
DATABASE SYSTEMS ANALYSIS AND DESIGN

E.E. Tozer, Software Sciences Limited

April 1976

ABSTRACT

Developments in the database field have tended to
emphasise programming technology, with a dearth of
accompanying progress in systems analysis and design
methods. This paper puts forward an overall view of
system design which is intended to act as a constraining
framework. It is based upon a pragmatic approach and is
presented in a form which could be (and is being) used on
large scale implementation projects.

Orderly analysis and design procedures are encouraged.
The taking of premature design decisions is discouraged,
especially through the recognition of three distinct
views of data: conceptual, implementation and storage,
and through recognition of distinctions between design
of each of these, specification of mappings between them,
and design of programs and run sequences. It is
envisaged that specific procedures developed elsewhere
(see references) could be incorporated into the methodology
described here.

Software Sciences Limited

Abbey House

282/292 Farnborough Road

Farnborough, Hampshire

Telephone: 44321

Telex: 858228

194

i. INTRODUCTION

As the computer systems of an organisation develop, there is

an increase in the degree of overlap between originally distinct

systems. Further, increased confidence and familiarity leads

to the individual systems being enriched in power and

sophistication. The combined result is a vast increase in the

complexity of the system design task, at that very point in

time when greater reliance is being placed upon the

performance, reliability and accuracy of the computer systems.

The programming aspects of this situation have been recognised

for some time, and have been tackled with partial success in

the form of "Database Management" systems. Traditional

systems analysis and design procedures are being outstripped

both by the complexity of requirements, and also by the

developing programming technology. This paper proposes an

overall view of the processes involved in analysis and design,

with particular emphasis upon the data, as opposed to the

processing aspects. Different, partially overlapping, aspects

of this field have been tackled in a theoretical manner by

Bramhill & Taylor (1975), Brown (1974), Robinson (1974), and

many others. Whether or not a theoretical basis exists for

the taking of a design decision, a system designer "in the

field" has to take that decision, and he had to live with the

results.

Rather than offering precise formulae for each and every stage

of the progress, this paper puts forward an overall framework,

which identifies important stages, and draws the necessary

distinctions between them. This fremework is most important,

as it ensures that premature design decisions are avoided,

and gives direct guidance as to the actual sequence and purpose

of particular analysis and design procedures. There is no

intention to over-constrain the particular techniques or

their variants which individual practitioners would embed in

this framework; the only criterion is that the technique

should be adequate for the purpose, and consistent with the

overall methdology. However, in the interest of being as

specific and as helpful as possible, descriptions of, or

195

references to, suitable techniques are included where

appropriate.

The analysis and design approach proposed is seen as being

applicable to DP systems in general. Only in the latter

stages does it become dependent upon use of a particular

DBMS. Projects using conventional files or non-Codasyl

DBMS would benefit considerably from adoption of the design

approach put forward, with appropriate variants in the latter

stages.

Section 2 explains the overall viewpoint taken, which is that of

viewing systems analysis and design themselves as a system.

This system is explained in detail in section 3, and each of

the main processing functions is examined in turn in more

detail in sections 4 to ii.

Except where it is explicitly stated otherwise, flowcharts in

sections 2 and 3 show data flow:-

name J

Signifies a data container (file,

document etc).

Signifies a process.

Signifies data flow, which may only be from

container to process or process to

container.

2. VIEWS OF DATA

There are several distinct views of data which are relevant to

the process of analysis and design. This view is not

coincident with that adopted by ANSI SPARC/DBMS Study Group

(1975).

The areas of classification chosen are:-

(i)

(ii)

(iii)

196

Level of abstraction

a) Conceptual

The view of data held by the organisation. This

view is purely a function of the mode of operation

of the organisation and the policies of its

managers. It is independent of the existence of

any computer systems, and should be expressed in a

form most suitable to end-users in the organisation.

b) Impiementatign

All or some subset of the conceptual data view may

be used by computer systems. The implementation

view is a representation of that subset. It is

designed and encoded into machine-readable form for

this purpose. The implementation view remains as

independent as possible from c, the storage view.

c) St0rage

Actual data, described to programs by b, must be

held on backing store in some form. The storage view

is a complete description of such data on backing

store.

