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One rather natural method for defining translations is by specifying a pair of gram-
mars generating the translation.If for each leftmost derivation d in the input gram-
mar generating an input word x the "corresponding” derivation d' in the output gram-
mar generates an output word x', we call this grammar pair left-fitting. This con-
cept is motivated by the usual parsing algorithms yielding leftmost derivations and
by the fact that the left-fitting translations are more powerful than the syntax-di-
rected translations. It is shown that it is decidable whether or not a given pair

of context-free grammars is left-fitting or not essentially using the fact that the
set of left derivation trees of a context-free grammar is semilinear. By means of
certain structure properties of left-fitting translations, it is shown that they

form a proper hierarchy in their so called intercalation number.
1. Introduction

One usually defines a language, i.e. a set of words, by specifying a grammar which
generates exactly the words of the language. In a similar way a pair of grammars can
be used to define a translation, i.e. a set of pairs of words. Before giving the
precise definition of the translation generated by a pair of grammars we recall some
notions on context free (c.f.) grammars: A c¢.f. grammar & = (N,Z,P,S) consists of
two disjoint finite sets N and ¥ of nonterminals and terminals, respectively, a start
variable S € £, and a finite set of productions P& N x {Nu z)*. A production

{A,a) € P is usually written as A > o.If p=A - o € P, the application of p to a
word PRAy yields Bay, in symbols BAy =P Bory. For each sequence d of productions,

d = PysPpservsPpys D > 1, write O =9d U instead of Oy —P1 oy =P2 = .. =Pn o

n
and call d a derivation in G. The derivation d is called terminal if S =d X where

x € 2°. As usual L(6) = {x € Z*}S —d x, for some derivation d} denotes the language
generated by G.

For convenience it is assumed that each production A+~ o contains each variable at
most once in o and furthermore that grammars are always reduced, that means they
contain no useless symbols. Let G={(N,Z,P,S) and ' = (N',z',P',S') be two grammars
with a one-one correspondence of their productions. For each production p in P let
p' in P' be the corresponding production.

For each derivation d in € (at most) one corresponding derivation d' in G’ can be
associated. Apply the sequence d' of corresponding product1ons such that the follo-
wing conditions, hold: If S ~>d1 v =P 8 —>d2 x and §' = 1 v! _>p g’ ~>d2 x' are
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corresponding derivations with p=A -+ a, p' = A’ + o' then

(i) the leftmost A in v is replaced and

{i1) if v' contains a A' generated at the same time as the leftmost A in vy, then
that A' is replaced; otherwise the leftmost A' in y' is replaced. This choice of
positions where to apply the productions of d' rules out certain undesired pairs
of derivations.

Definition 1: The pair translation T{G,G') generated by the grammar pair (G,G') is
defined by
T(6,6") = {{x,x"}|S =4 X, §'=>

d x's(d.d") a corresponding pair of terminal de-

rivations in G and G'}

A major problem with translations generated by grammar pairs is the fact that for a
terminal derivation in one grammar the sequence of corresponding productions in the
other grammar is not necessarily again a terminal derivation.

1

If we are interested not only in a translation T but alsc in its inverse T *, it is

reasonable to claim

Definition 2: Agrammar pair (G,G') is called agreeable if for each terminal derivati-
on d in G the sequence d' is a terminal derivation in G' and vice versa. A transla-
tion is called agreeable if it is generated by an agreeable grammar pair (G,G').

Using a result from PENTTONEN (1974) it is shown in KRIEGEL (1976) that the family
of syntax-directed translations equals the family of agreeable translations.

In many applications one is only interested in the translation T, but not in its in-
verse T 1.

Therefore it is sufficient to claim that for each inputword we can generate at Jeast

one outputword. This leads to:

Definition 3: A grammar pair (G,G') is called fitting if for each terminal deriva-
tion d in G the sequence d' is a terminal derivation in G'. A translation is called
fitting if it is generated by a fitting grammar pair.

In KRIEGEL and MAURER (1976) it is shown that the problem whether a given grammar
pair is fitting or not and the equivalent containment problem for Szilard languages
1S$z(G) <= Sz(G')" are decidable. The properties of fitting translations are investi-
gated in KRIEGEL (1976).

