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One rather natural method for defining translations is by specifying a pair of gram- 

mars generating the translation. If for each leftmost derivation d in the input gram- 

mar generating an input word x the "corresponding" derivation d' in the output gram- 

mar generates an output word x', we call this grammar pair left-fitting. ~is con- 

cept is motivated by the usual parsing algorithms yielding leftmost derivations and 

by the fact that the left-fitting translations are more powerful than the syntax-di- 

rected translations. It is shown that it is decidable whether or not a given pair 

of context-free grammars is left-fitting or not essentially using the fact that the 

set of left derivation trees of a context-free grammar is semilinear. By means of 

certain structure properties of left-fitting translations, it is shown that they 

form a proper hierarchy in their so called intercalation number. 

1. Int roduct ion 

One usual ly  defines a language, i .e .  a set of words, by speci fy ing a grammar which 

generates exact ly  the words of the language. In a s imi la r  way a pair  of grammars can 

be used to define a t rans la t i on ,  i . e .  a set of pairs of words. Before g iv ing the 

precise d e f i n i t i o n  of the t rans la t ion  generated by a pair  of grammars we reca l l  some 

notions on context free ( c . f . )  grammars: A c . f .  grammar G = (N,Z,P,S) consists of 

two d i s j o i n t  f i n i t e  sets N and ~ of nonterminals and terminals,  respect ive ly ,  a s ta r t  

var iable S E Z, and a f i n i t e  set of productions P~ N × (N u Z)*. A production 

(A,a) E P is usual ly  wr i t ten  as A ÷ a . l f  p = A + a E P, the appl icat ion of p to a 

word 6Ay y ie lds  Bay, in symbols 6Ay =>P 6~y. For each sequence d of productions, 

d = pl,P2 . . . . .  Pn' n ~ i ,  wr i te  a o =>d an instead of a o =>Pl a I - > p 2  =>. . .  :>Pn a n 

and ca l l  d a der ivat ion in G. The der ivat ion d is cal led terminal i f  S =>d x where 

x E ~*. As usual L(G) = {x E Z'IS =>d x,  fo r  some der ivat ion d} denotes the language 

generated by G. 

For convenience i t  is assumed that each production A ÷  ~ contains each var iable at 

most once in a and furthermore that grammars are always reduced, that means they 

contain no useless symbols. Let G =(N,Z,P,S) and G' = (N ' ,Z ' ,P ' ,S ' )  be two grammars 

with a one-one correspondence of t he i r  productions. For each production p in P l e t  

p' in P' be the corresponding production. 

For each der ivat ion d in G (at most) one corresponding der ivat ion d' in G' can be 

associated. Apply the sequence d' of corresponding productions such that  the f o l l o -  

wing condi t ions,  hold: I f  S =>dl y - > P  ~ =>d2 x and S' =>dl y' =>P 6' =>d2 x' are 
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corresponding der ivat ions with p = A ÷ m, p' = A' ÷ m' then 

( i )  the leftmost A in y is replaced and 

( i i )  i f  y '  contains a A' generated at the same time as the leftmost A in y,  then 

that  A' is replaced; otherwise the leftmost A' in y '  is  replaced. This choice of 

posi t ions where to apply the productions of d' rules out cer ta in undesired pairs 

of der ivat ions.  

De f in i t i on  1: The pair  t rans la t ion  T(G,G') generated by the grammar pair  (G,G') is 

defined by 

T(G,G') = { ( x , x ' ) I S  =>d x, S'=>d' x ' , ( d , d ' )  a corresponding pair  of terminal de- 

r i va t ions  in G and G'} 

A major problem with t rans la t ions generated by grammar pairs is the fact  that  for  a 

terminal der ivat ion in one grammar the sequence of corresponding productions in the 

other grammar is not necessari ly again a terminal der iva t ion .  

I f  we are interested not only in a t rans la t ion  T but also in i t s  inverse T -1, i t  is 

reasonable to claim 

Def in i t ion  2: Agrammar pair  (G,G') is cal led agreeable i f  for  each terminal d e r i v a t i -  

on d in G the sequence d' is a terminal der ivat ion in G' and vice versa. A t rans la-  

t ion  is  cal led agreeable i f  i t  is generated by an agreeable grammar pair  (G,G'). 

Using a resu l t  from PENTTONEN (1974) i t  is shown in KRIEGEL (1976) that the fami ly 

of syntax-directed t rans la t ions equals the fami ly of agreeable t rans la t ions .  

In many appl icat ions one is only interested in the t rans la t ion  T, but not in i t s  in -  

verse T -1 . 

Therefore i t  is  s u f f i c i e n t  to claim that  for  each inputword we can generate at least  

one outputword. This leads to: 

De f in i t i on  3: A grammar pair  (G,G') is cal led f i t t i n g  i f  for  each terminal der iva- 

t ion d in G the sequence d' is a terminal der ivat ion in G'. A t rans la t ion  is cal led 

f i t t i n g  i f  i t  is generated by a f i t t i n g  grammar pai r .  