Breadth of view

a) Global, or corporate.

b)

The complete view of data, relevant to all processes

carried out in the organisation.

Specific, or functional.

The view of data relevant to a particular function of

the organisation.

Existence

Whether or not it is necessary for occurrences of data items

to exist in some particular form.

197

VIEWS OF DATA

Corporate View Functional View

I
CONCEPTUAL I

I Selection/
design

IMPL~TATION

"SCHWA"

I design

subset ~ I

q

subset '~I

/
/

/ TRANSLATION

CONCEPTUAL

I Re-group~ design

IMPL~I~WfAT I0N

"SUBSCH~NA"

STORAGE

Fig.2.1

198

The combination of these views of data is shown in Figure 2.1.

The terms SCHEMA and SUBSCHEMA are defined by CODASYL DDLC

(1973). They are used subsequently in this paper in the

sense shown in 2.1.

All of the data described by the Storage view must actually

exist on backing storage. The data described by the SUBSCHEMA

view must exist on an as-required basis. There is no

requirement that data described by the other 3 views should

physically exist at all. Database access is expressed by the

"translation" arrow between the subschema and storage views.

The DBMS makes use of specified mappings between storage and

schema and between schema and subschema, to carry out (hopefully)

optimised translation.

Design should commence with the conceptual view, and progress

to the storage view. For any given conceptual view it should

be possible to choose many implementation views. For any

given implementation view it should be possible to choose

many storage representations.

A SUBSCHEMA view is unaffected by any SCHEMA change which

results in a new SCHEMA of which the SUBSCHEMA remains a subset.

Current developments by the Codasyl DDLC include division of

SCHEMA DDL into a number of categories. Some of these

categories are relevant to the distinction between implementation

and storage views of data. The measurement, tuning, resource

allocation and storage categories between them relate to the

storage view of data.

The CODASYL DDLC DBAWG (1975) have proposed a more complete

separation of the storage view into a Storage Definition

Language (DSDL).

199

3. THE ANALYSIS AND DESIGN PROCESS

3.1 Introduction

This section outlines the method of analysis and design which

is discussed in more detail in the remainder of the paper.

Figure 3.1 shows the process in flow-diagram form, and can

be regarded as a guide to the paper.

Analysis and design is iterative. The need for iteration

pervades almost every data path shown in 3.1. It is not shown

explicitly because to do so would make the diagram excessively

complicated.

3.2 Relationship betwee n Anal[sis and Design

Traditionally, where system design is recognised as taking

place at all, it is regarded as a process which occurs after

analysis is complete, and before programming commences. It

is more useful to regard both analysis and design as each

taking place at a nu~er of different levels of refinement.

At each level, the order is analysis (or hypothesis

or some blend of the two) leading to definition of functional

requirements, leading to design of a process to meet those

requirements.

During the design process, at each successive stage of

refinement, additional opportunities may be realised, and the

unpleasant truth may emerge concerning the severity of some

constraints. Either at one stage, or through a number of

stages, iteration may take place, by means of presenting

the originator of the requirements with the highlights of the

results of the design process, and offering the opportunity

to modify the requirements in the light of these.

3.3 The Nature of Design

The design process consists of two distinct stages: generation

of a range of possible solutions to a problem, and selection

from the range of a best-fit, according to a pre-defined set

200

of criteria. Failure to achieve a good enough solution may

result in iteration involving alteration of some of the initial

conditions and repetition of both stages.

3.4 Development Stages

The processes described in 3.2 and 3.3 take place at each of

a number of stages, representing successive levels of

refinement. Some of these stages are related to the differing

levels of abstraction of views of data.

THE ANALYSIS & DESIGN PROCESS
#"

! I
I THE ORGANISATION I

i ANDATAIs FUNNCTITINsAL~ ~~b,,~~

/ [!ALIDATION OF i DESIGN USER DATA MODEL I NTEP~AC) ~ 1

AND ~ ~ R U N DESIGN

STORAGE STRUCTURE DESIGN SCHEMA

POP SIMULATION OR LIVE RUNNING
FIG. 3-1

202

4. DATA ANALYSIS

4.1 Objectives

To ascertain the objects (concrete or abstract), which

are meaningful to the systems of an organisation.