The definition of fitting is not very realistic. Given a grammar pair (G,G') and an
inputword x € L(G) we parse x yielding a derivation d such that S —d X. But the
usual parsing algorithms for an arbitrary context-free grammar G and for a given

x € L(G) do not yield all derivations d such that S =»d X, but yield i.g. one special
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derivation, usually a leftmost derivation d such that S fd Xx. Applying only termi-
mal leftmost derivations in G the property fitting is too strong. The adequate de-
finition is

Definition 4: A grammar pair (G,G') is called left-fitting if for each terminal Teft-
most derivation d in G the sequence d' is a terminal derivation in G', i.e. S f_.d X
where x ez¥ implies §' Oy x' and x' € 2'%.
A translation T is called left-fitting if there is a Teft-fitting grammar pair (G,G')
such that

T = T (6,6') = {{x,x') € T(G,6')|S "= ¢ x for some ¢}

By definition each fitting grammar pair is left-fitting, but there are left-fitting
grammar pairs which are not fitting, as the following example shows. So claiming a
grammar pair to be fitting is really too strong.

Exampie 1: Consider the grammar pair (G,G') where
G = ({S.A,B}, {a,b}, P,S), G' = ({S',A',B'}, {0,1},P',S")

and P,P' as follows:

pp: S~ AB Py s8> Al
Py A > ah Py * A' - OA
P3 * A-a P3¢ AT > B
P B -~ bB Py ¢ B' - 1B
Pg * B+b Pg * B' »1

(G,6') is left-fitting, because for any terminal leftmost derivation pl,pg,pa,pz,pS
where n,m > 0 also pi,pén,pé,p&m,pé is a terminal derivation in G'. But for the ter-

minal derivation (not leftmost!) PysPg>P3 the sequence of corresponding productions
pi,pé,pé is not a terminal derivation in G'. Therefore (G,G') is left-fitting but not
fitting.

Many translations of practical interest can be generated by left-fitting grammar
pairs such as the translation Tdup which duplicates each word x in an arbitrary con-
text-free language to xx. This translation is built in in many translations describing

certain inversions of data files {e.g. duplicating names).

Example 2: Consider the translation

T = {(x.xx}|x € Ll}’ L1 € CF, where CF denotes the family of c.f. languages.

Dup
Let Gl = (Nl,zl,Pl,Sl) be a context-free grammar such that L(Gl) = L1 and let (G,G')
be the grammar pair where G = (N1 U {S}LJ{(:)lp = A~ aéSPl}, Zi,P,S)

' =({RlAenNI U {Al A€ N} U {S'hzL,P,SY)
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and P,P' as follows:

|

S - Sl S' 3151
A1<+ QD Ki é-&i vP : Al oy € P1
QRS Ay > oy

Here o is obtained from o by replacing each variable A in o by A, o is obtained in
the analogous way.

Obviously (G,G') is fitting and therefore Teft-fitting and TQ(G,G‘} = TDup’ but
T(G,G") # TDup' Realize that the restriction to Teftmost derivations in the input
grammar G is necessary for this example.

2. Left sentential forms

We will show in 3. that for a grammar pair (G,6') it is decidable whether (G,G')

is left-fitting or not. Moreover we will derive some structure properties of left-
fitting transiations. For this purpose we use a theorem on (derivation trees of)
left sentential forms which can be considered as a kind of Parikh's theorem for left
sentential forms.

Let G = (N,z,P,S) be a context-free grammar.
Let TL(G) denote the set of all trees associated with leftmost derivations in G
which are not terminal derivations. For short the trees in TL(G) are called left
derivation trees.
The set of left sentential forms of G can be defined by
SL(G) = {frontier(t)|t € TL(G)} where frontier(t) denotes the string obtained by
concatenating the leaves of t from left to right.
For each two subsets UlEE N and UZEE N-{S} and for each A € N we define a set of
trees

TA(Ul,UZ) = {te TL(G)]t has the root S, frontier(t) = xAa for some xezr,

a € (N u)*, and conditions (1a), (1b) hold}

(1a) On the Teft of the path connecting the root with the Teftmost leaf Tabelled A
there occur exactly the variables in the set U1

(1b) On the path connecting the root with the leftmost leaf Tabelled A there occur
exactly the variables in Bé = U, U {5}.

