
LEFT-FITTING TRANSLATIONS

H.P. Kr iegel , Th. Ottmann

Univers i ty of Karlsruhe, D-7500 Karlsruhe, Western-Germany

One rather natural method for defining translations is by specifying a pair of gram-

mars generating the translation. If for each leftmost derivation d in the input gram-

mar generating an input word x the "corresponding" derivation d' in the output gram-

mar generates an output word x', we call this grammar pair left-fitting. ~is con-

cept is motivated by the usual parsing algorithms yielding leftmost derivations and

by the fact that the left-fitting translations are more powerful than the syntax-di-

rected translations. It is shown that it is decidable whether or not a given pair

of context-free grammars is left-fitting or not essentially using the fact that the

set of left derivation trees of a context-free grammar is semilinear. By means of

certain structure properties of left-fitting translations, it is shown that they

form a proper hierarchy in their so called intercalation number.

1. Int roduct ion

One usual ly defines a language, i .e . a set of words, by speci fy ing a grammar which

generates exact ly the words of the language. In a s imi la r way a pair of grammars can

be used to define a t rans la t i on , i . e . a set of pairs of words. Before g iv ing the

precise d e f i n i t i o n of the t rans la t ion generated by a pair of grammars we reca l l some

notions on context free (c . f .) grammars: A c . f . grammar G = (N,Z,P,S) consists of

two d i s j o i n t f i n i t e sets N and ~ of nonterminals and terminals, respect ive ly , a s ta r t

var iable S E Z, and a f i n i t e set of productions P~ N × (N u Z)*. A production

(A,a) E P is usual ly wr i t ten as A ÷ a . l f p = A + a E P, the appl icat ion of p to a

word 6Ay y ie lds Bay, in symbols 6Ay =>P 6~y. For each sequence d of productions,

d = pl,P2 Pn' n ~ i , wr i te a o =>d an instead of a o =>Pl a I - > p 2 =>. . . :>Pn a n

and ca l l d a der ivat ion in G. The der ivat ion d is cal led terminal i f S =>d x where

x E ~*. As usual L(G) = {x E Z'IS =>d x, fo r some der ivat ion d} denotes the language

generated by G.

For convenience i t is assumed that each production A ÷ ~ contains each var iable at

most once in a and furthermore that grammars are always reduced, that means they

contain no useless symbols. Let G =(N,Z,P,S) and G' = (N ' ,Z ' ,P ' ,S ') be two grammars

with a one-one correspondence of t he i r productions. For each production p in P l e t

p' in P' be the corresponding production.

For each der ivat ion d in G (at most) one corresponding der ivat ion d' in G' can be

associated. Apply the sequence d' of corresponding productions such that the f o l l o -

wing condi t ions, hold: I f S =>dl y - > P ~ =>d2 x and S' =>dl y' =>P 6' =>d2 x' are

310

corresponding der ivat ions with p = A ÷ m, p' = A' ÷ m' then

(i) the leftmost A in y is replaced and

(i i) i f y ' contains a A' generated at the same time as the leftmost A in y, then

that A' is replaced; otherwise the leftmost A' in y ' is replaced. This choice of

posi t ions where to apply the productions of d' rules out cer ta in undesired pairs

of der ivat ions.

De f in i t i on 1: The pair t rans la t ion T(G,G') generated by the grammar pair (G,G') is

defined by

T(G,G') = { (x , x ') I S =>d x, S'=>d' x ' , (d , d ') a corresponding pair of terminal de-

r i va t ions in G and G'}

A major problem with t rans la t ions generated by grammar pairs is the fact that for a

terminal der ivat ion in one grammar the sequence of corresponding productions in the

other grammar is not necessari ly again a terminal der iva t ion .

I f we are interested not only in a t rans la t ion T but also in i t s inverse T -1, i t is

reasonable to claim

Def in i t ion 2: Agrammar pair (G,G') is cal led agreeable i f for each terminal d e r i v a t i -

on d in G the sequence d' is a terminal der ivat ion in G' and vice versa. A t rans la-

t ion is cal led agreeable i f i t is generated by an agreeable grammar pair (G,G').

Using a resu l t from PENTTONEN (1974) i t is shown in KRIEGEL (1976) that the fami ly

of syntax-directed t rans la t ions equals the fami ly of agreeable t rans la t ions .

In many appl icat ions one is only interested in the t rans la t ion T, but not in i t s in -

verse T -1 .