To discover the nature and relevant of all relationships

between such objects.

To define the private language of the organisat~on.

Thus to provide a commonly accepted terminology

which can be used to specify systems and procedures.

To identify each data item, and to distinguish between

different manifestations of the same item (e.g. different

coded forms).

To identify and eliminate synonyms.

To fully define, unify and rationalise coding systems.

To build a "where used" index, so that the

ramifications of an alterantion to a procedure or to

the role of a piece of data can be easily explored.

4.2 Terminology and Conventions

The method of working proposed takes the viewpoint that systems

exist to serve the end-user. Thus what the end-user wants,

and how he sees his environment is the most important source

of information. His perception of his role, and his working

environment is necessarily partly subjective. It follows that

the approach to data modelling needs to cope with this

subjectivity.

The corporate data model is framed in terms of "things" and

relationships between things. The terms entity and

relationshi~ have been adopted as being widely current for

describing the conceptual view of data.

Entity is defined as a person, place, thing or event of interest

to the enterprise. As such, its identification must be partly

a subjective process. Selection of entities must be primarily

directed by end-users of the proposed systems, to whom they must

be meangful. It is important to write clear definitions of

entities, and to ensure that these definitions are generally

accepted.

203

It is necessary to distinguish between entity types and entity

occurrences. An example of an entity type is "Vehicle".

Occurrences of this type are:

"Blue Ford Cortina XYZ 132K"

"Red Honda, Motorbike ABC 789J"

Entity types may be shown on data relationship diagrams as

named rectangular boxes.

e.g. t VEHICLE J

Relationships exist between entities. (Use of the term

relationship does not imply any connection with the specialised

terminology of the relational data model). Relationship may

be 1 to i, 1 to many, or many to many where 1 or "many"

refers to the number of occurrences of the entity type

which may beinvolved in the relationship.

They can be shown in the following way:

J Eois io I
i to l [~0o~ I

1 to many PERSON Vehicle owned ~I VEHICLE

(i.e. with the arrow-head on the many end)

many to many ~i CLE k--~ ~OOATI ON ~O~I
l" "I SERvIcE

I

]

Very often, many to many relationships can be analysed into

two one-to-many relationships.

e.!g.

or

I ~ Location~where it ~LOCATION FOR I
VEHICLE can be serviced SERVICE

....... Vehicles which can
be serviced

VEHICLE I LOCATION SERVICE FOR I

Where~it can be
serviced\ /Vehicles which

~ can be serviced

~E~VICING O7 A VEHIC~E
| AT A LOCATION

204

may be more appropriate representations for the purpose of a

particular application system.

An entity must have at least one type of data value associated

with it, and will usually have several. These data items types

are termed attributes.

For example the entity type vehicle may have the attribute

types colour, chassis-no, engine-no, date of purchase,

registration-no, seating capacity, weight, and possibly many

others.

One or more of the attributes of an entity may have unique values

which can be used to distinguish between different occurrences

of the entity. This attribute or collection of attribures is

called the identit_~ of the entity. For example, vehicle may

be identified by chassis-no, or by registration-no.

Participation of an entity in a specified relationship may be

optional.

For example, in:

• F PERSON I Vehicles
owned

a person may own no vehicles at all;

or in: ~ VEHICLE

L
a vehicle may be new and unregistered.

~VEHICLE I

REGISTRATION
BOOK

In general, an entity has a condition associated with each

relationship in which it may participate.

For a particular entity occurrence this condition evaluates

to true or false according to whether or not the occurrence

participates in the relationship.

205

In one-to-many or many-to-many relationships, it is necessary

to attempt to quantify the "many". Thus for each relationship

in which it participates in a "many" role, an entity has

associated with it a population. Because data analysis itself

proceeds in a number of stages of refinement, it is desirable

to permit the expression of this population in several forms,

e.g.

* - many

m-n - range

m,n - average

n - absolute value

The population may depend upon a specified population condition.

For example, in

1 Vehicles °wned J I PERSON ~ VEHICLE

1
the population condition may be "any currently owned, or

owned during the past 5 years".

