& \cup\left\{\left[\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right]<[\alpha, \alpha \prime, \alpha "], \#>\mid \gamma^{\prime}=\alpha, \gamma^{\prime \prime}=\#\right\} \\
& \cup\left\{\left[\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right]<\#,\left[\beta, \beta^{\prime}, \beta^{\prime \prime}\right]>\mid \gamma^{\prime}=\#, \gamma^{\prime \prime}=\beta\right\} \\
& \left.U\left\{\left[\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right]<\#, \#\right\rangle \mid \gamma^{\prime}=\gamma^{\prime \prime}=\#\right\} \cup\{\#\} \\
& \text { where }\left[\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right],\left[\alpha, \alpha^{\prime}, \alpha "\right] \text { and }\left[\beta, \beta^{\prime}, \beta^{\prime \prime}\right] \text { run over } \Delta,
\end{aligned}
$$

$I^{\prime}=\left\{\left[\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right] \in \Delta \mid \gamma \in I\right\} \cup(I \cap\{\#\})$,
$\underline{\underline{h}}_{i}\left(\left[\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right]\right)= \begin{cases}\underline{\underline{f}}_{i}(\gamma) & \text { if } \dot{E}_{i}(\gamma) \notin \Phi, \\ X_{1} & \text { if } f_{i}(\gamma) \in \Phi, \gamma^{\prime} \notin \Gamma_{i} \text { and } \gamma^{\prime \prime} \in \Gamma_{i}, \\ X_{2} & \text { if } f_{i}(\gamma) \in \Phi, \gamma^{\prime} \in \Gamma_{i} \text { and } \gamma^{\prime \prime} \notin \Gamma_{i}, \\ \# & \text { if } f_{i}(\gamma) \in \Phi \text { and } \gamma^{\prime}, \gamma^{\prime \prime} \in \Gamma_{i},\end{cases}$
where $\Phi=\left\{\lambda<X_{1}, X_{2}>, \lambda<X_{2}, X_{1}>\right\},\left[\gamma, \gamma^{\prime}, \gamma^{\prime \prime}\right] \in \Delta, \quad i=1,2$,
$\underline{\underline{h}}_{1}(\#)=\underline{\underline{h}}_{2}(\#)=\# . \quad::$

REFERENCES

Arnold, A \& M. Dauchet [1976] Bi-transductions de forets, " Automata, Languages and Programing" (edited by S.Michaelson \& R.Milner), Edinburgh University Press, 74-86.
Eilenberg,S. [1974] "Automata, Languages, and Machines," Vol.A, Academic Press.
Elgot,C.C. \& J.E.Mezei [1965] On relations defined by generalized finite automata, IBM J. Res. Develop. 9, 47-68.
Engelfriet,J. [1975] Bottom-up and top-down tree transformationsa comparison, Math. Systems Theory 9, 198-231.
Ginsburg, S. \& S.A.Greibach [1969] Abstract families of languages, Memoirs of AMS, no.87, 1-32.
Knuth, D.E. [1968] "The Art of Computer Programming," Vol.l, Addison Wesly.
Nivat, M. [1968] Transductions des langages de Chomsky, Annales de IInstitut Fourier 18, 339-456.
Takahashi, \bar{M}. [1975] Generalizations of regular sets and their application to a study of context-free languages, Information and Control 27, 1-36.
Thatcher, J.W. \& J.B.Wright [1968] Generalized finite automata theory with an application to a decision problem of secondorder logic, Math. Systems Theory 2, 57-81.
Thatcher,J.W. [1969] Generalized ${ }^{2}$ sequential machine maps, IBM Res. Report RC2466.