Therefore i t is s u f f i c i e n t to claim that for each inputword we can generate at least

one outputword. This leads to:

De f in i t i on 3: A grammar pair (G,G') is cal led f i t t i n g i f for each terminal der iva-

t ion d in G the sequence d' is a terminal der ivat ion in G'. A t rans la t ion is cal led

f i t t i n g i f i t is generated by a f i t t i n g grammar pai r .

In KRIEGEL and MAURER (1976) i t is shown that the problem whether a given grammar

pair is f i t t i n g or not and the equivalent containment problem for Szi lard languages

"Sz(G)~ Sz(G')" are decidable. The properties of f i t t i n g t rans la t ions are i nves t i -

gated in KRIEGEL (1976).

The d e f i n i t i o n of f i t t i n g is not very r e a l i s t i c . Given a grammar pair (G,G') and an

inputword x E L(G) we parse x y i e ld ing a der ivat ion d such that S =>d x. But the

usual parsing algorithms for an a rb i t ra ry context- f ree grammar G and for a given

x E L(G) do not y ie ld a l l der ivat ions d such that S =>d x, but y i e l d i . g . one special

311

der ivat ion, usually a leftmost der ivat ion d such that S ~=>d x. Applying only termi-

mal leftmost der ivat ions in G the property f i t t i n g is too strong. The adequate de-

f i n i t i o n is

Def in i t ion 4: A grammar pair (G,G ~) is cal led l e f t - f i t t i n g i f for each terminal l e f t -

most der ivat ion d in G the sequence d' is a terminal der ivat ion in G', i . e . S ~=>d x

where xES* implies S' =>d' x' and x ' E Z ' * .

A t rans lat ion T is cal led l e f t - f i t t i n g i f there is a l e f t - f i t t i n g grammar pair (G,G ~)

such that

T = T~(G,G' = { (x , x ') E T(G,G')IS ~=> d x for some d}

By de f in i t i on each f i t t i n g grammar pair is l e f t - f i t t i n g , but there are l e f t - f i t t i n g

grammar pairs which are not f i t t i n g , as the fol lowing example shows. So claiming a

grammar pair to be f i t t i n g is rea l l y too strong.

Example 1: Consider the grammar pair (G,G') where

G = ({S,A,B}, {a ,b} , P,S), G' = ({ S ' , A ' , B ' } , {0 ,1 } ,P ' ,S ')

and P,P' as fol lows:

Pl : S+AB P~ : S' + A '

P2 : A + aA p~ : A' ÷ OA:

P3 : A + a p~ : A' ÷ B '

P4 : B + bB p~ : B' -~ 1B'

P5 : B + b p~ : B' + 1

n m
(G,G') is l e f t - f i t t i n g , because for any terminal leftmost der ivat ion pl,P2,P3,P4,p 5

where n,m > 0 also p~,p~n,p~,p~m,p 5 is a terminal derivat ion in G'. But for the te r -

minal der ivat ion (not lef tmost !) pl ,ps,p3 the sequence of corresponding productions

p~,p~,p~ is not a terminal der ivat ion in G'. Therefore (G,G') is l e f t - f i t t i n g but not

f i t t i n g .

Many translat ions of pract ical in terest can be generated by l e f t - f i t t i n g grammar

pairs such as the t ranslat ion Tdu p which duplicates each word x in an arb i t ra ry con-

tex t - f ree language to xx. This t ranslat ion is bu i l t in in many t ranslat ions describing

certain inversions of data f i l e s (e.g. dupl icat ing names).

Example 2: Consider the t ranslat ion

TDu p = { (x , xx) I x ~ L1}, L 1E CF, where CFdenotes the family of c . f . languages.

Let G 1 = (NI,Z1,PI,SI) be a context- f ree grammar such that L(GI) = L 1 and le t (G,G')

be the grammar pair where G = (N 1 u { S } u { Q ! p = A + ~EP1 } , Sl,P,S)

G' =({~IA ~ N I } u {AI A E N I } u {S ' } ,S l ,P ' ,S ')

312

and P,P' as fol lows:

S ÷ S 1 S' ÷ SISI

AZ ÷ (~ ~I ÷ ~1

Q ÷ ~1 A1 ÷ ~1

vP : A I ÷ ~1 c PI

Here ~ is obtained from ~ by replacing each variable A in ~ by A, ~ is obtained in

the analogous way.

Obviously (G,G') is f i t t i n g and therefore l e f t - f i t t i n g and Tg(G,G') = TDu p, but

T(G,G') ~ TDu p. Realize that the res t r i c t i on to leftmost derivations in the input

grammar G is necessary for th is example.