There may be any number of relationships between entities.

For example:

PERSON

Vehicles owne d

Sold by
f

Run-ove r by

Passenger in .~

Previous owners

Present occupants

VEHICLE

Shows only a small range of the known relationships between

person and vehicle.

For this reason, it is always important to write a clear

definition of each relationship when it is identified.

206

Relationships may exist between entities of the same type.

e.g.

VEHICLE

Involved in ~ ' I
accident w i t h ~

4.3 Method of Workin @

~ ebuilt using
omponents from

4.3.1 Develop and discuss a series of draft entity diagrams,

showing only:

Entity, Relationship/description.

4.3.2 Maintain in parallel a working set of entity and relationship

descriptions.

4.3.3 Commence for each entity a list of important attributes.

4.3°4 Develop this material by examining in turn each of a series

of the most important application systems. Check-out the

interaction of these by discussing the overall diagram with

line management at a sufficiently high level for there to be

a broad understanding of all the features.

4.3.5 Document what should happen, rather than what actually takes

place.

4°3.6 When entities and relationships seem fairly stable and well-

identified, refine and augment the data model by showing in

diagram form:

. Entities, identifiers

Relationships, description, populations and conditions.

Such a digram can be called an entity diagram or entity model.

4.3.7 Supporting documentation should now include:

Entity Definitions.

Attribute lists for entities°

Attribute definitions, including meaning of coding systems.

Relationship descriptions, populations and conditions.

An overall name-directory, showing entities, attributes

and relationships, organised for easy reference.

207

4.3.8 The complete set of information required to document the

corporate data model is:

Entity Data

Definition

Ownership

Name, description, synonyms,

existence rules

Where appropriate, that division of the

organisation responsible for all occurrences.

Statistics

Relationships

Integrity

requirements

Archival

NB Ownership is more often appropriate to

specific occurrences; this is an

application-dependent requirement.

Expected population

Overall growth rate

Degree, sequence, nature/meaning

Privacy

Availability

Number of versions or time-span to be

covered

Of these elements, only definition, relationships and

approximate statistics are relevant to initial formulation of

the entity model.

Attribute Data

Definition

Ownership

Statistics

Relationships

External formats

Integrity

Controls

Name, description, synonyms, existence rules,

data type and characteristics, coding

structure, permissible time-lag between

event and updating of the value.

(Where different from the entity).

Expected population

Overall growth rate

Cross-reference to entities

Derivation/consistency rules

Inputs, outputs

Privacy, Availability, Valida£ion rules,

Default value, Tolerance on accuracy.

Of this data, only definition is relevant to formulation of

the entity model.

208

Relationship Data

Populations if l:n or m:n.

Conditions under which entity occurrrences particpate.

Conditions governing populations.

Description of the relationship.

5.

5.1

FUNCTIONAL ANALYSIS

Objectives

To identify and define the requirements for particular

application systems.

To produce for each system identified:

i) A functional requirements definition.

ii) A definition of the data model appropriate to the

application function.

iii) A definition of likely ranges for system performance

and usage traffic.

This section concentrates on items (ii) and (iii).

5.2 Relation to Other Processes

This consists of definition of the processing requirements of

each application function, and definition of the associated

conceptual data model. This process proceeds in parallel

with data analysis, and close co-ordination is necessary.

It is taken as read in this paper that initial selection of

application areas is subject to rigorous examination by senior

management. A system is only developed if its value outweighs

the cost of having it; in the (normal) situation of making

optimum use of scarce resourcest the systems having highest

urgencyt and the most favourable value/cost ratios are of

course those developed.

209

5.3 Describ£ng the Functional Data Mode !

Each functional data model will be a subset of the corporate

data model, with additional information added, concerning:

- patterns of usage;

- access paths;

- attribute subsets actually used;

- sequencing and selection criteria.

In detail, for each entity, and for each function in which

it is accessed, information required is:

Attribute subset accessed

Frequency How often, hit distribution

Turnaround Time, tolerance

Access paths Relationships used, key attributes,

ordering, selection/search criteria

Traffic by

access path

Retrieval rate, Creation rate, Modification

rate, Deletion rate.

Integrity

Controls

(over and above those defined in data

analysis).