The label of the root but not the label of the leaf is counted to the set of variab-
les occurring on a path from the root to a leaf. Define

A ; A

L (UI,UZ) = {frontier(t)|t e T (UgsUy) e
For the following definitions let us consider an arbitrary but fixed TA(UI,UZ). De-
fine uy = #(Ul) and u, = %(Ué) where #(M) denotes the number of elements of the set M.
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For each Y € Ul and z € Uz we define sets TI(Ul) and Té(Ul,Uz) of derivation trees
and Teft derivation trees, respectively, as follows:

TI(UI) = {t]t is a tree with root Y and frontier w¥z (for some w,z € Z*) associa-
ted with a derivation d in G where Y —d wYz, such that conditions
(2a) and (2b) hold}.

(2a) Each variable occurring in t is in U1
(2b) t contains no path on which a variable x € U; occurs more than u1+l times.

T%(Ul,UZ) = {t|t is a tree with root Z and frontier yZ8 (for some y € ¥,
ge(Nu z)*) associated with a leftmost derivation d in G where
7 %59 478, such that conditions (1a'), (1b'), (3a) and (3b)
hold.
Conditions {la'} abd {1b') result from (la) and (1b) by replacing "A" by "Z" and
"exactly” by "no other variables than".

{(3a) No subtree of t with the root on the left of the path connecting the root of t
with the Teftmost Teaf labelled Z contains a path with more than u1+1 occurrences
of the same variable X € Ul'

(3b) On the path connecting the root with the leftmost leaf labelled 7 no variable
X € Ué occurs more than u1+u2+2 times.

The structure of trees defined so far is shown in Fig. 1:

S Y 7
o B
X A XY z N VA
A Y Z
T (UI,UZ) Tl(Ul) TZ(UI’UZ)
Fig. 1

Obviously T{(Ul) and Tg(Ul,Uz) are finite sets of trees. For each left derivation
tree t with frontier xAa let frontierN(t) denote the sequence of variables obtained
from a by eliminating all terminals in a.

Define Hy(H;,U,) = {frontiery(t)[t € T5(Up,U,) for some Z € Uy}, Obviously Hy(U,U,)
is finite.

For each tree t € T (Ul’UZ)’ for each (occurrence of) Y on the Teft of the path
connecting the root of t with the Teftmost leaf Tabelled A and for each t' ¢ T (U ) a
tree 01(t t') called l-substitution of £' in t is defined as follows:

cl(t,t‘) is obtained from t by replacing (the occurrence of) Y by the tree t'. Ob-
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serve that cl(t,t‘) € TA(Ul,UZ). In a similar way for each tree t € TA(Ul,UZ), for
each (occurrence of) Z € Ué on the path connecting the root of t with the leftmost
leaf labelled A, and for each t' € T%(Ul,uz) a tree cz(t,t’) called the 2-substitu-
tion of t' in t is defined as follows: az(t,t’) is obtained from t by replacing
(the occurrence of) Z by the tree t'. Observe that oz(t,t‘) € TA(Ul,UZ).

Trees obtained by 1- substitution and 2- substitution are shown in Fia 2

oy

1-substitution 2-substitution

Fig. 2

We call a set T TA(U;,U,) Tinear if there is a tree t € TA(U;,U,) such that T is
the smallest set of trees which contains t and is closed under 1-substitution and
2-substitution. A finite union of linear sets of trees is called semilinear.

He can prove in a tedious but straightforward way using arguments similar to those
used in the proof of PARIKH's theorem (1966):

Theorem 1: For each context-free grammar G the set TL(G) of left derivation trees is
semilinear.

As far as it is necessary for understanding Theorem 2 (the decidability of the pro-
perty left-fitting) a rough sketch of the proof of Theorem 1 is given.

Obviously T, (6) = U/ TA(Ul,UZ) holds.
AeN

U N

lg
UZSE N-{S}

Since the number of the sets Ul,U2 and of the variables is finite, it suffices to
show that each of the sets TA(UI,UZ) is semilinear.

For each two subsets UISE N and U2£E N-{S} and for A € N the set TQ(UI,UZ)SE TA(UI,UZ)
is defined as follows:

TAU).0,) = (t € TA(U.U,) [t fulfills the conditions (3a') and (3b'))

Conditions (3a') and (3b') are obtained from (3a) and {3b) by replacing Z by A.
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. A - A A A
Define H"(U;,U,) = {frontier(t)|t € To(Ul,Uz)}. Clearly T (Uy,U,) and H'(U;,U,) are
finite.
It can be shown that TA(UI,UZ) equals the finite union of sets of trees each of which
is the smallest set of trees which contains a tree t € Tﬁ(ul,Uz) and is closed under

1-substitution and 2-substitution. By Definition each TA(UI,UZ) is semilinear and
therefore TL(G) is semilinear.