2. Left sentential forms

We w i l l show in 3. that for a grammar pair (G,G') i t is decidable whether (G,G')

is l e f t - f i t t i n g or not. Moreover we w i l l derive some structure properties of l e f t -

f i t t i n g t ranslat ions. For th is purpose we use a theorem on (derivat ion trees of)

l e f t sentential forms which can be considered as a kind of Parikh's theorem for l e f t

sentential forms.

Let G = (N,g,P,S) be a context-free grammar.

Let TL(G) denote the set of a l l trees associated with leftmost derivat ions in G

which are not terminal der ivat ions. For short the trees in TL(G) are called l e f t

der ivat ion trees.

The set of l e f t sentential forms of G can be defined by

SL(G) = { f r o n t i e r (t) I t E TL(G)} where f r o n t i e r (t) denotes the str ing obtained by

concatenating the leaves of t from l e f t to r igh t .

For each two subsets UI~-- N and U2C-- N-{S} and for each A ~ N we define a set of

trees

TA(u1,u2) = { t E TL(G)It has the root S, f r o n t i e r (t) = xA~ for some xcZ* ,

c (N u ~)*, and conditions (l a) , (Ib) hold}

(la) On the l e f t of the path connecting the root with the leftmost leaf label led A

there occur exactly the variables in the set U I

(ib) On the path connecting the root with the leftmost leaf label led A there occur

exactly the variables in ~2 = U2 U {S}.

The label of the root but not the label of the leaf is counted to the set of variab-

les occurring on a path from the root to a leaf . Define

LA(uI,U2) = { f r o n t i e r (t) I t ~ TA(uI,U2)}.

For the fol lowing def in i t ions le t us consider an a rb i t ra ry but f ixed TA(uI,U2). De-

f ine u I = ~(U1) and u 2 = ~(U2) where ~(M) denotes the number of elements of the set M.

313

For each Y e U I and z E U 2 we define sets T~(UI) and T~(UI,U2) of derivation trees

and le f t derivation trees, respectively, as follows:

T~(UI) = { t l t is a tree with root Y and frontier wYz (for some w,z E Z*) associa-

ted with a derivation d in G where Y =>d wYz, such that conditions

(2a) and (2b) hold}.

(2a) Each variable occurring in t is in U 1

(2b) t contains no path on which a variable x e U I occurs more than ui+I times.

T~(U1,U2) = { t l t is a tree with root Z and frontier yZB (for some y ~*, E

B e (N u ~)*) associated with a leftmost derivation d in G where

Z L >d yZB, such that conditions (l a ') , (Ib ') , (3a) and (3b)

hold.

Conditions (la ') abd (ib ') result from (la) and (Ib) by replacing "A" by "Z" and

"exactly" by "no other variables than".

(3a) No subtree of t with the root on the l e f t of the path connecting the root of t

with the leftmost leaf labelled Z contains a path with more than u1+I occurrences

of the same variable X E U I .

(3b) On the path connecting the root with the leftmost leaf labelled Z no variable

X E U 2 occurs more than u1+u2+2 times.

The structure of trees defined so far is shown in Fig. I :

S Y Z

x A x Y z y Z

TA(uI ,U 2) T~(U I) T~(U l,u 2)

Fig. 1

Obviously T~(UI) and T~(UI,U2) are f i n i t e sets of trees. For each l e f t der ivat ion

tree t with f r on t i e r xA~ l e t f ron t ie rN(t) denote the sequence of variables obtained

from ~ by el iminat ing a l l terminals in ~.

Define H2(HI,U2) = { f r o n t i e r N (t) I t E T~(U1,U2) for some Z EU2 }. Obviously H2(UI,U2)

is f i n i t e .
For each tree t E TA(u1,u2), for each (occurrence of) Y on the l e f t of the path

connecting the root of t with the leftmost leaf label led A and for each t ' E T~(UI) a

tree ~ l (t , t ') cal led 1-subst i tut ion of t ' in t is defined as fol lows:

o l (t , t ') is obtained from t by replacing (the occurrence of) Y by the tre@ t ' . 0b-

314

serve that q l (t , t ') E TA(uI~U2). In a similar way for each tree t E TA(u1,u2), for

each (occurrence of) Z E U 2 on the path connecting the root of t with the leftmost

leaf labelled A, and for each t ' c T~(U1,U2) a tree c 2 (t , t ') called the 2-substi tu-

t ion of t ' in t is defined as follows: ~ 2 (t , t ') is obtained from t by replacing

(the occurrence of) Z by the tree t ' . Observe that ~ 2 (t , t ') E TA(uI,U2).