Of this data, attribute subset and access paths are relevant

to refinement and validation of the entity model; the

remainder have more bearing upon database and storage design.

For each attribute, and for each function in which the

attribute is used as a data item:

Us age Source, destination, usage mode

Traffic Retrieval rate, Creation rate, Modification

rate, Deletion rate.

Input format

Output format

Internal format

Integrity

Controls

Relationships

210

Decoding

Report heading~ editing, encoding

Base, scale, precision

(Over and above those defined in

basic data analysis).

Derivation/Consistency rules.

Format information is relevant to potential generation of text

or code from the information if it is stored in a data

dictionary system.

5.4 Functional Data Model Diagrams

The entity diagram for the relevant subset of the corporate

data model should be augmented to show:

Access paths, sequencing and selection criteria,

keys, approximate populations, approximate access traffic.

The remainder of the information specified in 5.2 should be

documented in narrative or tabular form.

6.

6.1

VALIDATION AND REFINEMENT OF THE DATA MODEL

Purpose

Although the specification of corporate and functional data

models is co-ordinated, their features are present for

different reasons, and they may be inconsistent in several

ways. For this reason they should be cross-checked rigorously.

211

It is also desirable, having developed these models on a

necessarily partly subjective basis, to apply relevant formal

methods of analysis to the results. In this way it is possible

to find the simplest versions of the data structures.

6.2 Stages of Validation and Refinement

i) Completeness

Does the corporate data model contain features to

accommodate all required functional data models?

ii) Consistency

Is the c.d.m, self-consistent?

Is the c.d.m, consistent with each f.d.m.?

Is each f.d.m, consistent with all the others?

iii) Access paths

Access paths and their relative importance should be

represented in the c.d.m. Relevant features of an

access path are:

- Traffic for - add, modify, retrieve, delete.

- Search keys

- Selection criteria

- Population from which selection is to take place

- Sequencing requirements

iv) Normalisation

Reduction of data structures to 3rd normal form is a

powerful tool for elimination of unnecessary complexity,

and for finding the simplest possible form of those

structures.

However, such a form is not necessarily the clearest

or the most appropriate either for end-users or for

programming. Hence after normalisation has been

carried out, it may be appropriate to "de-normalise"

the structures by recreation of hierarchies and

repeating groups, where this can be firmly justified

on the grounds of usefulness and clarity.

7.

7 .1

212

SYSTEM DEFINITION

Objectives

This is the stage at which a particular system is designed at

an overall level. Constitutent work units are identified, and

are embedded in a control framework which constrains the

system to operate in a meaningful manner.

7.2 Identification of Processes

"Natural" units of work are identified from the requirements

specification. These units, as yet, bear no relation to

computer programs, but instead represent the user's view of

specific integral jobs which the system is performing for

him.

Examples of processes are:

production of a report;

. the application of a specific transaction to the

database;

the computation, e.g. of a sales forecast, according

to a specific algorithm.

Characteristics of processes are:

they operate upon data; thus process inputs and

outputs are "logical records", which may be:

transactions, reports, units of the database,

transient data item groupings in memory.

Thus also W the operation of the system may be represented by

a data flow chart showing related processes and their

connecting data paths. (Figure 3.1 in Section 3 is an

example of such a flow chart.)

Where there is value in doing so, processes may be themselves

subdivided into processes; (e.g. considering the example above

of processes, production of a report may consist of

computation of a number of forecasts, and their ranking in

some order).

213

The subdivision of processes in a data-flow sense loses its

values at a point where:

the units of work lose meaning for the user;

the relationships between the units of work is more

strongly that of a procedural or scheduling nature.

7.3 Design of System Behaviour and Controls

Knowledge of the user's expectations of the system permits the

design of a logical framework into which the system processes

can be fitted, and which will control their operation in a

secure manner.

Particular attention should be paid to useability of those

system control parameters provided for users.

7.4 Specification of Processes

English plus decision tables is the most appropriate specification

medium. Data flow diagrams are also appropriate, but

procedural diagrams and charts should be eschewed except where

vital, because they tend to impose premature design decisions.