In KRIEGEL and MAURER (1976) i t  is shown that the problem whether a given grammar 

pair  is f i t t i n g  or not and the equivalent containment problem for  Szi lard languages 

"Sz(G)~ Sz(G')" are decidable. The properties of f i t t i n g  t rans la t ions are i nves t i -  

gated in KRIEGEL (1976). 

The d e f i n i t i o n  of f i t t i n g  is not very r e a l i s t i c .  Given a grammar pair  (G,G') and an 

inputword x E L(G) we parse x y i e ld ing  a der ivat ion d such that  S =>d x. But the 

usual parsing algorithms for  an a rb i t ra ry  context- f ree grammar G and for  a given 

x E L(G) do not y ie ld  a l l  der ivat ions d such that S =>d x, but y i e l d  i . g .  one special 
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der ivat ion,  usually a leftmost der ivat ion d such that S ~=>d x. Applying only termi- 

mal leftmost der ivat ions in G the property f i t t i n g  is too strong. The adequate de- 

f i n i t i o n  is 

Def in i t ion 4: A grammar pair  (G,G ~) is cal led l e f t - f i t t i n g  i f  for  each terminal l e f t -  

most der ivat ion d in G the sequence d' is a terminal der ivat ion in G', i . e .  S ~=>d x 

where xES* implies S' =>d' x' and x ' E  Z ' * .  

A t rans lat ion T is cal led l e f t - f i t t i n g  i f  there is a l e f t - f i t t i n g  grammar pair  (G,G ~) 

such that 

T = T~(G,G' = { ( x , x ' )  E T(G,G')IS ~=> d x for  some d} 

By de f in i t i on  each f i t t i n g  grammar pair  is l e f t - f i t t i n g ,  but there are l e f t - f i t t i n g  

grammar pairs which are not f i t t i n g ,  as the fol lowing example shows. So claiming a 

grammar pair to be f i t t i n g  is rea l l y  too strong. 

Example 1: Consider the grammar pair (G,G') where 

G = ({S,A,B}, {a ,b} ,  P,S), G' = ( { S ' , A ' , B ' } ,  {0 ,1 } ,P ' ,S ' )  

and P,P' as fol lows: 

Pl : S+AB  P~ : S' + A '  

P2 : A + aA p~ : A' ÷ OA: 

P3 : A + a  p~ : A' ÷ B '  

P4 : B + bB p~ : B' -~ 1B' 

P5 : B + b  p~ : B' + 1  

n m 
(G,G') is l e f t - f i t t i n g ,  because for  any terminal leftmost der ivat ion pl,P2,P3,P4,p 5 

where n,m > 0  also p~,p~n,p~,p~m,p 5 is a terminal derivat ion in G'. But for  the te r -  

minal der ivat ion (not lef tmost ! )  pl ,ps,p3 the sequence of corresponding productions 

p~,p~,p~ is not a terminal der ivat ion in G'. Therefore (G,G') is l e f t - f i t t i n g  but not 

f i t t i n g .  

Many translat ions of pract ical  in terest  can be generated by l e f t - f i t t i n g  grammar 

pairs such as the t ranslat ion Tdu p which duplicates each word x in an arb i t ra ry  con- 

tex t - f ree  language to xx. This t ranslat ion is bu i l t  in in many t ranslat ions describing 

certain inversions of data f i l e s  (e.g. dupl icat ing names). 

Example 2: Consider the t ranslat ion 

TDu p = { ( x , xx ) I x  ~ L1}, L 1E  CF, where CFdenotes the family of c . f .  languages. 

Let G 1 = (NI,Z1,PI,SI) be a context- f ree grammar such that L(GI) = L 1 and le t  (G,G') 

be the grammar pair  where G = (N 1 u { S } u { Q ! p  = A + ~EP1 } ,  Sl,P,S ) 

G' =({~IA ~ N I }  u {AI A E N I }  u {S ' } ,S l ,P ' ,S '  ) 
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and P,P' as fol lows: 

S ÷ S 1 S' ÷ SISI 

AZ ÷ (~  ~I ÷ ~1 

Q ÷ ~1 A1 ÷ ~1 

vP : A I ÷ ~1 c PI 

Here ~ is obtained from ~ by replacing each variable A in ~ by A, ~ is obtained in 

the analogous way. 

Obviously (G,G') is f i t t i n g  and therefore l e f t - f i t t i n g  and Tg(G,G' ) = TDu p, but 

T(G,G') ~ TDu p. Realize that the res t r i c t i on  to leftmost derivations in the input 

grammar G is necessary for  th is example. 