Trees obtained by 1-substi tut ion and 2-substi tut ion are shown in Fig. 2

: > ~ = >

A A

1-substi tut ion 2-substi tu t i on A

Fig. 2

We call a set T~ TA(u1,U2) l inear i f there is a tree t E TA(u1,u2) such that T is

the smallest set of trees which contains t and is closed under 1-substi tut ion and

2-subst i tut ion. A f i n i t e union of l inear sets of trees is called semilinear.

l~e can prove in a tedious but straightforward way using arguments similar to those

used in the proof of PARIKH's theorem (1966):

Theorem 1: For each context-free grammar G the set TL(G) of l e f t derivation trees is

semilinear.

As far as i t is necessary for understanding Theorem 2 (the decidabi l i ty of the pro-

perty l e f t - f i t t i n g) a rough sketch of the proof of Theorem i is given.

Obviously TL(G) = ~ TA(uI,U2) holds.
A E N
UI~ N
U2~ N-{S}

Since the number of the sets U1,U 2 and of the variables is f i n i t e , i t suffices to
show that each of the sets TA(uI,U2) is semilinear.

For each two subsets UI~ N and U2~ N-{S} and for A E N the set T~(UI,U2)~TA(uI,U2)

is defined as follows:

T~(UI,U2) : { t E TA(u1,u2)It f u l f i l l s the conditions (3a') and (3b')}

Conditions (3a') and (3b') are obtained from (3a) and (3b) by replacing Z by A.

315

Define HA(u1,u2) : { f ron t ie r (t) I t ~ T~(UI,U2)}. Clearly T~(UI,U2) and HA(u1,u2) are

f in i te .

I t can be shown that TA(u1,u2) equals the f in i te union of sets of trees each of which

is the smallest set of trees which contains a tree t E T~(U1,U2) and is closed under

1-substitution and 2-substitution. By Definition each TA(uI,U2) is semilinear and

therefore TL(G) is semilinear.

2. The Decidability of the l e f t - f i t t i ng Problem

Let (G,G') where G = (N,Z,P,S), N = {A 1 An}, S = A I and G' = (N ' , S ' , P ' , S ') ,

N' ' . A ' S ' = { A t , . . , n , } , = A~ be a pa i r o f c . f . grammars and l e t the 1-1 correspondence

of product ions be given by a mapping f from P onto P' .

Since terminals have no in f luence on le f tmost de r i va t i ons (i n G) and ne i the r termina ls

nor the pos i t i on of var iab les have any in f luence on a r b i t r a r y de r i va t ions (in G ') , we

def ine a c . f . grammar G and the vector form ~' of G' as fo l l ows :
c

= N,% ,P ,S = {p~ = A ÷ N(~)Ip = A + ~ E P} and Convention: G () where ~ = @ and P

N(~) is obtained from ~E (N u ~)* by erasing all occurrences of terminals in ~.

- - e' ' denotes the vector of ~' = (R ' , s " ,P ' ,~ ') where ~' = @ R' = {e~ n,}, (where e i

n' nonnegative integers which has the integer I at position i , the integer 0 at all

other positions) 5' = e~ and P' consists exactly of all vector forms of productions

of P': I f p' = AL ÷ ~' is a production of P' then
3

P' ' ÷ 4 ' = e~ (e') = (~A~(~') ~A~,(~')) is i ts vector form, where ~A~(~') denotes

the number of occurrences of the variable A~ in the word 6'. i

Let V~ denote the set of all ordered n'-tupels of nonnegative integers. The concept

of "derivation" can be transferred in a natural way to the vector form of a c.f .

grammar:

For a production p' = ej' ÷ u' E~ ' , u' E V+' and vectors v',w' E V~,v' =>P' w' holds,

i f there exist words B',y' E (N' u Z')* and a production p' = At + ~' E P' such
J

that B' =>p' Y ' ,~ ' (~ ') = u ' ,~ ' (B ') = v' and ~ ' (y ') = w'.

I f p = A ÷ ~ and p' = A' ÷ ~' are corresponding productions in (G,G'), then

p~ = A ÷ N(~) and p' = ~'(A') ÷ ~'(~ ') are corresponding productions in (G ,~'). Thus

we have transferred the correspondence between sequences of productions of G andG'

to a correspondence between sequences of productions of G and ~' .

The questions whether (G,G') is a l e f t - f i t t i ng grammar pair can now be reduced to

the question whether for any terminal leftmost derivation d in G the corresponding

sequence d' of productions of ~' yields the vector o' (the n'-tupel of o's). We call

(G~,G'), l e f t - f i t t i n g i f for any terminal leftmost derivation d, A I ~=>d ~ implies

e~ =>d o . Then i t follows immediately:

316

Lemma 1: (Gc,G') is l e f t - f i t t i n g i f f (G,G') is l e f t - f i t t i n g .