2. The Decidability of the left-fitting Problem

Let (G,G') where G = (N,Z,P,S), N = {Al""’An}’ S = Al and G' = (N',2',P',$'),
N' = {Ai,...,Aﬁ.}, S' = Ai be a pair of c¢.f. grammars and let the 1-1 correspondence
of productions be given by a mapping f from P onto P'.

Since terminals have no influence on leftmost derivations (in G) and neither terminals
nor the position of variables have any influence on arbitrary derivations (in G'), we
define a c¢.f. grammar GE and the vector form G' of G' as follows:

Convention: G€ = (N,Ze,Pg,S) where I=¢ and PE = {pE =A->Na)lp=A-+a€P}and
N{a) is obtained from ae (N U Z)* by erasing all occurrences of terminals in a.

G = (N',I",P',5') where T' = ¢ W' = {e],...,e;.}, (where e} denotes the vector of

n' nonnegative integers which has the integer 1 at position i, the integer 0 at all

other positions) S' = ei and P' consists exactly of all vector forms of productions

of P': If p' = Aé +a' is a production of P', then

p' = e} ¢ (a’) = (#A.(a‘),...,#A. (a')) is its vector form, where %A.(a') denotes
: 1 n' i
the number of occurrences of the variable A% in the word o'.

Let V; denote the set of all ordered n’-tupels of nonnegative integers. The concept
of "derivation” can be transferred in a natural way to the vector form of a c.f.
grammar:

For a production p' = el »>u' € P', u' € V; and vectors v',w' € V;,v’ =>pl w' holds,
if there exist words B',y' € (N' U Z')* and a production p' = Aj +ga' €P' such
that 8" =P y' .97 (') = u' U (B) = vt and ¢ (y') = w'.

If p=A->gand p' =A" » o' are corresponding productions in (G,G'), then

Pe = A > N(a) and p' = ¢'(A') » ' (a') are corresponding productions in (GQ,E“). Thus
we have transferred the correspondence between sequences of productions of G and &'
to a correspondence between sequences of productions of GE and .

The questions whether (G,G') is a left-fitting grammar pair can now be reduced to
the question whether for any terminal Teftmost derivation d in Gs the corresponding
sequence d’' of productions of G' yields the vector o' (the n'~tupel of o's). We call
(GE,E“? left-fitting if for any terminal leftmost derivation d, A1 Qmad ¢ implies

ei —d o', Then it follows immediately:
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Lemma 1: (GE,E‘) is left-fitting iff (G,G') is left-fitting.

Definition 5; Let y € N* and d be a leftmost derivation in GE such that y %_.d e.
Then d is called cycle-free if in the forest of Teft derivation trees associated to
d (with the variables of y as roots) there is no path on which the same variable
occurs more than once.

Hence for any left sentential form of G8 there exists only a finite number of cycle~
free terminal Teftmost derivations in Ge.

Definition 6: Let d'

L=l o+l < i<k
P; eJi ujs L2 i<k

pi,...,pi be any sequence of productions in P' such that

The value of d', in symbols z(d'), is defined by
k
z(d') = ] (ei -ui)

Cleariy, if d' is a derivation in G' such that v’ 4

o', then z(d') = v' € v,
Intuitively, for any terminal leftmost derivation d in GE z(d"} indicates the number
of occurrences of variables of N' which must be available to ensure that d* s a
terminal derivation in G'.

For any A, 1 <1 <n, we define the set g (A;) as follows:

g, (Ay) = {z(d‘)]Ai %_d £, d cycle-free}

9 is extended to N* by defining gg(s) {0'} and for any y € N¥

gﬁ(y) = {v‘]awi € gz(Al),..., awﬁ €g (An) where

n
v' o= H (y) wid
iy

"
S.

Instead of gg(y) = {w'} we write gl(y)

9, has the following properties:

Lemma 2: Let GE = ({A].’“.’An}’(b’PE’Al) and #(QQ(A])) =1 for all i, 1; i = n.
Then (1) - (4) hold:

n
(1) #(gy(¥)) = 1 and g, (y) = .Zl #Ai(y) g, (A;) forall y e N

1=
(2) g,(¥) = gy(v) + g,(w) for all y,v,w e N such that w(y) = w(v) + p(w).