Essential scheduling requirements between and within processes

must be identified and fully defined at this stage. A strong

mandatory scheduling relationship between work units indicates

that they should be regarded as part of a process.

Care should be exercised to avoid jumping the gun on detailed

design work through inclusion at too early a stage of "how"

decisions on mechanisms for achieving the results required of

the processes. However, certain "how" decisions are appropriate

at this stage: e.g. selection of computational methods of

performing forecasting or optimisation calculations which are

integral parts of the system. Such decisions are necessary at

this stage because they affect the system's behaviour towards

the user, and have an impact upon the data models.

214

7.5 Specificati0nof Constraints

The value of each process to the system should be ascertained;

some processes are optional, and inclusion of these has to be

justified. For each function performed, there may be

alternative options~ e.g. simple or sophisticated.

Some form of ranking based on priority, cost and flexibility

should be carried out, in order to select the actual

constituents of the first version of the system, and to lay

the guidelines for subsequent development phases.

Tolerances of ranges should be defined for:

accuracy of results, performance, consumption of resources

(both development and operating), scheduling.

8. PROGRAM AND RUN DESIGN

8.1 Objectives

The primary aim of this stage is to select suitable groupings

of system processes, to be formed into programs and program

sequences. The resulting work-units are intended to make

effective use of the resources of the computer by, for example,

avoiding unnecessary repeated transfer of data, whilst at the

same time meeting the performance requirements specified.

8.2 Method

Each system process should have defined:

i)

ii)

iii)

iv)

Usage frequency;

Desired turnaround time;

Data access requirements, including sequencing;

Scheduling relationship to - date/time,

- other processes.

215

There is a trade-off to be exercised between keeping processes

separate, which makes inefficient use of the computer, but

which retains flexibility, and the binding together of

processes into programs which can make more effective use of

the computer, but Which will need to be redesigned if new

processes are introduced.

Stages of the procedure are:

i) Choose program groupings according to:

I/O - Database access

- Non database "batch" I/O; TP message handling

Scheduling Functions

ii)

iii)

iv)

Common service functions

Liability to be invoked in a co-ordinated manner

(i.e. function occurrences part of the same process).

Close similarity of associated functional data

models

Similarity of scheduling requirements - e.g. end-month.

Specify inter-program scheduling relationships;

Specify overall frequency and scheduling requirements;

Specify the data-access needs of each program in terms

of:

- subset of the schema data model,

- access paths,

- sequencing,

- selection criteria,

- frequency of access.

9. SCHEMA DESIGN

9.1 Objective

The aim is to design an effective implementation view of the

corporate data model. The effectiveness is judged in teinns of:

Clarity and appropriateness

The provision of facilities to enable the definition

of effective forms of the necessary sub-schemas.

The schema's suitability as a basis for the definition

of an efficient storage structure.

216

9.2 Relationshi~ Between Design of SCHEMA and S UBSCHEMA

The details of the method for SCHEMA design are dependent upon

the nature of the file-handler or DBMS in use. In particular,

if a conventional file-handler is used, the drawing of meaningful

distinctions between

- SUBSCHEMA

- SCHEMA

- Storage

may prove difficult.

The simulation of sub-schema using a conventional file handler

is described in 10.2.

In this section~ design methods are proposed which are appropriate

to use in Codasyl-type DBMS. (CODASYL DDLC 1973).

The Schema must be designed in principle before subschemas can

be designed. This is because the choise of structural faci$ities

in a Codasyl SUBSCHEMA is limited to those already present in

the SCHEMA. At the same time, one of the main inputs to SCHEMA

design is a definition of the needs of those SUBSCHEMAS.

Hence it is most likely that there will be several cycles of

iteration between schema and subschema design before

satisfactory designs are achieved.

When modifying the SCHEMA in response to altered or new

SUBSCHEMA requirements, care must be exercised to avoid changes

which would invalidate other existing SUBSCHEMAS. In particular,

it is necessary to take great care to avoid subtle changes,

which would leave the SUBSCHEMAS and DML syntactically valid,

but which would alter the semantics.

217

9.3 Method for Design of a CODASYL SCHEMA

9.3.1 Translation of the entity representation of the corporate data

model involves exercise of the following choices:

Representation of entities:

- as record-types,

- as several record types, associated in some way,

- as group items within a record type.