D e f i n i t i o n 5: Let y c N ~ and d be a l e f tmos t d e r i v a t i o n in G such t h a t y £ >d ~.

Then d is ca l led cyc le - f ree i f in the fo res t of l e f t der iva t ion trees associated to

d (with the v a r i a b l e s of y as roo t s) t he re is no path on which the same v a r i a b l e

occurs more than once.

Hence for any l e f t sentent ia l form of G there ex is ts only a f i n i t e number of cyc le-

f ree t e rmina l l e f t m o s t d e r i v a t i o n s in G .

Def in i t i on 6: Let d' = Pl' Pk' be any sequence of productions in P' such that

' = e t + u~ I < i < k .
Pi J i l '

The value of d ' , in symbols z (d ') , is defined by

k

z (d ') : i : l ~ (e i i - u~)

i Clearw, i f d' is a der iva t ion in ~' such that v' =,>d' o ' , then z (d ') = v' E V+.

I n t u i t i v e l y , fo r any terminal le f tmost der iva t ion d in G z (d ') ind icates the number

of occurrences of var iab les of N' which must be ava i lab le to ensure that d' is a

terminal der iva t ion in G'.

For any A i , i ~ i < n, we def ine the set g~(Ai) as fo l lows:

g~(Ai) = { z (d ,) i A i ~__>d ~, d cyc le - f ree}

g~ is extended to N* by def in ing g~(e) = {o ' } and fo r any y E N +

gg(y) = {v ' I~w ~ E g ~ (a l) , . . . , 3w n' E g (An) where

n

v' = i = l ~ #AI(Y)" w~}

Instead of gL(y) = {w' } we wr i te gL(y) = w'.

g~ has the fo l lowing proper t ies:

Lemma 2: Let G E = ({A 1 An},~,P ,A1) and #(g~(Ai)) = 1 for a l l i , 1 < i < n.

Then (i) - (4) hold:

n

(I) ~(g~(y)) = 1 and g~(y) = iZ 1= ~Ai(Y) g~(Ai) fo r a l l y E N ~.

(2) g~(y) = g~(v) + g~(w) fo r a l l y ,v ,w E N + such that ~(y) = ~(v) + ~(w).

Here ~ denotes the Parikh-mapping which maps a word x E N* onto the vector

317

(~Al(X) ~An(X)).

(3) For any cycle- f ree leftmost derivat ion d and any y E N + such that y L=>d

z(d ') = gL(y) holds.

(4) ~(w) = @(w') implies gL(w) = gB(w') for any w, w' E N +.

Proof: Obvious

We can now give necessary and su f f i c i en t conditions for (G ,~ ') and therefore for

(G,G') to be l e f t - f i t t i n g . These conditions are decidable.

Theorem 2: (G ,G') is l e f t - f i t t i n g i f f the condit ions (1) - (3) hold:

(1) ~(gL(Ai)) = I for a l l i , 1 < i < n.

(2) g~(A1) = e~

(3) Let H = ~ HA(u1,u2)
A e N
U 1~ N, U 2 ~ N-{A I}

and H 2 = k . . } H2(UI,U 2)
UI~ N

U2~ N-{A 1}

Then for any l e f t sentential form v E H and any production p c P (le f t -)app l i cab le

to v, v ~-->P w implies gL(v) =>P' gL(w).

Furthermore for any v E H and any r E H 2, g~(v) E V+ and gL(r) E V+ hold.

Remarks: Observe that Lemma 2 and condit ion (1) imply that ~(gL(v)) = ~(g~(w)) = I

and g~(w) E V+ hold. Therefore g~(v) => gL(w) is wel l -def ined.

Proof: Part I: Suppose the conditions (1) - (3) hold. Lemma 2 and condit ion (1) imply

~(g~(y)) = 1 for any y c N*.

I t w i l l be shown that for any l e f t sentential form y ~ SL(G) and any p E P such
! that y L=>p u, g~(y) =>P' g~(u) holds where g~(y), g~(u) c V+.

Let y ~ SL(GE) be a l e f t sentent ial form, p E P be a production such that y ~>P u and

le t A be the leftmost nonterminal in y. Then there is a l e f t der ivat ion tree ty with

root S whose f ron t i e r is y. Let U I be the set of variables occuring in the subtrees

on the l e f t of the path S-A and le t U 2 U {S} be the set of variables occuring on the

path S-A. Then the considered l e f t der ivat ion tree ty is in TA(uI,U2) and y is in

LA(u1,u2).