Here y denotes the Parikh-mapping which maps a word x € N* onto the vector
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(#A]_(X), .. s%An(X)) .

(3) For any cycle-free leftmost derivation d and any y € N such that y Xz>d €,

z(d"') = go(y) holds.
(4) v(w) = p(w') implies g (w) = g,(w') for any w, w' € N

Proof: Obvious

We can now give necessary and sufficient conditions for (GE,G“) and therefore for
(G,G') to be Teft-fitting. These conditions are decidable.

Theorem 2: (GE,G“) is left-fitting iff the conditions (1) - (3) hold:

(1) #(gy(A)) = 1 for al1 4, 1< i <n.
(2) 95 (R)) = &;
(3) Let H = \/ W

AeN
Ulg N, UZE N—{Al}

and H, = \_/ Hy (UgU,)
ulcz N

U= N- {A }

1°Uz)

Then for any left sentential form v € H and any production p € P (left-)applicable
to v, v Py implies gz(v) P’ gx(w)

Furthermore for any v € H and any r ¢ HZ’ gg(v) € V; and gg(r) € V; hold.

Remarks: Observe that Lemma 2 and cond1t1on (1) imply that ﬁ(gg(v)) = #(gg(w)} =1
and ¢ (w) € V_ hold. Therefore gx(v) =P’ gl( w) is well-defined.

Proof: Part I: Suppose the conditions (1) - (3) hold. Lemma 2 and condition (1) imply
#wﬁ))=lmrwyyew

1t will be shown that for any left sentential formy € § (CE) and any p € PE such
that y L.P us g, (¥) —>p 2(u) holds where gl( ¥}, gg(u) € V;.

Let y € SL(GE) be a left sentential form, p € P8 be a production such that y AP u and
let A be the Teftmost nonterminal in y. Then there is a left derivation tree ty with
root S whose frontier is y. lLet U1 be the set of variables occuring in the subtrees

on the left of the path S-A and let U2 U {S} be the set of va;iabTes occuring on the
path S-A. Then the considered left derivation tree ty is in T (UI’UZ) and y is in
LUy Up)

By Theorem 1 there is a left derivation tree t in T (U Uz) with frontier

v E HA( ,Uz) such that v *=P v (because A is aga1n the Teftmost nonterminal}.
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ty is obtained from t0 by iterated 1- and 2-substitution of trees from T{(Ul) for

any Y € U1 and from T%(Ul,uz) for any Z € ﬁé, respectively. Since l-substitution does
not influence the frontier of tc there are positive integers k, Nyse-esly and trees
tys...st, € S TZ(U ,U,), such that the frontier y of t_ 1is obtained from the
1 k=5 cT 2v71°72 y
2

frontier v of to by inserting ry = frontierN(ti) € HZ{Ul,Uz) exactly n. times,

1

k
1 <1 < k. Thus we have y(y) = ¥(v) + | “iw(ri)‘
i=1

Choose r € N* such that y(r) = niw(ri).

T~ =

i=1

By Lemma 2(2) it follows that gl(r) = nigl(ri).gl(ri) € V, by condition (3) and

wte
H D~ %
e

n; > 0 for all i, 1 <1 <k, imply gz(r) € V;.

Let us summarize that y 4P u, v %Py and P(y) = w(v) + ¥(r) hold. This implies
w(u) = p{w) + y(r).

v E HA(Ul,UZ) by condition {3) implies gz(v) =P gz(w). Since gz(v), gg(w) € V; by
condition (3) and g,(r) € V| as well, g (v) + g ,(r) €V, and g,(w) + g,(r) € V..

1
Thus gz(v) + gl(r) =P gz(w) + gz(r} is well-defined, i.e., 2-substitution of the
trees ti’ 1 <1<k, in the tree to does not decrease any components of the g,-vec-
tors of the frontiers of the trees.

By w(y) = w(v) + y(r) and w{u) = Pp{w) + p(r) and Lemma 2(2) it follows that
g, (¥) = g,(v) + g,(r) and g,(u) = g,(w) + gy(r).

Therefore gl(y) P’ gg(u) holds.

Thus A, %P1 x, *5P2 x, 2oP3 L foPn ¢ implies

gg(Al) m»pi 9Q(X1) =¢pé gg(xz) =>p§ eee =>pﬁ gﬁ(g) for any terminal Teftmost
derivation PpscesPpe Observe that gQ(Al) = ei by condition (2) and gg(s) = o' by defi-
nition.
Therefore A1 Z==>pl""’pn e implies ei =¢pi""’pﬁ o' for any terminal leftmost deri-
vation py,...,p,. Consequently (GE;G‘) is left-fitting.