Representation of relationships:

- as set types,

- as several set types, possibly with additional

record types, e.g. as is required for many-many

relationships,

- as repeating groups,

- as loose associations of records, e.g. by common

search keys.

Association of attributes with entities.

9.3.2 The information produced in the design process can be classified

by :

a) To be

i)

ii)

iii)

b) To be

e.g.

encoded in schema DDL

Relevant to structure e.g. RECORD, SET, AREA

Relevant to mode of use e.g. ORDER, KEY

Relevant to storage design e.g. LOCATION MODE,

ACTUAL, VIRTUAL

documented for reference by application programmers.

Record occurrence rules

Record retrieval modes

Record selection rules

Processing necessary to maintain consistency when

each record is STORED, MODIFYed or DELETEd.

A subset of the type a) information can usefully be shown in

diagram form. Successive, not necessary complete, forms of

such a diagram can be used as working notes during the design

process.

218

9.3.3 Choice of Records and Sets

The most basic choice in SCHEMA design is ~'what are to be

the record types and set types".

Stages:

i) Make each entity-type a record type, including all

attributes of the entity data items within the record.

Represent relationships between entities as set types.

ii) Many-to-many relationships, treated as in (i) above,

will yield a record/set structure which is invalid in

a CODASYL DBMS. This is overcome by breaking any such

relationship into two one-to-many relationships,

possibly making use of an additional "intersection"

record, as indicated in Section 4.2.

It is possible that several alternative structures will result

from stages (i) and (ii). There is no harm in this; the

alternatives should be carried forward until there are grounds

for choosing between them. The design (or designs) represent

a "first draft" and are now subject to a number of stages of

refinement.

iii) Where different subsets of the attributes of an entity

have different access needs (i.e. are used in different

subschemas, and/or have different access paths), consider

their division into 2 or more record types.

NB Data items common to these record types are redundant,

and must be kept consistent in some way.

iv)

v)

Where~ within a record type, there is a repeating group

which has a larger variable population, it may be better

to make the elements of the repeating group the member

records of a set, and thus make the DBMS responsible for

the space management problem.

Where record types are very small, and several record

occurrences are commondly accessed together, then it may

be worthwhile to consolidate record types, so that the

structure is represented by group items within a record

type.

219

vi)

vii)

Where a relationship is used rarely or not at all it

may be that the overheads involved in sets are not

justifiable. In this case, the set-type can be

eliminated. Instead, the record occurrences can be

associated by a selection process based on like data

item values.

Grouping of several record types by making them members

of the same set type is appropriate where this reflects

the common patterns of access.

9.3.4 Choice of declared record keys, and record sequences in sets~

is governed by the most popular sub-schema usage.

9.4 Information from Data Analysis

Choice of record types, and of the access paths to them, is

governed by the relative frequency with which a group of items

is accessed in a particular manner.

Thus an analysis procedure is required which:

i) For each item, determines the relative popularity of

different access paths to it.

ii) For each access path, lists, ordered by popularity,

the data items to which access is requested.

Storage structure design (Section ii) requires that these

figures should be dissected by:

i) Type of access -

batch, where economy of resources is paramount

online, where response time is paramount

ii) Insert/delete/modify/retrieve operation.

220

i0. SUBSCHEMA DESIGN

10.1 Objectives

The aim of this stage is to achieve a program-view of data

which is:

i) Appropriate to the needs of the program.

ii) Unlikely to be sensitive to alterations in other

systems, the schema, or the storage structure.

iii) Consistent with the schema, and derivable from it.

10.2 Method

10.2.1 Using conventional data , man agemen ~

By "conventional" is mean any system in which programs normally

access directly real files resident on backing storage.

i) For each record-type in each file on backing storage~

write a subroutine to perform each of four functions:

- create;

delete;

- modify;

read.

These subroutines should embody any processing

necessary to maintain consistency.

ii) Design the program view of data, including selection

and search procedures.

iii) Define the data mainpulation operations to be carried

out by the program.

iv) Write subroutines for (ii), using (i) as primitive

operations.

i0~2o2 Using a Codas~l style DBMS

The problem is to translate a sub-schema requirement, framed in

terms of access to the entities in possibly several functional

data models~ into a record/set subschema, with associated

access path details.