2. Left  sentential forms 

We w i l l  show in 3. that for  a grammar pair (G,G') i t  is decidable whether (G,G') 

is l e f t - f i t t i n g  or not. Moreover we w i l l  derive some structure properties of l e f t -  

f i t t i n g  t ranslat ions.  For th is  purpose we use a theorem on (derivat ion trees of) 

l e f t  sentential forms which can be considered as a kind of Parikh's theorem for l e f t  

sentential forms. 

Let G = (N,g,P,S) be a context-free grammar. 

Let TL(G ) denote the set of a l l  trees associated with leftmost derivat ions in G 

which are not terminal der ivat ions.  For short the trees in TL(G ) are called l e f t  

der ivat ion trees. 

The set of l e f t  sentential forms of G can be defined by 

SL(G ) = { f r o n t i e r ( t )  I t  E TL(G )} where f r o n t i e r ( t )  denotes the str ing obtained by 

concatenating the leaves of t from l e f t  to r igh t .  

For each two subsets UI~-- N and U2C-- N-{S} and for  each A ~ N we define a set of 

trees 

TA(u1,u2) = { t  E TL(G)It has the root S, f r o n t i e r ( t )  = xA~ for  some xcZ* ,  

c (N u ~)*, and conditions ( l a ) ,  (Ib) hold} 

( la)  On the l e f t  of the path connecting the root with the leftmost leaf  label led A 

there occur exactly the variables in the set U I 

( ib)  On the path connecting the root with the leftmost leaf  label led A there occur 

exactly the variables in ~2 = U2 U {S}. 

The label of the root but not the label of the leaf  is counted to the set of variab- 

les occurring on a path from the root to a leaf .  Define 

LA(uI,U2) = { f r o n t i e r ( t ) I t  ~ TA(uI,U2)}. 

For the fol lowing def in i t ions le t  us consider an a rb i t ra ry  but f ixed TA(uI,U2 ). De- 

f ine u I = ~(U1) and u 2 = ~(U2) where ~(M) denotes the number of elements of the set M. 
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For each Y e U I and z E U 2 we define sets T~(UI) and T~(UI,U2) of derivation trees 

and le f t  derivation trees, respectively, as follows: 

T~(UI) = { t l t  is a tree with root Y and frontier wYz (for some w,z E Z*) associa- 

ted with a derivation d in G where Y =>d wYz, such that conditions 

(2a) and (2b) hold}. 

(2a) Each variable occurring in t is in U 1 

(2b) t contains no path on which a variable x e U I occurs more than ui+I times. 

T~(U1,U2) = { t l t  is a tree with root Z and frontier yZB (for some y ~*, E 

B e (N u ~)*) associated with a leftmost derivation d in G where 

Z L >d yZB, such that conditions ( l a ' ) ,  ( Ib ' ) ,  (3a) and (3b) 

hold. 

Conditions ( la ' )  abd ( ib ' )  result from (la) and (Ib) by replacing "A" by "Z" and 

"exactly" by "no other variables than". 

(3a) No subtree of t with the root on the l e f t  of the path connecting the root of t 

with the leftmost leaf labelled Z contains a path with more than u1+I occurrences 

of the same variable X E U I .  

(3b) On the path connecting the root with the leftmost leaf labelled Z no variable 

X E U 2 occurs more than u1+u2+2 times. 

The structure of trees defined so far is shown in Fig. I :  

S Y Z 

x A x Y  z y Z 

TA(uI ,U 2) T~(U I) T~(U l,u 2) 

Fig. 1 

Obviously T~(UI) and T~(UI,U2) are f i n i t e  sets of trees. For each l e f t  der ivat ion 

tree t with f r on t i e r  xA~ l e t  f ron t ie rN( t  ) denote the sequence of variables obtained 

from ~ by el iminat ing a l l  terminals in ~. 

Define H2(HI,U2) = { f r o n t i e r N ( t ) I t  E T~(U1,U2) for  some Z EU2 }. Obviously H2(UI,U2) 

is f i n i t e .  
For each tree t E TA(u1,u2 ), for  each (occurrence of) Y on the l e f t  of the path 

connecting the root of t with the leftmost leaf  label led A and for  each t '  E T~(UI) a 

tree ~ l ( t , t ' )  cal led 1-subst i tut ion of t '  in t is defined as fol lows: 

o l ( t , t '  ) is obtained from t by replacing (the occurrence of) Y by the tre@ t ' .  0b- 
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serve that q l ( t , t ' )  E TA(uI~U2). In a similar way for each tree t E TA(u1,u2), for 

each (occurrence of) Z E U 2 on the path connecting the root of t with the leftmost 

leaf labelled A, and for each t '  c T~(U1,U2) a tree c 2 ( t , t ' )  called the 2-substi tu- 

t ion of t '  in t is defined as follows: ~ 2 ( t , t ' )  is obtained from t by replacing 

(the occurrence of) Z by the tree t ' .  Observe that ~ 2 ( t , t ' )  E TA(uI,U2 ). 

