
COMiVKINICATION AND SYNCHRONIZATION TOOLS

IN A DISTRIBUTED ENVIRONMENT*

H. Le Goff, G. Le L~nn

IRISA~ Universit6 de Rennes, BP 25A

35000 Rennes, France

Key words : conjurer networks, distributed systems, communication protocols, flow

control, resource utilization.

Characterization of a distributed environment

Most of ee~puter systems are operated and controlled from a central unit which

is in charge of ronning an Operating System. This kind of architecture is not flaw-

less : it is not easily expandable~ not very efficient because of ~he potential

bottleneck at the central unit level and is highly vulnerable.

Multiproeessor~ were first designed to speed up computation, by taking advantage

of the J_nherent parallelism of these machines and to increase their reliability. We

see now that they have the potentiality of being operated in a decentralized mode.

Nevertheless, in most eases, some kind of centralization can be found inside these

multiproeessors : one processor is monitoring the others, internal communications

are possible only through the common n~nDry space, all the tasks to be r~mn are queued

up in a unique location, and so on.

* This work was s--uppo~<ed by the Direction des Recherches et Moyens d 'Essais,
Minist~re de la D~fense, contrat n ° 74/540.

51

Up to now, the best examples of real distributed systems are coni]uter networks

[1], [2], [3]. Oomputer netmDrks behave according to some specific sets of rules

called Protocols which relieve network processors from the need for a central "con-

troller" in order to perform their own tasks. As will be shown later, processors

having equal rights and equal responsabilities are said to belong to the same func-

tional layer and this decomposition leads to a hierarchical architecture.

We think that centralized and distributed systems differ from each other on two

important points :

- ~ntities willing to cona~anicate do so directly in a distributed system, instead

of referring first to a unique monitoring process which is then responsible for

establishing co.~munications.

- it is meaningless to define the "state" of a distributed system.

The cannunieation and synchronization tools to be described in this paper are

intended for general purpose computer net~orks and are not tied to a specific system.

These tools can thus be used in any distributed system, whatever its size.

Se_~ers in a d is_tributed system. The transp~cy concept

Locating a process in a distributed system like a computer network is a many

Solutions problem~ each of these solutions having some drawbacks. For instance, pro-

cesses can be accessed by the means of physical addresses ; in that case, users have

to be aware of the existence of all processes (updating problems) and are bound to

the naming convention of the hosts where these processes reside ; processes are not

allowed to migrete on different hosts and their availability is thus directly depen-

dant upon the host's failures ; furthermore, fair load sharing is very hard to achie-

ve °

~other solution is to access processes by using logical names. One then must be

able either to handle d.irectly logical names or to map logical names into physical

addresses ; ~e first solution has been chosen for the DCS network [4] where logical

names are recorded into associative ~/nories distributed over a ring topology allow-

ing for natural broadcasting ; the second solution is used in t/%e Cyclades subnet-

work [5] in which a Transport Station nmne is translated into a physical node address

by accessing a table.

52

In that latter case~ the number of processes has to be kept rather s~all in or-

der~ to avoid large search times. Consequently~ this approach does not seem to be

workable with private user processes because of their dynamically evolving nature.

On the central, this solution is quite appropriate for standard processes like sys-

tem Loggers, Compilers or library Subroutines which we call Servers.

Assuming now that many different Servers perform a specific service, for instan-

ce NLED (*) Compilation, we a~e faced with the problem of selectin~ one of the Servers

when receiving a corresponding request. 1~ne user issuing the request has to be kept

unaware of that situation for many reasons ; first of all, he is surely not interes-

ted in that problem because he is currently trying to solve ~not~er one ; second, if

we want the user to be provided with a good service, we have to achieve automatic

load sharing and the user is obviously not the best person to perform that internal

balancing ; third, Servers failures should be ignored as far as the user is concerned

and this is also directly related to load sharing.

This is what we call transparency and some methos are currently being investiga-

ted which allow for a decentralized allocation of resources [7], [8] and internal

load sh&ging into distributed systems [6] ; a diffusion technique, similar to the

Arpanet adaptive routing mechanism has been proposed for distributed network topolo-

gies ; another scheme, the circulating vector technique, is based on the virtual

ring concept and is usable on any physical topology.

With these methods, automatic selection of one server an~ng many is possible ;

the current physical location of that server is then notified to the user and from

this point, oon~.~±nication and synchronization between the user and the server pro-

ceed on a conventional point to poLnt basis.

