
THE GEM COBOL MONITOR SYSTEM

Antonio Salvadori

Computing and Information Science

University of Guelph

Guelph, Ontario

CANADA NIG 2WI

INTRODUCTION

During the past five years an increasing number of people have been

searching for an answer to the question: How do people write, debug

and optimise a computer program? Several authors have written numerous

papers in the "considered harmful" series not really knowing if what

they were admonishing against was actually taking place in the real

world environment. Only recently have Knuth and several other

authors 1-4 tried to shed some light on this fascinating problem.

It was during the course of a discussion with Professor Uzgalis of

UCLA that the present system was begun. All studies had confined

themselves to studying how students in a University environment

solving university type problems behaved. This seemed unsatisfactory

to me since such a population would necessarily consist of amateurs

and not professionals, hence, I set out to develop a system which

could be used by professionals. The language that I chose to monitor

was COBOL which is the most co~on language used in the data processing

industry. This system is now being used in several environments. The
5 analysis from the data collected is presently in press.

GEM STRUCTURE

GEM, a synonym for Guelph Efficiency monitor, is a preprocessor system

which can analyse a COBOL program at any development or running stage.

The system has been developed to provide all levels of management with

a tool for improving the total efficiency of COBOL programs. It may

be used during the development of new programs to monitor their per-

formance or used to optimise the run time of existing programs.

311

There are four procedures to the system providing the following

facilities:

GEM1. STATIC PROFILE• Summarises all COBOL constructs coded in

the identification, environment, data and procedure

divisions.

GEM2. DIAGNOSTIC PATTERNS. Summarises the COBOL diagnostics generated

during program development and keeps a date account

of the number of times a program is run.

GEM3. DYNAMIC FREQUENCY PROFILE. Identifies and calculates the

frequency of verb and code segment usage in the

procedure division at run time as the program is

processing test or live data.

GEM4. DYNAMIC TIME PROFILE. Accounts for the C.P.U. time spent in

segments of Procedure Division code as the program

executes.

One or more of the four modules may be used to:

Identify which parts of operating programs are frequently used, so

that the code may be optimised.

• Check whether certain parts of a program have never been tested on

test data or used in live data.

. Accurately describe programs operating on live data for the selection

of a benchmarking suite.

• Provide information for the programming training staff on the common

errors made during program development, including the use of non-ANSI

COBOL verbs•

. Provide the CODASYL committee or anyone interested in language

design and implementation with statistics regards language usage.

GEM source code is available in either ANSI COBOL or PL/I. Both

systems have been thoroughly tested on a variety of programs in

different environments. GEM is currently proving itself to be a

useful tool to both programmers and managers.

312

GEM i MODULE

The system diagram for the GEM1 procedure is shown in Figure 1. As

i c°B°~ II SOURCE
PROGRAM

L
GEM1

SO: CE
MO[LE

w o

COBOL
COMPILER
(IKFCBLO0)

I ANALYSIS I

I
USER MAY PROCEED
AS HE CHOOSES i.e.
COMPILE ONLY, COMPILE
AND LINK EDIT ETC.

Figure i. System Diagram for the GEM1 module.

313

input, the system only requires the user's COBOL source program. GEM1

scans the source code for the relevant statistical information and

then submits the unaltered code for processing according to the user's

wishes. The code may be compiled and executed in a normal way.

The statistics gathered and printed consist of:

a COBOL clause and verb count.

. a percentage breakdown of PROCEDURE DIVISION verbs used.

the number of source records, number of comment cards, indications

of non-ANSI standard verbs, etc.

Part of a typical report from GEM1 is shown in Figure 2. This report

COBOL STATIC STATISTICS

USER ID : XXXXXXXX PROGRAM ID : XXXXXXXX

ACCEPT 0
ADD 1
ALTER 0
CALL 0
CANCEL 0
CLOSE 1
COMPUTE 2
COPY 0
DECLARATIVES 0
DELETE 0
DISABLE 0
DISPLAY 0
DIVIDE 0
ENABLE 0

* EXAMINE 0
EXIT 0
GENERATE 0
GO TO 2

* HOLD 0
IF 1
INITIATE 0

* INITIALIZE 0
INSPECT 0
MERGE 0
MOVE 13
MULTIPLY 0

* NOTE 0
OPEN 2

PROCEDURE DIVISION

PERFORM 0
* PROCESS 0

READ 1
RECEIVE 0
RELEASE 0
RETURN 0
REWRITE 0
SEARCH 0

* SEEK 0
SEND 0
SET 0
SORT 0
START 0
STOP(*GOBACK) 1
STRING 0
SUBTRACT 0
SUPPRESS 0

* SUSPEND 0
TERMINATE 0
UNSTRING 0
USE 0
WRITE 5
+ 1
- 1

/ 0
* 4

** 0

Figure 2. Part of the report produced by GEM1.