Trees obtained by 1-substi tut ion and 2-substi tut ion are shown in Fig. 2 

: >  ~ = >  

A A 

1-substi tut ion 2-substi tu t i  on A 

Fig. 2 

We call a set T~ TA(u1,U2 ) l inear i f  there is a tree t E TA(u1,u2) such that T is 

the smallest set of trees which contains t and is closed under 1-substi tut ion and 

2-subst i tut ion. A f i n i t e  union of l inear sets of trees is called semilinear. 

l~e can prove in a tedious but straightforward way using arguments similar to those 

used in the proof of PARIKH's theorem (1966): 

Theorem 1: For each context-free grammar G the set TL(G ) of l e f t  derivation trees is 

semilinear. 

As far as i t  is necessary for understanding Theorem 2 (the decidabi l i ty  of the pro- 

perty l e f t - f i t t i n g )  a rough sketch of the proof of Theorem i is given. 

Obviously TL(G ) = ~ TA(uI,U2) holds. 
A E N  
UI~ N 
U2~ N-{S} 

Since the number of the sets U1,U 2 and of the variables is f i n i t e ,  i t  suffices to 
show that each of the sets TA(uI,U2) is semilinear. 

For each two subsets UI~  N and U2~ N-{S} and for A E N the set T~(UI,U2)~TA(uI,U2) 

is defined as follows: 

T~(UI,U2) : { t  E TA(u1,u2)It f u l f i l l s  the conditions (3a') and (3b')} 

Conditions (3a') and (3b') are obtained from (3a) and (3b) by replacing Z by A. 
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Define HA(u1,u2 ) : { f ron t ie r ( t ) I t  ~ T~(UI,U2)}. Clearly T~(UI,U2) and HA(u1,u2 ) are 

f in i te .  

I t  can be shown that TA(u1,u2 ) equals the f in i te  union of sets of trees each of which 

is the smallest set of trees which contains a tree t E T~(U1,U2) and is closed under 

1-substitution and 2-substitution. By Definition each TA(uI,U2) is semilinear and 

therefore TL(G ) is semilinear. 

2. The Decidability of the l e f t - f i t t i ng  Problem 

Let (G,G') where G = (N,Z,P,S),  N = {A 1 . . . . .  An}, S = A I and G' = ( N ' , S ' , P ' , S ' ) ,  

N' ' . A '  S '  = { A t , . . ,  n , } ,  = A~ be a pa i r  o f  c . f .  grammars and l e t  the 1-1 correspondence 

of product ions be given by a mapping f from P onto P' .  

Since terminals  have no in f luence  on le f tmost  de r i va t i ons  ( i n  G) and ne i the r  termina ls  

nor the pos i t i on  of  var iab les  have any in f luence on a r b i t r a r y  de r i va t ions  ( in  G ' ) ,  we 

def ine a c . f .  grammar G and the vector  form ~' of  G' as fo l l ows :  
c 

= N,% ,P ,S = {p~ = A ÷ N(~)Ip = A + ~ E P} and Convention: G ( ) where ~ = @ and P 

N(~) is obtained from ~E (N u ~)* by erasing all occurrences of terminals in ~. 

- - e' ' denotes the vector of ~' = (R ' , s " ,P ' ,~ ' )  where ~' = @ R' = {e~ . . . . .  n,}, (where e i 

n' nonnegative integers which has the integer I at position i ,  the integer 0 at all 

other positions) 5' = e~ and P' consists exactly of all vector forms of productions 

of P': I f  p' = AL ÷ ~' is a production of P' then 
3 

P' ' ÷ 4 '  = e~ (e') = (~A~(~') . . . . .  ~A~,(~')) is i ts vector form, where ~A~(~') denotes 

the number of occurrences of the variable A~ in the word 6'. i 

Let V~ denote the set of all ordered n'-tupels of nonnegative integers. The concept 

of "derivation" can be transferred in a natural way to the vector form of a c.f .  

grammar: 

For a production p' = ej' ÷ u' E~ ' ,  u' E V+' and vectors v',w' E V~,v' =>P' w' holds, 

i f  there exist words B',y' E (N' u Z')* and a production p' = At + ~' E P' such 
J 

that B' =>p' Y ' ,~ ' (~ ' )  = u ' ,~ ' (B ' )  = v' and ~ ' (y ' )  = w'. 

I f  p = A ÷ ~ and p' = A' ÷ ~' are corresponding productions in (G,G'), then 

p~ = A ÷ N(~) and p' = ~'(A') ÷ ~'(~ ')  are corresponding productions in (G ,~').  Thus 

we have transferred the correspondence between sequences of productions of G andG' 

to a correspondence between sequences of productions of G and ~' .  