In what follows it will be shown how communication a~id syncklronization are per-

formed for a specific class of processes in a computer network. Evaluation of a very

general flow control mechanism has been undertaken ; a conflicting optimization case

is then reported which is very s~miler to some situations observed in hierarchical

and centralized Systems.

(~)Nicest Language Ever Designed, precisely the language you are in love with.

Interprocgss communication and >vnchronization in a cc~guter network

In conventional systems, processes willing to exch~e data do so according to

pro-defined rules. Most of the time, implicit assumptions are made ; for instanoe,

<he data exchange is error free. In computer networks~ stronger constraints have to

be dealt with : data may be corrupted during the transfer, time references are not

identical for the sender and the receiver, a common physical space is not shared by

the sender and the receiver, data transmitted are not kept is sequence.

Consequently, a good transmission tool is such that :

- no desynohronizationmay occur betweenthe conmunicating processes

- transmission errors are rapidly detectedand corrected

- flow control is performed efficiently.

As a result, for the processes, the transmission delay will be mininmm and the

available throughput will be maximml [9].

Communication ne~rks handle sts~ndard data blo~s called packets. Packets are

size-limited for many reasons and the ~ size value depends on the transmission

medium characteristics.

PROCESS LEVEL

b TRANSPORT NETWORK LEVEL

L : Letters ,,

F : hardware Frames
LINE LEVEL

line handler

-- _ ~ virtual commmication, ~ real or virtual communication,
Internal Protocol External Protocol

FIGURE 1

54

User processes exchange data records called Letters ; Letters which do noz fit

into one packet have to be fragmented before being transmitted and need to be reas-

sembled before delivery ~ a fragment of a Letter is called a Message (see figure 1).

Processes are run on physical hosts and several processes ~y initiate simulta-

neous con~num~cations from one host ; moreove_~, any given process should be allowed

to handle many concurrent com~anications too. Then the need for a multiplexing/de-

n~itiplezing function and for an activation/ter~d_nation function.

How can transmission errors be rapidly detected and corrected ? Each packet

carries some extra-information allowing for error detection (CRC, for instance). The

receiving process is then able to ask for a transmission if needed. But this does

not work if packets are lost ; ermther scheme has to be devised. Most of conLm~nica-

tion Protocols use a Timer + Positive Ac~owledgment mechanism ; for each packet, if

a preset tJJne inte~Ja! has elapsed before receiving the corresponding acknowledgment

then a retransmission of this packet takes place. Obviously if timeout values are

too short or packet transmission delays are sometimes too large, duplicates of pa-

ckets will be created. These duplicates must be detected. This is an easy task if

only one packet at a time is travelling between two processes ; an alternate number-

ing scheme may be used in that case. For the sake of efficiency, some "anticipation"

should be allc~Ted and many packets may be outstanding on the vir~aal path existing

between two processes ; such a path is called a Liaison. Unique identification of

Letters on a Liaison is th~n achieved by the means of a cyclic numbering scheme, the

cycle value being SUch that no confusion may occur.

One upper limit for the number of outstanding packets is given by the cycle va-

lue. Another one is given by the amount of buffers allocated by the receiving pro-

cess. Flow control purpose is to monitor this par=meter dynmrically and to adjust

the output rate of the sending process to the variable input rate of the receiving

process.

All these functions are standard requiremenzs as faro as processes are concerned

and should be made available on any given host. The corresponding software is called

a Transport Station (TS). Processes willing to commlnioate with each other do so by

accessing thefo local TS. Control of actual transmission is performed by the means

of a Transport Brotocol.

Si~ulations performed for the Cyclades project [10] showed that desynchroniza-

tions cammot be totally avoided when. open.ing or closing a Liaison ; it was shown al-

so that absolute credit values should not be used in flow control ; credit values

are said absolute when not refering to a specific location in the data fn_ow. An

example of desynchronisation is given on figure 2, This uncertainty requires a

layered approach in which desynchronizations at a given level can be detected and

55

[
OPEN

RECEIVED

OPEN

RECEIVED

USER REQUEST

~(S~D AN "0PEN")'~

USER TERMINATION/
T IME-°UT

(SEND CLOSE)

CLOSE

RECEIVED

~ TIME-0UT ~

HOST A

STATE

US1 REQUEST

(SEND OPEN TO B)

US1 TERMINATION

(SEND CLOSE TO B)

D

D

OPEN RECEIVED FROM B

(MESSAGE IGNORED)