Part II: Suppose (GE,G“) is left-fitting. It will be shown that conditions (1} - (3)
hold.
(1) Suppose that there is an Ai’ 1 <1 < n, such that #(92(A1)> > 1. Then there is
A,
avéEH 1(Ul,UZ) for some U15; N, UZS; N-{S} such that #gl(v)) > 1. Thus there
exist vi,vé € gz(v) where vi # vé. Then there are cycle-free leftmost derivations
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d and d, such that v "=>%1 ¢, v 5% ¢, v} = 2(d]) and v} = 2(dj). Since

v €5 (6,) there is a Teftmost derivation d such that

Aty At e oand ay Bed v Bl el (6 8") Teft-fitting implies

ei =4y 591 o' and e =4 v =9 o', Consequently v' = z(di) and v' = z(dé)

hold. By assumption we have z(d&) # z(dé), a contradiction.
(2) Since GE is reduced there is a cycle-free leftmost derivation d such that
A '8 el (6_,8) Teft-fitting inplies ef ="
Since #gg(Al)) = 1 according to condition (1), gx(Al) =z(d') = ei holds.
{3) (a) Suppose that there is a v € H such that gx(v) ¢ V.. Then gl(v) = z(di) for
some cycle~free leftmost derivation d1 such that v "=>"1 . Since v € SL(Ge)
there is a leftmost derivation d such that A, fod

d

o'. By definition, e; = z({d").

(Gg,ﬁ*) Teft-fitting implies ei 4’ v o= i o'. By definition

z(di) =v' €V, a contradiction to the assumption z(di) € V..

(3) (b) Suppose that there is a r ¢ HZ such that gz(r) ¢ V;. Let r be in HZ(UI’UZ)’
Choose A and some v € HA(UI,UZ). By (3)(a) 9£(v) € V.. Then there is a
nonnegative integer n such that gg(v) + ngi(r) ¢ V;. By Theorem 1 there is
a left sentential form y € LA(Ul,UZ) such that w(y) = ¢{v) + ny(r). By Lemma
2{2) it follows that gl(y) gz(v) + ngg(r) and gg(y) ¢ Vi
Since y € SL(GE)’ gn(y) ¢ V, can be Ted to a contradiction in an analogous
way as in (3){a).

(3) (c) Let veHand pe P€ be a production such that v APy,

L]

Consider the case w # ¢.

Since v € SL(GE) and Ge is reduced, there exist a leftmost derivation d1 and a
cycle-free lefimost derivation d2 such that Al 2=>d1 v L.p W 2=--=>dZ e. Since
#(gl(Ai)) =1 for al1 1, 1 < 1 < n, by condition (1), gi(w) = z(dé) holds by Lemma
2(3).

(GE;G') left-fitting implies e; 91y P w =92 ot By definition of z(d;) we
have w' = z{dé) = gg(w). By the same argument as above, there exists a cycle-free

derivation d, such that A "= v =93 ¢ and 2(a}) = g, (v). (6.,F') left-Fitting

1
implies ei =>d1 Vo> é o' and v’ = z(dé) = gQ(v). Consequently gz(v) =P’ gz(w)
holds if w # ¢.

Consider the case w = ¢.

Then there is a leftmost derivation d; such that Ay G BN €. (Ge,ﬁ“) left-

1 [
fitting impiies ei =¢d1 vi =P o, By definition of z(p') and Lemma 2(3) we have
gk(v) =z{p') = v' and thus gz(v) =v' =P ot = 92(6)' This concludes the proof

of Theorem 2. O
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Theorem 3: It is decidable whether a grammar pair (G,G'} is left-fitting or not.

Proof: Given a grammar -pair (G,6'), we transform it to (Gg,G“). Since the conditions
(1) - {3) in Theorem 2 are decidable, we can decide whether (GS,C“) and therefore
(G,G"') is left-fitting or not. o

Obviously the time complexity of the decision algorithm given by Theorem 2 is exponen-
tial in the number of nonterminals of G, because this already holds for #(H) in con-
dition (3).