By Theorem I there is a l e f t der ivat ion tree t o in T~(UI,U2) with f ron t i e r
v E HA(uI,U2) such that v ~>P w (because A is again the leftmost nonterminal).

318

ty is obtained from t o by iterated 1- and 2-subst i tut ion of trees from T~(UI) for

any Y E U 1 and from T~(U1,U2) for any Z E U2' respectively. Since 1-substi tut ion does

not influence the f ront ier of t o there are posit ive integers k, n I n k and trees

t I , t k E ~ T~(U1,U2), such that the f ront ier y of ty is obtained from the
z ~ 2

f ront ier v of t o by insert ing r i = f ron t ie rN(t i) E H2(U1,U2) exactly n i times,
k

1 < i < k. Thus we have ~(y) = ~(v) + ~ n i~ (r i) .
= = i=1

k
Choose r E N* such that ~(r) = ~ n i~ (r i) .

i=i

k
By Lemma 2(2) i t follows that g~(r) = Z n ig~(r i) .g~(r i) E V+ by condition (3) and

i=1
I n i > 0 for al l i , I < i < k, imply g~(r) E V+.

Let us summarize that y ~-->P u, v ~'-->P w and ~(y) = @(v) + ~(r) hold. This implies

~(u) = ~(w) + ~ (r) .

v E HA(u1,u2) by condition (3) implies g~(v) =>P' g~(w). Since g~(v), g~(w) ~ V+ by

condition (3) and g~(r) E V+ as wel l , g~(v) + g~(r) E V+ and g~(w) + gc(r) E V+.

p l
Thus gL(v) + gL(r) => gL(w) + gL(r) is well-defined, i . e . , 2-subst i tut ion of the

trees t i , 1 ~ i ~ k, in the tree t o does not decrease any components of the g~-vec-

tors of the f ront iers of the trees.

By ~(y) = ~(v) + @(r) and @(u) = ~(w) + ~(r) and Lemma 2(2) i t follows that

g~(y) = g~(v) + g~(r) and g~(u) = g~(w) + g~(r).

Therefore g~(y) =>P' g~(u) holds.

Thus A I ~=>PI x I ~-->P2 x 2 ~=>P3 . . . ~:>Pn ~ implies
I

g~(Al) =>Pl g~(xl) =>P½ g~(x2) =>P3 . . . ->Pn g~(~) for any terminal leftmost

derivation Pl Pn" Observe that g~(A1) = e~ by condition (2) and g~(E) = o' by def i -

n i t ion.
Therefore A 1 ~-->Pl Pn ~ implies e~ =>PI' Pn o' for any terminal leftmost der i -

vation PI' Pn" Consequently (G ,~') is l e f t - f i t t i n g .

Part I I : Suppose (G ,~') is l e f t - f i t t i n g . I t w i l l be shown that conditions (1) - (3)

hold.
(1) Suppose that there is an A i , I ~ i ~ n, such that ~(g~(Ai)) > 1. Then there is

a v E H Ai (UI,U2) for some UI~__ N, U2~N-{S} such that ~g~(v)) > I . Thus there
exist v~,v~ E g~(v) where v~ # v~. Then there are cycle-free leftmost derivations

319

d I and d 2 such that v A >dl ~ v ~-->d2 = , = z(d) a n d = S i n c e

v E SL(G~) there is a leftmost derivation d such that

A1 ~=>d v ~=>dl ~ and A 1 9~ >d v ~=>dl ~. (GE,~') l e f t - f i t t i n g implies

' d ' ' d ' e~ =>d v' => 1 o' and e~ :>d v' => 2 o ~. Consequently v' = z(d~) and v' = z(d~)

hold. By assumption we have z(d~) # z(d~), a contradiction.

(2) Since G is reduced there is a cycle-free leftmost derivation d such that

A1 ~>d ~. (G ,~') l e f t - f i t t i n g implies e~ =>d' o ' . By def in i t ion, e~ = z (d ') .

Since ~g~(A1)) = 1 according to condition (i) , g~(A1) = z(d') = e~ holds.
(3) (a) Suppose that there is a v E H such that g~(v) (~ V+. Then g~(v) = z(d~) for

. ~ >d some cycle-free leftmost derivatlon d I such that v = i ~. Since v E SL(G)

there is a leftmost derivation d such that A I ~__>d v.

(G ,G') l e f t - f i t t i n g implies e~ =>d' v' :>d~ o' . By def in i t ion
i , i z(d~) = v' E V+, a contradiction to the assumption z(d~) ~ V+.