TIME-0UT

T~_nnS!_so~_!s_c_~SE_n
FIGURE

] O : STATE

USER REQUEST : EXTERNAL STIMULI

(SEND AN "OPEN"):RESULTING ACTION

USER TERMINAT I0~___

"I OR E~0R

J(sE~ A ,,cI_OSE6L ,J

CLOSE

RECEIVED

(SEND A "CLOSE") ~

HOST B

STATE

F]

Y
F]

CLOSE RECEIVED FROM A

(MESSAGE IGNORED)

- OPEN RECEIVED FROM A
- US2 REQUEST

,(SEND OPEN TO A)

THE LIAISON IS OPEN

56

~LA=x

J~

x-1 x ~ x+2

1 / / / / 1
t
ii
!
I <

window

#L = x+5
il
ml

x+4 ¢

1 / / / / 1 ,
1
t
I

buffer space at the receiving TS at time TO

(Messages x+l and x+3 missing)

Jl II :>
data f~ow

at time TI>TO~ the receiving TS sends Message ~, 5) to the sending TS

between T1 and T2>T1 : - reception of lezters/frag~rmnts x+l and x+5

- the user provides a new buffer

time at the

receiving TS
~LA : x+2

i

xx!xx xxlix x x xtlx x××i
!
!

~L = x+6

U
V / / / V / / /~ ii

I
I

window !

date ffo~

Le~nd :

XXX

///

~LA

received and acknowledged

received but not acknowledged

: last acknowledged reference

: upper limit allowed in reception for the receiver
and in tra~nsmission for the sender

Copies of unacknowledged Messages are kept by the sender for a

possible retransmission.

FIGURE 3

57

corrected at higher levels.

One widely accepted flow control scheme is the Window mechanism, first intro-

duced in Cyclades. With such a scheme, Messages sent on to a Liaison are given se-

quential references ; because of transmission failures or race conditions, resequen-

cing of Messages has to be performed by the receiving TS which acknowledges the data

flow up to the first missing Message (see figure 3) ; credits are indicated as incre-

mental values refer£ng to the last acknowledged refemence ; acknowledgments Messages

are periodically issued ; loss or duplication of these Messages do not lead to de-

synchronization.

In order to get a better JJlsight into the problem of designing interproeess com-

munication Protocols, description and evaluation of one INWG* proposal is how re-

ported. This Protocol, the ZE Protocol [11] makes use of the Timer + Repetition, Po-

sitive Acknowledgment end Window technique :

- errg_r con~_o_l

When fra~nentation is on (Letters not fitting into one packet), the ZE Protocol

requires one acknowledgment per whole Letter only. When a Letter is timed out,

the ZE Protocol provides for the retransmission of that Letter and all subsequent

Letters.

The ZE Protocol requires an agreement to be reached by the processes at the Liai-

son set-up time, on a cc~mmn Letter size ; then, the credit values are indica-

ted in Letters.

_E_va_lu_a~_ign__r_e_s_u!__t_s (figure 4)

The user throughput versus credit is a step function. If n is the Letter length,

the same throughput is achieved for all credit values included in the interval

[Kn, (K + 1) n[, K integer. This is due to the flow control policy requiring an

allocation of a buffer of size n before a transmission of a Letter takes place. Thus~

to achieve a given throughput, more space is needed as Letter size increase ; for

two different sizes n and m with n < m~ the ratio of the credit values required in

both eases to achieve the same throughput is smaller than ngn.

For small credit values, fop instance 700 octets, it is more efficient to trans-

mit short Letters (120 octets) instead of long Letters (480 octets). We felt necessa-

ry to investigate this phenomenon in more depth.

* International Network Working Group, IFIP WG 6.1

58

Throughput

(octel 3/sec)

Letter length = 120 octets

1500 r

i

I
1000

2

.--J

5OO
I

_ _ J
r

I

I

0 120 480

I

i

i I

i

i

i

i

i

960

Figure 4

Letter length = 480 octets

>

Credit values
(octets)

Optimal resource utilization

Both at the com~2anication neS~ork level and at the line level~ C~e important goal

to achieve is a good utilization of the offered transmission facility. Most of Nez-

work designers have agreed on a basic packet size ranging a~omnd 2000 bits. The fixed

overhead payed per packet transmission seems to be quite acceptable for su~. a size.