The questions whether (G,G') is a l e f t - f i t t i ng  grammar pair can now be reduced to 

the question whether for any terminal leftmost derivation d in G the corresponding 

sequence d' of productions of ~' yields the vector o' (the n'-tupel of o's). We call 

(G~,G'), l e f t - f i t t i n g  i f  for any terminal leftmost derivation d, A I ~=>d ~ implies 

e~ =>d o . Then i t  follows immediately: 
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Lemma 1: (Gc,G') is l e f t - f i t t i n g  i f f  (G,G') is l e f t - f i t t i n g .  

D e f i n i t i o n  5: Let y c N ~ and d be a l e f tmos t  d e r i v a t i o n  in G such t h a t  y £ >d ~. 

Then d is ca l led cyc le - f ree  i f  in the fo res t  of l e f t  der iva t ion  trees associated to 

d (with the  v a r i a b l e s  of y as roo t s )  t he re  is  no path on which the same v a r i a b l e  

occurs more than once. 

Hence for  any l e f t  sentent ia l  form of G there ex is ts  only a f i n i t e  number of cyc le-  

f ree t e rmina l  l e f t m o s t  d e r i v a t i o n s  in G . 

Def in i t i on  6: Let d' = Pl' . . . . .  Pk' be any sequence of  productions in P' such that  

' = e t  + u~ I < i < k .  
Pi J i  l '  

The value of d ' ,  in symbols z ( d ' ) ,  is defined by 

k 

z (d ' )  : i : l  ~ ( e i i -  u~) 

i Clearw,  i f  d' is a der iva t ion  in ~' such that  v' =,>d' o ' ,  then z (d ' )  = v' E V+. 

I n t u i t i v e l y ,  fo r  any terminal le f tmost  der iva t ion  d in G z (d ' )  ind icates the number 

of  occurrences of var iab les  of N' which must be ava i lab le  to ensure that  d' is  a 

terminal der iva t ion  in G'. 

For any A i ,  i ~ i < n, we def ine the set g~(Ai) as fo l lows:  

g~(Ai ) = { z ( d , ) i A i  ~__>d ~, d cyc le - f ree}  

g~ is extended to N* by def in ing g~(e) = {o ' }  and fo r  any y E N + 

gg(y) = {v ' I~w ~ E g ~ ( a l ) , . . . ,  3w n' E g (An) where 

n 

v' = i = l  ~ #AI(Y)" w~} 

Instead of gL(y) = {w' }  we wr i te  gL(y) = w'. 

g~ has the fo l lowing proper t ies:  

Lemma 2: Let G E = ({A 1 . . . . .  An},~,P ,A1) and #(g~(Ai) ) = 1 for  a l l  i ,  1 < i < n. 

Then ( i )  - (4) hold: 

n 

( I )  ~(g~(y)) = 1 and g~(y) = iZ 1= ~Ai(Y ) g~(Ai) fo r  a l l  y E N ~. 

(2) g~(y) = g~(v) + g~(w) fo r  a l l  y ,v ,w E N + such that  ~(y) = ~(v) + ~(w). 

Here ~ denotes the Parikh-mapping which maps a word x E N* onto the vector 
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(~Al(X) . . . . .  ~An(X)). 

(3) For any cycle- f ree leftmost derivat ion d and any y E N + such that y L=>d 

z(d ' )  = gL(y) holds. 

(4) ~(w) = @(w') implies gL(w) = gB(w') for  any w, w' E N +. 

Proof: Obvious 

We can now give necessary and su f f i c i en t  conditions for  (G ,~ ' )  and therefore for 

(G,G') to be l e f t - f i t t i n g .  These conditions are decidable. 

Theorem 2: (G ,G') is l e f t - f i t t i n g  i f f  the condit ions (1) - (3) hold: 

(1) ~(gL(Ai) ) = I for  a l l  i ,  1 < i < n. 

(2) g~(A1) = e~ 

(3) Let H = ~ HA(u1,u2) 
A e N  
U 1~  N, U 2 ~  N-{A I} 

and H 2 = k . . }  H2(UI,U 2) 
UI~  N 

U2~ N-{A 1} 

Then for  any l e f t  sentential form v E H and any production p c P ( le f t - )app l i cab le  

to v, v ~-->P w implies gL(v) =>P' gL(w). 

Furthermore for any v E H and any r E H 2, g~(v) E V+ and gL(r) E V+ hold. 

Remarks: Observe that Lemma 2 and condit ion (1) imply that ~(gL(v)) = ~(g~(w)) = I 

and g~(w) E V+ hold. Therefore g~(v) => gL(w) is wel l -def ined.  

Proof: Part I: Suppose the conditions (1) - (3) hold. Lemma 2 and condit ion (1) imply 

~(g~(y)) = 1 for any y c N*. 