(3) (b) Suppose that there is a r E H 2 such that g~(r) ~ V+. Let r be in H2(UI,U2).

HA(u1 ,U 2) Choose A and some v E . By (3)(a) g~(v) E V+. Then there is a

nonnegative integer n such that g~(v) + ng~(r) ~ V+. By Theorem 1 there is

a l e f t sentential form y E LA(u1,u2) such that ~(y) = ~(v) + n~b(r). By Lemma

2(2) i t follows that g~(y) = g~(v) + ng~(r) and g~(y) ~ V+.
i Since y E SL(G), g~(y) ~E V+ can be led to a contradiction in an analogous

way as in (3)(a).

(3) (c) Let v E H and p E P be a production such that v ~-->P w.

Consider the case w # ~.

Since v E SL(G) and G is reduced, there exist a leftmost derivation d I and a

cycle-free leftmost derivation d 2 such tha t A 1 ~=>dl v ~=>P w ~=>d2 e. Since

~(g~(Ai)) = 1 for al l i , 1 ~ i ~ n, by condition (I) , g~(w) = z(d½) holds by Lemma

2(3).
' ' d ' (GE,G') l e f t - f i t t i n g implies e~_ =>dl v' =>P w' => 2 o ' . By def in i t ion of z(d~)_ w e

have w' = z(d~) = g~(w). By the same argument as above, there exists a cycle-free

derivation d 3 such that A 1 ~=>dl v ~-->d3 ~ and z(d~) = g~(v). (GE,g') l e f t - f i t t i n g

d ~ implies e~ :> 1 v' =>d3 o' and v' = z(d½) = g~(v). Consequently g£(v) =>P' g~(w)

holds i f w # ~.

Consider the case w = ~.

Then there is a leftmost derivation d I such that A I C:>dl v C=>P ~. (G ,~') l e f t -

f i t t i ng implies e~ =>d~ v' =>P' o'. By definit ion of z(p') and Lemma 2(3) we have

g~(v) = zip') = v' and thus g~(v) = v' =>P' o' = g~(~). This concludes the proof

of Theorem 2.

320

Theorem 3: I t is decidable whether a grammar pair (G,G') is l e f t - f i t t i n g or not.

Proof: Given a grammar.pair (G,G'), we transform i t to (G ,G'). Since the conditions

(1) - (3) in Theorem 2 are decidable, we can decide whether (Gc,~') and therefore

(G,G') is l e f t - f i t t i n g or not. []

Obviously the time complexity of the decision algorithm given by Theorem 2 is exponen-

t i a l in the number of nonterminals of G, because th is already holds for ~(H) in con-

d i t ion (3).

Concerning grammars interest ing for pract ical appl icat ions, GONTHER (1976) has shown

in his Master's Thesis that the i r behaviour is much better than exponential. The aim

of th is thesis was to rea l ize the declaration of str ing procedures in higher program-

ming languages by means of l e f t - f i t t i n g grammar pairs. The implementation was carried

out in PL/I.

In the next section some properties of l e f t - f i t t i n g t ranslat ions are invest igated.

4. Properties of l e f t - f i t t i n g t ranslat ions

Def in i t ion 7: For a t ranslat ion T the domain of T is defined by dom(T) = { x I (x , x ')eT

for some x ' } and the range of T is defined by ran(T) = { x ' I (x , x ') E T for some x}.

For a f a m i l y ~ o f t ranslat ions dom(~') = {dom(T)ITEJ ~} and ran(~) = {ran(T)IT E~} .

Let LFT denote the fami ly of l e f t - f i t t i n g t ranslat ions and CF denote the fami ly of

context-free languages. Then by Def in i t ion 4 and by Example 2

(TDu p ~ SD T, because ran(TDup) = {xx!x c L1}, L 1 c C_F_F, is i .g . not a context-free

language) we have:

Theorem 4: dom(LFT) = CF, SDT~LF ~.
dom(LF___~T) = C_F_Fensures that parsing algorithms for context-free grammars can be applied.

For the proofs of the fol lowing theorems see KRIEGEL (1976).

For a l e f t - f i t t i n g t ranslat ion T the Parikh-mapping of the language dom(T) which is

context-free is a semilinear set. This implies:

Theorem 5: Let T be a l e f t - f i t t i n g t ranslat ion. Then the Parikh-mapping of the langua-

ge ran(T) is a semilinear set.

For a l e f t - f i t t i n g t ranslat ion T an analogon to the pumping lemma holding for the

context-free domain can be g~ven for the range of T essent ia l ly using Theorem 1. This

structure property characterizes the range of T more precise than the semi l inear i ty .