Concerning grammars interesting for practical applications, GUNTHER (1976) has shown
in his Master's Thesis that their behaviour is much better than exponential. The aim
of this thesis was to realize the declaration of string procedures in higher program-
ming languages by means of left-fitting grammar pairs. The implementation was carried
out in PL/I.

In the next section some properties of left-fitting translations are investigated.

4. Properties of left-fitting translations

Definition 7: For a translation T the domain of T is defined by dom(T) = {x|(x,x')eT
for some x'} and the range of T is defined by ran(T) = {x'[{x,x') € T for some x}.
For a familyJ of translations dom() = {dom(T)|T €T} and ran(d) = {ran(T)|T €7}.
Let LFT denote the family of left-fitting translations and CF dencte the family of
context-free languages. Then by Definition 4 and by Example 2

(TDup ¢ SBT, because ran(T, )} = {xx|x € Lyds Ly € CF, is i.g. not a context-free

Dup
language) we have:

Theorem 4: dom(LFT) = CF, SDT & LFT.
dom({LFT) = CF ensures that parsing algorithms for context-free grammars can be applied.

For the proofs of the following theorems see KRIEGEL (1976).

For a left-fitting translation T the Parikh-mapping of the language dom(T) which is
context-free is a semilinear set. This implies:

Theorem 5: Let T be a left-fitting translation. Then the Parikh-mapping of the langua-
ge ran(T) is a semilinear set.

For a left-fitting translation T an analogon to the pumping lemma holding for the
context-free domain can be given for the range of T essentially using Theorem 1. This
structure property characterizes the range of T more precise than the semilinearity.
For this purpose we need

e ¥ for some alphabet ¥,

Definition 8: For any words x and y = Bgs-eesdy N2 1, a,

1
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1 <1 <n, left shuff(x,y) denote the set of words obtained from x by inserting all
symboTs ass 1 <1 <n, in this order.

Theorem 6: Let T be a left-fitting translation and ran{(T) be an infinite language.
Then there exist constants p and g and a word y' where O < 2{ ¥') < g such that for
any u' € ran(T) where 2{u') > p and any 1 > 1 shuff(u',y']) n ran(T) # ¢ holds.

Corrollary 7: Let L= £* be an infinite context-free language and ¢ ¢ 7. Let f be a
mapping from 5¥ into the set of nonnegative integers such that f(x) = 0 iff x = ¢.
Then
LPot . \\_/i {(xcf(x))mlm > 1} & ran{LFT) holds.
X €

Corroilary 7 can be used for verifying that a given translation is not left-fitting.

Consider the translation T = \_J {(a'c", (a'c')")|m > 1}.
i=1 -

T has a context-free domain and its range ran(T) = \\/’{(aWCT)mfm > 1} has a semiline-
i=1 B
ar character. But T is not a left-fitting translation because choosing L = {a]{i > 13

and f(x) = 2(x) for all xe€{al” Corrollary 7 implies ran(T) = LPot .
WA@Y m > 13 ¢ ran(LFT).

i=1 N o

Realize that for a left-fitting grammar pair the vector gz(Ai) may have negative com-
ponents. This leads to

Definition 9: Let (G,G') be a left-fitting grammar pair and let (GE,E“) be the usual
transformation. For a vector v = (Vl""’vn) define )v]+ = 3 v;- The interca-
i,v, >0
i
Tation number I of (G,G') is defined by I = max {|g,{(A:)}. }.
\ JAMEERE
I<izn

A Teft-fitting translation T has the intercalation number m > 1 if there exists a
left-fitting grammar pair (G,G') with intercalation number m such that TR(G,G‘) =T.

Let Eflm, m > 1, denote the family of left-fitting translations with intercalation
number m' < m, m > 1. For any word x and words Y1s¥psenes¥y let shuffw(x,yl,yz,...yn)
denote the set of words obtained from x by inserting the words Yis¥ga--es¥y in this
order.

Then Theorem 6 can be formulated more precise as follows:

Theorem 8: Let T be a left-fitting translation with intercalation number m > 1 and
let ran(T) be an infinite language. Then there exist constants p and q and words
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Y15¥ps--es¥oys where k < m and o < E(ylyz...ka) < g such that for any u' € ran(T)
where 4(u') > p shuffw(u',yl,yz,...,ka) n A(T) # ¢ holds.

By Theorem 8 it can be shown that the left-fitting translations form a proper hierar-
chy in their intercalation number.

Theorem 9: LFT & LFT ., forallm>1 and V}_ LFT = LFT.
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