I t  w i l l  be shown that for  any l e f t  sentential  form y ~ SL(G ) and any p E P such 
! that y L=>p u, g~(y) =>P' g~(u) holds where g~(y), g~(u) c V+. 

Let y ~ SL(GE) be a l e f t  sentent ial  form, p E P be a production such that y ~>P u and 

le t  A be the leftmost nonterminal in y. Then there is a l e f t  der ivat ion tree ty  with 

root S whose f ron t i e r  is y. Let U I be the set of variables occuring in the subtrees 

on the l e f t  of the path S-A and le t  U 2 U {S} be the set of variables occuring on the 

path S-A. Then the considered l e f t  der ivat ion tree ty is in TA(uI,U2 ) and y is in 

LA(u1,u2). 

By Theorem I there is a l e f t  der ivat ion tree t o in T~(UI,U2) with f ron t i e r  
v E HA(uI,U2) such that v ~>P w (because A is again the leftmost nonterminal). 
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ty is obtained from t o by iterated 1- and 2-subst i tut ion of trees from T~(UI) for 

any Y E U 1 and from T~(U1,U2) for any Z E U2' respectively. Since 1-substi tut ion does 

not influence the f ront ier  of t o there are posit ive integers k, n I . . . . .  n k and trees 

t I . . . .  , t  k E ~ T~(U1,U2), such that the f ront ier  y of ty is obtained from the 
z ~  2 

f ront ier  v of t o by insert ing r i = f ron t ie rN( t i )  E H2(U1,U2) exactly n i times, 
k 

1 < i < k. Thus we have ~(y) = ~(v) + ~ n i~ ( r i ) .  
= = i=1 

k 
Choose r E N* such that ~(r)  = ~ n i~ ( r i ) .  

i=i  

k 
By Lemma 2(2) i t  follows that g~(r) = Z n ig~( r i ) .g~( r i )  E V+ by condition (3) and 

i=1 
I n i > 0 for al l  i ,  I < i < k, imply g~(r) E V+. 

Let us summarize that y ~-->P u, v ~'-->P w and ~(y) = @(v) + ~(r) hold. This implies 

~(u) = ~(w) + ~ ( r ) .  

v E HA(u1,u2 ) by condition (3) implies g~(v) =>P' g~(w). Since g~(v), g~(w) ~ V+ by 

condition (3) and g~(r) E V+ as wel l ,  g~(v) + g~(r) E V+ and g~(w) + gc(r) E V+. 

p l  
Thus gL(v) + gL(r) => gL(w) + gL(r) is well-defined, i . e . ,  2-subst i tut ion of the 

trees t i ,  1 ~ i ~ k, in the tree t o does not decrease any components of the g~-vec- 

tors of the f ront iers  of the trees. 

By ~(y) = ~(v) + @(r) and @(u) = ~(w) + ~(r)  and Lemma 2(2) i t  follows that 

g~(y) = g~(v) + g~(r) and g~(u) = g~(w) + g~(r). 

Therefore g~(y) =>P' g~(u) holds. 

Thus A I ~=>PI x I ~-->P2 x 2 ~=>P3 . . .  ~:>Pn ~ implies 
I 

g~(Al) =>Pl g~(xl) =>P½ g~(x2) =>P3 . . .  ->Pn g~(~) for any terminal leftmost 

derivation Pl . . . . .  Pn" Observe that g~(A1) = e~ by condition (2) and g~(E) = o' by def i -  

n i t ion.  
Therefore A 1 ~-->Pl . . . . .  Pn ~ implies e~ =>PI' . . . .  Pn o' for any terminal leftmost der i -  

vation PI' . . . .  Pn" Consequently (G ,~')  is l e f t - f i t t i n g .  

Part I I :  Suppose (G ,~') is l e f t - f i t t i n g .  I t  w i l l  be shown that conditions (1) - (3) 

hold. 
(1) Suppose that there is an A i ,  I ~ i ~ n, such that ~(g~(Ai) ) > 1. Then there is 

a v E H Ai (UI,U2) for some UI~__ N, U2~N-{S}  such that ~g~(v)) > I .  Thus there 
exist  v~,v~ E g~(v) where v~ # v~. Then there are cycle-free leftmost derivations 
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d I and d 2 such that v A >dl ~ v ~-->d2 = , = z(d ) a n d  = S i n c e  

v E SL(G~) there is a leftmost derivation d such that 

A1 ~=>d v ~=>dl ~ and A 1 9~ >d v ~=>dl ~. (GE,~') l e f t - f i t t i n g  implies 

' d '  ' d '  e~ =>d v' => 1 o' and e~ :>d v' => 2 o ~. Consequently v' = z(d~) and v' = z(d~) 

hold. By assumption we have z(d~) # z(d~), a contradiction. 