For th is purpose we need

Def in i t ion 8: For any words x and y = a I a n n ~ 1, a i E Z for some alphabet Z,

321

1 ~ i ~ n, l e f t shu f f (x ,y) denote the set of words obtained from x by inser t ing a l l

symbols a i , i ~ i ~ n, in th i s order.

Theorem 6: Let T be a l e f t - f i t t i n g t rans la t ion and ran(T) be an i n f i n i t e language.

Then there ex is t constants p and q and a word y' where 0 < £ (y ') < q such that for

any u' e ran(T) where £(u ') > p and any i ~ I shu f f (u ' , y ' l) ~ ran(T) # ~ holds.

Corro l la ry 7: Let L ~ Z* be an i n f i n i t e context- f ree language and c ~ S. Let f be a

mapping from Z* into the set of nonnegative integers such that f (x) = 0 i f f x = s.

Then
L pOt = k ~ {(xcf(X))mlm _>_ 1} ¢ ran(LF__T_T) holds.

x c L

Corro l la ry 7 can be used for ve r i f y ing that a given t rans la t ion is not l e f t - f i t t i n g .

co

Consider the t rans la t ion T = ~ { (a ic m, (aici)m)Im ~ i } .
i = l

co

T has a context - f ree domain and i t s range ran(T) = k ._ j { (a ic i)mlm >__ 1} has a semil ine-
i = l

ar character. But T is not a l e f t - f i t t i n g t rans la t ion because choosing L = { a i l i ~ 1}

and f (x) = £(x) fo r a l l x E { a } * Corro l lary 7 implies ran(T) = L p°t =
co

{(aic i)mlm > I } ¢ ran(LFT).
i= I

Realize that for a l e f t - f i t t i n g grammar pair the vector g£(Ai) may have negative com-

ponents. This leads to

De f in i t i on 9: Let (G,G') be a l e f t - f i t t i n g grammar pair and l e t (GE,~') be the usual

transformation. For a vector v = (v I Vn) define !vl+ = ~ v i . The in terca-
i , v i > 0

la t ion number I of (G,G') is defined by I = max { I g£ (A i) l + } .
l<i<n

A l e f t - f i t t i n g t rans la t ion T has the in te rca la t ion number m > I i f there ex is ts a

l e f t - f i t t i n g grammar pair (G,G') with in te rca la t ion number m such that T£(G,G') = T.

Let LFT m, m ~ 1, denote the fami ly of l e f t - f i t t i n g t rans la t ions with in te rca la t ion

number m' ~ m, m ~ I . For any word x and words y l ,Y2 Yn l e t shuf fw(X,Yl ,y 2 yn)

denote the set of words obtained from x by inser t ing the words y l , y 2 Yn in th is

order.

Then Theorem 6 can be formulated more precise as fo l lows:

Theorem 8: Let T be a l e f t - f i t t i n g t rans la t ion with in te rca la t ion number m > 1 and

l e t ran(T) be an i n f i n i t e language. Then there ex is t constants p and q and words

322

Yl'Y2 'Y2k' where k ~m. and o < L(ylY2...Y2k) < q such that for any u' c ran(T)
where ~(u') > p shuffw(U',yl,y 2 Y2k) N A(T) # ~ holds.

By Theorem 8 i t can be shown that the l e f t - f i t t i ng translations form a proper hierar-
chy in their intercalation number.

Theorem 9: LFTm~ L~m+l for al l m~ 1 a n d S . L FT m = LFT.,
m > l

References

GONTHER,C. (1976), Zeichenkettenmanipulation mit Formalen Dbersetzungen, (String

manipulation by formal translations), Master's Thesis at the Inst i tu t

fur Angewandte Informatik und Formale Beschreibungsverfahren, Univer-
s i ty of Karlsruhe.

KRIEGEL,H.P. (1976), Erzeugung von Dbersetzungen durch Grammatikpaare (Generation of

translations by grammar pairs), Ph.D. Thesis at the Inst i tu t fur An-

gewandte Informatik und Formale Beschreibungsverfahren, University

of Karlsruhe.

KRIEGEL,H.P. and MAURER,H.A. (1976), Formal Translations and Szilard Languages, In-

formation and Control 30(1976), 187-198.

PARIKH,R.J. (1966), On context-free languages, Journal of the ACM 13(1966), 570-581.

PENTTONEN,M. (1974), On Derivation Languages Corresponding to context-free Grammars,

Acta Informatica 3(1974), 285-291.