But what is the real overhead to be experienced when t~e full packet capacity is

not used ? This happens for instance wit~ ~nteractive traffic. Most of interactive

letters are short - a few characters - and obviously~ a variable fraction of the po-

tential throughput is wasted in that case. It is usually accepted that wasting the

throughput is the price to pay in order to achieve fast transmission, which is pre-

cisely the important criteria in interactive applications. But what delay and what

throughput ? If it is true to say that a short transmission time is important to the

user then, the right question to ask is how much of the throughput is wasted at the

user level too and not at the ccammaicatica network level. Optimization of that

latter level is another problem and global optimization of both the comma~nication

and the transport levels may turn out to be a tradeoff.

59

Throughput

(Letters/Time unit)
Letter length = 45 octets

30

20

10

0

f

J

J

P

O

J

J

J

J

D Q O O O ~ 6 O ~ ~ Q

, ~ >

0 15 19 30 Credit values
(Letters)

Figure 5

User Letters are handled by Transport Stations which are in charge of both error

control and flow control. Then, the highest achievable throughput is the one allowed

by the TS flow control mechanism.

Results of a simulation study are shown in figure 5 (several cases have been si-

mulated). Multiplexing several short Letters into packets has been tried against the

one Letter per packet case. These results indicate very clearly the existence of a

threshold value, T. Multiplexing is efficient only when credit values larger than T

are made available by the receiving TS ; for smaller credit values, optimal user de-

lay and throughput are achieved by not ~mltiplexing Letters into packets. This is

due to the fact that m~itiplexing letters into packets leads to longer packets which

are much slower than the one letter packets to travel across the various network

layers ; for the same reason, aeRnowledgments being transmitted with the reverse

traffic are slower to come back ; new credit values are carried with these acknow-

ledgments ; it may happen then that the sending TS having spent all its credits has

to wait for a future acknowledgment carrying a non-zero credit value before resuming

the letter transmission. This leads to a non-optimal throughput.

60

Interestingly enough~ the most realistic values for a credit on a Liaison are

values smaller th~n T ; this is even more obvious as several Liaisons may be in use

simultaneously between two Transport Stations.

thus, good utilization of a layer in a computer network may require some speci-

fic tools which are conflicting with the optimization of the adjacent layer. This is

a well known, situation in conventional structured Systems ; the same problem arises

in computer neW-works and distributed systems and some further works are needed in or-

der to determine what the real tradeoffs are.

Conclusion

In this paper, synchronization and conmunication tools designed to operate in a

distributed environment have been described. Good insight into their behaviour has

been made possible through simulation studies. ~hture Operating Systems may ~ve to

be run on distributed architectures m~d may need to include that kind of mechanisms.

Moreover, another class of problems has been reported which deal with the internal

control and the non-centralized allocation of resources into such distributed sys-

tems. The transparencyeoncept and some others currently being investigated may help

to build efficient distributed architectures.

61

References

[1] BARBER D., The European computer network project, Washington, ICCC 1972,

pp. 192-200.

[2] ROBERTS L., WESSLER B., Computer network devel0~7~nt to achieve resource

sharing, SJCC 1970, pp. 543-549.

[3] POUZIN L., Presentation and major design aspects of the Cyclades computer

network, 3rd Data Co~v~nieation Symposium, Tampa 1973, pp. 80-87.

[4] FARBER D. etal, The Distributed Computing System, 7th Annual ~EE Computer

Society International Conference, 1973.

[5] POUZIN L., Cigale, the packet-switching machine of the Cyclades com~uter net-

work, IFIP 1974, pp. 155-159.

[6] LE LA_NN G., Une approche des futurs r~seaux inforn~ti~, Congr6s Internatio.-

nal sur les Mini-ordinatenrs-et la Transmission de Donn6es, Li6ge 1975.

[7] LE L~ G.,],EG&RET R., Operating principles for a distr.ibuted ~i'~m,~cropro-

cessor, First Euro~cro Symposium, Nice 1975, pp. 219-222.

[8] LEHON A., NEG~2~T R. and LE LANN G., Di__stribution of access and data in Large

Data Bases, International Symposium on Technology for Selective Dissemination

of Information, Rep. di San Marine, 1976.

[9] LE GOFF H., PEDRONO R., Los Protocoles de Transport dans !es r~seaux ~ comam-

ration par paquets : presentation et @valu_ation, International Teleeomnunica-

tion Union, Gen~ve 1975 Symposium, pp. 3.5.6.1.-3.5.6.9.

[10] I~ LANN G., La simulation et le projet Cyclades, Congr~s Afcet Informatique et

T~l&conm~nications, Rennes, 1973, pp. 297-304.

[11] ZII~X~I H., The Cyclades end-to-end protocol, 4th Data Comnunication Sympo-

sium, Qu@bee City, 1975, pp. 7.21-7.26.