314

should prove useful for benchmarking, COBOL programmer training, ANSI

or in-house standards and various language developers.

GEM 2 MODULE

GEM 2 was motivated by a desire to understand how programs are written

and develop from the initial stages to the production phase. A record

is kept of each run of the program together with any observable errors

which can be automatically gathered. The system diagram for the

procedure is shown in Figure 3.

i COBOL
SOURCE
PROGRAM

I COBOL
(!~B COMPILER

L00)

f

ER
F[LE i
F R
T] IS

...~R N . . j 1 I USER MAY PROCEED AS HE
CHOOSES i.e.
COMPILE ONLY,
COMPILE AND
LINK EDIT, ETC.

GEM2

[
COMPILER I

I LISTING OF I
GEM2

UPD; TED I
L C!l

Figure 3. System diagram for the GEM2 module.

315

The output from the various levels is scanned for diagnostics and the

history record is updated with the new information. These diagnostics

are recognised by the manufacturer generated codes. No distinction is

made between such codes and user produced results, should the user

produce these codes as part of his normal output.

The report generated by GEM2 is shown in Figure 4. Since a record is

USER ID : XXXXXX

COBOL ERROR STATISTICS

PROGRAM ID : SOCRUPD DATE : 10/02/75

RUN NUMBER
ERROR 1 2 3 4 5 6 7 8 9 i0 ii 12 13 14 15 16 TOTAL

MESSAGE
1087W 2 2 0 2 2 1 0 0 4 2 1 2 2 1 0 0 21
I004E 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 8
3001E 7 7 7 0 0 0 0 0 2 2 1 7 0 0 0 0 33
1081W 3 3 1 1 0 0 0 0 1 0 0 3 0 0 0 0 12
I080W 3 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 7
III7E 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
I128W 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
1078W 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2
I042E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1003W 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
1016E 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

TOTAL 16 16 il 5 3 2 0 0 9 5 3 16 3 1 0 0

TOTAL ERRORS FOR SOCRUPD IS 90

START DATE : MON 09/22/75

NUMBER OF RUNS

1 2 3 4 5 6
DAY

MON 1
TUE 2
WED 3
THR 4
FRI 5
SAT 6
SUN 7
MON 8
TUE 9
WED l0
THR !i
FRI 12

******we

TOTAL JOBS = 0016

Figure 4. Part of the GEM2 report.

316

kept of the frequency distribution of errors this information should

help a programmer diagnose his deficiencies with respect to COBOL and

thereby remedy these. Further, when figures are kept on a more global

scale true language deficiencies and troublesome points are found which

can be remedied in future development and new language design. Super-

visors and management should also find the development time information

useful for it allows them to assess programming and debugging time

accurately and therefore plan later projects more accurately and

efficiently. A programmer efficiency index has also been proposed by

the author based on this type of information. 6

GEM 3 MODULE

The PROCEDURE DIVISION of a COBOL programme is divided into paragraphs

and sections. Execution of statements within a paragraph is sequential

unless a branching statement is encountered in which case, execution

resumes at the beginning of the new paragraph to which branching has

occurred. If we therefore wish to monitor the execution of statements,

it is obvious that the paragraph level subdivision is too coarse and

PAR-X

MOVE

ADD

MULTIPLY

IF

ELSE

MOVE

MOVE

PERFORM

ADD

PAR-Y.

PAR- Z.

THEN GOTO PAR-Z.

()

--<9
i

0
|

|

Figure 5° Subdividing a program into basic blocks.

3t7

. i COBOL I
SOURCE
PROGRAM

i
GEM3A I

i

COBOL
COMPILE,
LINK &

EXECUTE

I

GEM3B

USER MAY PROCEED
AS HE CHOOSES
i.e. LOAD OR
LINK EDITED.
USER FILES ARE TO
BE INSERTED HERE.

I,
I GEM3 I

Figure 6.

i
~c0~ILE~ I

LISTING OF I

The system diagram for the GEM3 module.