As stated in Section 9, Schema and Subschema design are closely

interrelated.

221

Select a subset of the schema which most closely meets the

subschema needs. (This is probably best shown in diagram

form, based upon the conventions shown in Figure 9.1).

If this is unsatisfactory, determine whether the discrepancy is

to be met by modification of the schema, or by special purpose

programming to derive the desired data from a feasible

subschema.

Any modification of the schema should be subject to the

safeguards mentioned in Section 9.2.

There will always be a certain amount of processing which cannot

be expressed in schema or subschema DDL.

This falls into two classes:

i) Processing which is generally applicable to operations

carried out on a particular part of the database;

e.g. maintenance of consistency when a particular

record is created or deleted. This is best embodied

in general purpose subroutines, which are made

available as part of the database documentation.

ii) Processing which is specific to a particular program;

e.g. selection criteria applied on a particular access

path.

Both sorts of special purpose processing should be clearly

documented; the latter may be shown on the subschema structure

diagram.

ii.

ii.i

STORAGE STRUCTURE DESIGN

Objectives

The aim of this stage is to design a representation of the

database on backing storage which efficiently meets the

specified pattern of access and usage, and which also keeps

within specified constraints upon use of resources.

11.2

i1.3

222

Statistics Required

The performance of the overall combination of database, DBMS

and application programs is expected to be "optimal" in

some way.

Some combined function of:

- backing storage;

- main storage;

- channel time;

processor time;

is to be minimised.

Of these only backing storage is not dependent upon usage traffic.

The two necessary sets of information for the design process

are:

The relative weightings of the four main resourees

to be conserved.

Statistics defining:

- for each database record

frequency and hit distribution of:

add;

delete;

modify;

retrieve operations

- for each access path used in the database,

frequency of use in each of batch and on-line modes.

Method of support__for access paths

Access paths should be ranked according to their level of usage.

The most heavily used paths should then be given highest

priority for efficient access.

On-line access paths require rapid response, possibly at some

cost in consumption of resources. Batch-mode access paths

require support at a minimal consumption of resources, at the

expense of elapsed time if necessary.

11.4

223

Heavily used access paths should be supported by appropriate

indexes and pointer mechanisms where the accompanying overheads

can be justified.

Summary of Choices

For a Codasyl-style DBMS, the range of choices which must be

exercised at the stage of storage design are:

Database Access Strate~[

Record placement mode - CALC or VIA.

Record retrieval modes to support, and how efficiently.

Real or virtual representation of derived data.

Set representation mode and linkage options.

Indexing.

Search keys.

Storage Usage

AREA placement.

Schema record to storage mapping;

- data item representation,

- data item distribution.

Storage Characteristics

Device type.

Page size.

Space allocation;

- amount of overflow,

- growth rate.

224

ACKNOWLEDGEMENTS

Although the impetus for this work has come from several years

experience gained on a variety of projects, the encouragement to

document it in its present form occurred while the author was

under contract to the Ministry of Defence. Thanks are due to

my MOD colleagues for this encouragement.

The author is also especially indebted to Bill Waghorn of SCICON

and Ian Palmer of CACI, who have both contributed significantly to

the ideas through extensive discussions. For comments upon drafts

of this paper, thanks are due to many colleagues within the

Ministry of Defence, and ICL.

REFERENCES

i.

2.

3.

4.

5.

6.

7.

ANSI X3 SPARC/DBMS Study Group Interim Reports

February 1975.

CODASYL DDLC Journal of Development 1973. Revised 1975.

CODASYL COBOL JOD as modified by the DBLTG Database

Facility Proposal, March 1975.

Brown, A.P.G. "Entity Modelling" IFIP TC/2 Conference 1975

(Pub. North Holland Book Co.)

Robinson, K.A. "Description of stored data, using modified

NCC Standards"~ Private communication, 1974.

Bramhill, P.S., and Taylor G. "Database Design. From Codd

to Codasy!". To be published in "Database Journal", 1976.

BSC/CODASYL DDLC DBAWG June 1975 Report.