(2) Since G is reduced there is a cycle-free leftmost derivation d such that 

A1 ~>d ~. (G ,~')  l e f t - f i t t i n g  implies e~ =>d' o ' .  By def in i t ion,  e~ = z (d ' ) .  

Since ~g~(A1) ) = 1 according to condition ( i ) ,  g~(A1) = z(d')  = e~ holds. 
(3) (a) Suppose that there is a v E H such that g~(v) (~ V+. Then g~(v) = z(d~) for 

. ~ >d some cycle-free leftmost derivatlon d I such that v = i ~. Since v E SL(G ) 

there is a leftmost derivation d such that A I ~__>d v. 

(G ,G') l e f t - f i t t i n g  implies e~ =>d' v' :>d~ o' .  By def in i t ion 
i , i z(d~) = v' E V+, a contradiction to the assumption z(d~) ~ V+. 

(3) (b) Suppose that there is a r E H 2 such that g~(r) ~ V+. Let r be in H2(UI,U2). 

HA(u1 ,U 2) Choose A and some v E . By (3)(a) g~(v) E V+. Then there is a 

nonnegative integer n such that g~(v) + ng~(r) ~ V+. By Theorem 1 there is 

a l e f t  sentential form y E LA(u1,u2) such that ~(y) = ~(v) + n~b(r). By Lemma 

2(2) i t  follows that g~(y) = g~(v) + ng~(r) and g~(y) ~ V+. 
i Since y E SL(G ), g~(y) ~E V+ can be led to a contradiction in an analogous 

way as in (3)(a). 

(3) (c) Let v E H and p E P be a production such that v ~-->P w. 

Consider the case w # ~. 

Since v E SL(G ) and G is reduced, there exist  a leftmost derivation d I and a 

cycle-free leftmost derivation d 2 such tha t  A 1 ~=>dl v ~=>P w ~=>d2 e. Since 

~(g~(Ai) ) = 1 for al l  i ,  1 ~ i ~ n, by condition ( I ) ,  g~(w) = z(d½) holds by Lemma 

2(3). 
' ' d '  (GE,G') l e f t - f i t t i n g  implies e~_ =>dl v' =>P w' => 2 o ' .  By def in i t ion of z(d~)_ w e  

have w' = z(d~) = g~(w). By the same argument as above, there exists a cycle-free 

derivation d 3 such that A 1 ~=>dl v ~-->d3 ~ and z(d~) = g~(v). (GE,g') l e f t - f i t t i n g  

d ~ implies e~ :> 1 v' =>d3 o' and v' = z(d½) = g~(v). Consequently g£(v) =>P' g~(w) 

holds i f  w # ~. 

Consider the case w = ~. 

Then there is a leftmost derivation d I such that A I C:>dl v C=>P ~. (G ,~') l e f t -  

f i t t i ng  implies e~ =>d~ v' =>P' o'. By definit ion of z(p') and Lemma 2(3) we have 

g~(v) = zip')  = v' and thus g~(v) = v' =>P' o' = g~(~). This concludes the proof 

of Theorem 2. 
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Theorem 3: I t  is decidable whether a grammar pair (G,G') is l e f t - f i t t i n g  or not. 

Proof: Given a grammar.pair (G,G'), we transform i t  to (G ,G').  Since the conditions 

(1) - (3) in Theorem 2 are decidable, we can decide whether (Gc,~') and therefore 

(G,G') is l e f t - f i t t i n g  or not. [] 

Obviously the time complexity of the decision algorithm given by Theorem 2 is exponen- 

t i a l  in the number of nonterminals of G, because th is  already holds for  ~(H) in con- 

d i t ion  (3). 

Concerning grammars interest ing for pract ical appl icat ions, GONTHER (1976) has shown 

in his Master's Thesis that the i r  behaviour is much better than exponential. The aim 

of th is  thesis was to rea l ize the declaration of str ing procedures in higher program- 

ming languages by means of l e f t - f i t t i n g  grammar pairs. The implementation was carried 

out in PL/I. 

In the next section some properties of l e f t - f i t t i n g  t ranslat ions are invest igated. 

4. Properties of l e f t - f i t t i n g  t ranslat ions 

Def in i t ion 7: For a t ranslat ion T the domain of T is defined by dom(T) = { x I ( x , x '  )eT  

for some x ' }  and the range of T is defined by ran(T) = { x ' I ( x , x  ')  E T for  some x}.  

For a f a m i l y ~ o f  t ranslat ions dom(~') = {dom(T)ITEJ ~} and ran(~) = {ran(T)IT E~} .  