318

we must subdivide paragraphs into finer segments. Hence we define a

basic block as a linear sequence of program instructions having one

entry point (the first instruction executed) and one exit point (the

last instruction executed). Figure 5 illustrates how a program can be

divided into basic blocks. These may be represented as the nodes of

the control flow graph. 7

GEM3 is divided into two parts as shown in the system diagram in

Figure 6. GEM3A subdivides the COBOL PROCEDURE DIVISION into segments

and inserts monitoring code to keep track of execution time frequency

counts. The modified source is then passed to the compiler, linkage

editor or loader and executed giving the user his normal output.

GEM3B then performs an analysis of the results and produces the reports

shown in Figure 7.

FREQUENCY

WRITE HEADING-LINE AFTER ADVANCING NEW-PAGE
MOVE LINE-2 TO HEADER-LINE.
WRITE HEADING-LiNE AFTER ADVANCING 2 LINES.

*BEGIN DYNAMIC
READ-A-CARD.

*********************** BLOCK NUMBER ************************ 17
READ EMPLOYEE-FILE RECORD; AT END

*********************** BLOCK NUMBER ************************ 1
GO TO EOJ.

*********************** BLOCK NUMBER ************************ 16
IF NO-OF-HOURS IS GREATER THAN 40 THEN

*********************** BLOCK NUMBER ************************ 1
COMPUTE GROSS-PAY ROUNDED =
HOURLY-RATE * 40 + HOURLY-RATE * 2 * (NO-OF-HOURS - 40)

ELSE
*********************** BLOCK NUMBER ************************ 15

COMPUTE GROSS-PAY ROUNDED =
HOURLY-RATE * NO-OF-HOURS.

*END DYNAMIC
ADD GROSS-PAY TO GROSS-COUNT.
IF COUNT-A > 4 THEN PERFORM PARA-I THRU PARI-EXIT.
IF HOUP~Y-RATE > 3 THEN GO TO PARA-I

ELSE GO TO PARA-I, PARA-2 DEPENDING ON THE-FLAG
****************************** COMMENT

MOVE NO-OF-HOURS TO NO-OF-HOURS.
MOVE HOURLY-RATE TO HOURLY-RATE.

*BEGIN DYNAMIC
PARA-I.
*********************** BLOCK NUMBER ************************ 16

ADD 1 TO COUNT-A ON SIZE ERROR
*********************** BLOCK NUMBER ************************ NOT

GO TO EOJ. TESTED

Figure 7. Part of the GEM3 frequency report.

319

These reports show, among other items, the frequency of execution of

each segment of code. The user may use this information in essentially

two ways. Firstly, in a debugging or testing environment, he may

isolate the areas of code which have never been tested. He may con-

sequently draw up test data to exercise these parts. Second, he may

isolate frequently executed parts of code and see if some optimisation

can take place. In several cases it was found that by looking at GEM3

results programs could be made up to 20% more efficient by removing

certain pieces of code that had become obsolete and by optimising some

crucial tests.

The greatest use of GEM3 is at the programmer level. He may directly

benefit from its use. However, GEM3 can also be used for very accurate

benchmarking purposes.

GEM4 MODULE

This module performs a task similar to GEM3 except that instead of

frequency counts CPU timings are given for each section. The in-

serted code is a call to an assembler routine which disables the

input/output interrupts and records the time from the absolute time of

day clock of the machine. As a result of this, a specific assembler

routine has to be written for the host machine or at best for a line

of machines. Professor Gordon at the University of Guelph is presently

writing a suite of assembler routines which will allow GEM4 to run on

a variety of machines.

In my preliminary study of GEM4 it appears that little or no extra

information can be gathered from using GEM4 over GEM3 since the timing

is of necessity only marginally accurate due to the routines overhead

and also because of the side effects, such as, taking over control of

the machine which is undesirable.

SYSTEM OVERHEAD

GEM requires 80k bytes of main memory to execute. Source statements

are scanned at the approximate rate of 0.5 seconds per 100 statements

on an IBM 370/155 running under MVT.

CASE STUDY

Since the information gathered by GEM is of necessity of a confidential

nature, the results must therefore be lumped together to preserve

320

anonimity.

In the study presented here a random sample of novice and experienced

programmers were analyzed. Fifty-six programs which they had written

were divided into two classes. The first class consisted to programs

of an editing nature, i.e. where input data was edited for correctness

and an updating file prepared. The second class consisted of programs

of an analysis nature, i.e~ programs in which data was analysed and

reports issued. Figure 9 shows the results of applying GEM2 as the

programs were being developed and figure i0 shows the dynamic frequency

counts of the verbs used for both groups.