Let LFT denote the fami ly  of l e f t - f i t t i n g  t ranslat ions and CF denote the fami ly  of 

context-free languages. Then by Def in i t ion 4 and by Example 2 

(TDu p ~ SD T, because ran(TDup) = {xx!x c L1}, L 1 c C_F_F, is i .g .  not a context-free 

language) we have: 

Theorem 4: dom(LFT) = CF, SDT~LF ~. 
dom(LF___~T) = C_F_Fensures that parsing algorithms for  context-free grammars can be applied. 

For the proofs of the fol lowing theorems see KRIEGEL (1976). 

For a l e f t - f i t t i n g  t ranslat ion T the Parikh-mapping of the language dom(T) which is 

context-free is a semilinear set. This implies: 

Theorem 5: Let T be a l e f t - f i t t i n g  t ranslat ion.  Then the Parikh-mapping of the langua- 

ge ran(T) is a semilinear set. 

For a l e f t - f i t t i n g  t ranslat ion T an analogon to the pumping lemma holding for  the 

context-free domain can be g~ven for  the range of T essent ia l ly  using Theorem 1. This 

structure property characterizes the range of T more precise than the semi l inear i ty .  

For th is  purpose we need 

Def in i t ion 8: For any words x and y = a I . . . . .  a n n ~ 1, a i E Z for  some alphabet Z, 
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1 ~ i ~ n, l e f t  shu f f (x ,y )  denote the set of words obtained from x by inser t ing a l l  

symbols a i ,  i ~ i ~ n, in th i s  order. 

Theorem 6: Let T be a l e f t - f i t t i n g  t rans la t ion  and ran(T) be an i n f i n i t e  language. 

Then there ex is t  constants p and q and a word y'  where 0 < £ ( y ' )  < q such that for  

any u' e ran(T) where £(u ' )  > p and any i ~ I shu f f ( u ' , y  ' l )  ~ ran(T) # ~ holds. 

Corro l la ry  7: Let L ~  Z* be an i n f i n i t e  context- f ree language and c ~ S. Let f be a 

mapping from Z* into the set of nonnegative integers such that  f ( x )  = 0 i f f  x = s. 

Then 
L pOt = k ~  {(xcf(X))mlm _>_ 1} ¢ ran(LF__T_T) holds. 

x c L  

Corro l la ry  7 can be used for  ve r i f y ing  that a given t rans la t ion  is not l e f t - f i t t i n g .  

co  

Consider the t rans la t ion  T = ~ { (a ic  m, (aici)m)Im ~ i } .  
i = l  

co  

T has a context - f ree domain and i t s  range ran(T) = k ._ j { (a ic i )mlm >__ 1} has a semil ine- 
i = l  

ar character. But T is not a l e f t - f i t t i n g  t rans la t ion  because choosing L = { a i l i  ~ 1} 

and f ( x )  = £(x) fo r  a l l  x E { a }  * Corro l lary  7 implies ran(T) = L p°t  = 
co  

{(aic i )mlm > I }  ¢ ran(LFT). 
i= I  

Realize that  for  a l e f t - f i t t i n g  grammar pair  the vector g£(Ai) may have negative com- 

ponents. This leads to 

De f in i t i on  9: Let (G,G') be a l e f t - f i t t i n g  grammar pair  and l e t  (GE,~') be the usual 

transformation. For a vector v = (v I . . . . .  Vn) define !vl+ = ~ v i .  The in terca-  
i , v  i > 0 

la t ion  number I of (G,G') is defined by I = max { I g£ (A i ) l + } .  
l<i<n 

A l e f t - f i t t i n g  t rans la t ion  T has the in te rca la t ion  number m > I i f  there ex is ts  a 

l e f t - f i t t i n g  grammar pair  (G,G') with in te rca la t ion  number m such that  T£(G,G') = T. 

Let LFT m, m ~ 1, denote the fami ly of l e f t - f i t t i n g  t rans la t ions with in te rca la t ion  

number m' ~ m, m ~ I .  For any word x and words y l ,Y2 . . . . .  Yn l e t  shuf fw(X,Yl ,y  2 . . . .  yn) 

denote the set of words obtained from x by inser t ing  the words y l , y  2 . . . . .  Yn in th is  

order. 

Then Theorem 6 can be formulated more precise as fo l lows:  

Theorem 8: Let T be a l e f t - f i t t i n g  t rans la t ion  with in te rca la t ion  number m > 1 and 

l e t  ran(T) be an i n f i n i t e  language. Then there ex is t  constants p and q and words 
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Yl'Y2 . . . .  'Y2k' where k ~m. and o < L(ylY2...Y2k) < q such that for any u' c ran(T) 
where ~(u') > p shuffw(U',yl,y 2 . . . . .  Y2k ) N A(T) # ~ holds. 

By Theorem 8 i t  can be shown that the l e f t - f i t t i ng  translations form a proper hierar- 
chy in their intercalation number. 

Theorem 9: LFTm~ L~m+l for al l  m~ 1 a n d S .  L FT m = LFT., 
m > l  
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