Description of Diagnostic Percentage of Total

Identifier has not been declared
Ambiguous reference to identifier
Undefined procedure or paragraph name
Warning - this statement cannot be

reached
Paragraph has no statements
Invalid record name in WRITE statement
Illegal use of ELSE or OTHERWISE
Invalid file name in OPEN statement
Illegal operand in PERFORM statement
Constant or variable required AFTER

advancing
Variable has too many subscripts
Procedure or paragraph name already

defined
Variable has too few subscripts
Residual (other miscellaneous errors)

16.48
5.76
2.44

2.24
2.07
1.94
1.48
1.12
0.84

0.68
0.51

0.36
0.29
0.20

Figure 9o The error statistics gathered in the case study for the
PROCEDURE DIVISION.

DISCUSSION

As the results show~ GEM has proved itself very useful in getting a

better understanding of the error-proneness of COBOL. This informa-

tion has been very useful to the subsequent teaching of the language

since students can now be forewarned about the various pitfalls. The

language features used by programmers have allowed us to understand

the manner in which programs are written° Programmers are greatly

influenced by their immediate environment. They tend to write pro-

grams using similar language features to those of their colleagues at

whatever installation they are at. They tend to follow installation

321

VERB

MOVE

IF

GOTO

PERFORM

ADD

WRITE

SET

READ

EXIT

OPEN

CLOSE

STOP

SUBTRACT

SEARCH

EDIT PROGRAM
%

a b

26.2 26.2

24.7 24.6

15.0 4.4

13.8 15.2

8.1 7.0

6.5 5.4

2.2 7.0

1.0 2.9

0.7 2.0

0.7 0.9

0.5 0.6

0.4 2.6

0.2 0

0.i 1.2

ANALYSIS PROGRAM
%

a b

49.1

16.1

10.8

5.6

3.4

10.4

0

1.2

0.4

1.1

1.0

0.8

0.2

0

42.0

19.4

2.3

12.0

4.0

13.4

0

1.2

1.6

1.7

1.2

1.2

0

0

a: notices b: professionals

Figure i0. The verb usage statistics in the case study.

guidelines closely but not necessarily correctly. For example, at

one installation where programmers were supposed to write structured

programs without ever using the GO TO statement, it was found that

indeed they never used the GO TO statement but were using the PERFORM

verb just like the GO TO.

Not enough feedback has yet been received on the use of GEM3 and GEM4

to analyse the results in detail. In a few live test cases some

significant improvements were obtained. So far programmers are

finding it very useful in program testing and in improving the

reliability of a program. However nothing can as yet be said about

general code optimisation.

ACKNOWLEDGEMENTS

The author wishes to thank Professors C.K. Capstick and J.D. Gordon

for their participation in this work, Peter McMullen for diligently

translating his thoughts into code, the University of Guelph and the

Department of Supply and Services of the Canadian Government for

providing financial assistance.

322

REFERENCES

i. Knuths DOE.: An Empirical Study of FORTRAN Programs.

Software - Practice and Experience, i, 105-133(1971).

2. Uzgalis, R., Simon, Go, Speckart, W.: Compiler Measures in the

Perspective of Program Development~ a comparison of the IBM

PL/I F-Level Compiler with Cornell's PL/C in a Student Environment°

Proc. Sixth Hawaii International Conference on System Science,

i04-i07(1973) o

3. Litecky~ C.R.~ Davies, G.B.: A Study of errors, Error-Proneness~

and Error Diagnosis in COBOL. CACM, 19, !~ 33-37(1976).

4. Endres, Ao: An Analysis of Errors and Their Causes in System

Programs, International Conference on Reliable Software, Los

Angeles, 327-336(1975).

5. Gordon, J.Do, Capstick~ C.K., Salvadori, A.: An Empirical Study

of COBOL Programmers, in press INFOR(1976).

6. Salvadori, Ao, Gordon~ J.D.~ Capstick, C.K.: A System for Evalu-

ating Programmer Performance, Proc. Thirteenth Annual Conference

on Computer Personnel Research, Toronto, 100-113(1975).

7. Allen, F.E., Cocke, Jo: A Program Data Flow Analysis Procedure.

CACM, 1-9, 3, 137-147(1976)o

