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ABSTRACT 

We consider a multiperiod, additive utility, optimal consumption 

model with a riskless investment and a stochastic labor income. The main 

result is that for utility functions belonging to the set F, consumption 

decreases when we go from any sequence of distribution functions repre- 

senting labor income to a more risky sequence. It is shown that a 

concave utility function belongs to F if and only if its first deriva- 

tive exists everywhere and is convex. 
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I. Introduction 

The impact on consumption of increased uncertainty in future labor 

or capital income has been examined by a number of authors in the last 

ten years. As illustrated by Sandmo [23], the answers one gets are 

different in the two cases of uncertain labor income and uncertain capi- 

tal income. Therefore, in order to separate these effects, the models with 

random labor inc~e generally have one non-risky investment opportunity, 

and those with random investment opportunities have a deterministic (or 

zero) labor income. The model in this paper conforms to the above dichotomy. 

The only exception to that rule seems to be in Section 8 of Merton [14] 

which treats the case of a nondecreasing Poisson income stream, an expo- 

nential utility function, and two investment opportunities, one riskless 

and the other described by Brownian motion. 

Three relatively early papers which examine the random labor income 

case are the two-period models of Lelend [ll], Sandmo [23] and Dr~ze and 

Modigliani [5]. Their problem is: given the first period labor income 

Yl and the distribution function Y2 of the labor income in period two, 

choose consumption c I in period i, 0 < c I < YI' so as to maximize 

EU(Cl, (l+r) (Yl-Cl) + Y2 ). 

Assuming the utilities are additive, (U = u I + u 2) , Leland [ii, eq. 

(25) ] concludes that concavity and a positive third derivative imply that 

there is a decrease in consumption when going from the deterministic 

income case to the random income case with the same mean and an infinites- 

imal random element (such that a second-order Taylor approximation is 

valid). Sandmo compares parameterized versions of Y2 of the form 
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~Y2 + (I-~)E(Y2)' 0 < ~ < k, where k is such that the income remains 

nonnegative, and he demonstrates that c I is a decreasing function of u 

(and of risk) when U has decreasing temporal risk aversion. His results 

imply that in the case of a concave additive utility function, c I is a 

decreasing function of u when the third derivative is positive. In [5] 

Dr~ze and Modigliani look at the income and substitution effects of 

increased risk in labor income. 

The model that we will be working with is an infinite horizon 

additive utility model which the author used in [15]. There the main 

qualitative result was that for isoelastiC utility functions, consumption 

decreases when we go from the deterministic labor income case to the 

random labor income case with the same mean. In this paper we will show 

that for utility functions belonging to the set F (defined in Section 3), 

consumption decreases when we go from any sequence of distribution func- 

tions representing labor income to a more riskysequence where we are 

using increased risk in the sense of Rothschild and Stiglitz [20,22]. 

In Section 3 we show that a concave utility function belongs to F if and 

only if its first derivative exists everywhere and is convex. Therefore 

if a concave utility function is thrice differentiable, then it belongs 

to F if and only if its third derivative is nonnegative. It is an easy 

1 
exercise to verify that the isoelastic utility f~unctions, ~c 7, 7 < I, 

Y ~ 0, belong to F. 

In the random capital income case with an isoelastic utility function, 

the effect on consumption of increased risk in the return on capital is 

different depending on whether y < 0 or 7 > 0 (Rothschild and Stiglitz 

[21, Section 3]). Therefore we get the differing conclusions in the 
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random labor income and random capital income models with an infinite 

horizon that Sandmo observed in his two-period model. In [4], p. 354, 

Diamond and Stiglitz have further analyzed and clarified the effect of 

increased risk in the random capital income case with an isoelastic 

utility function using the concept of mean utility preserving increase 

in risk. 

In view of the importance of a nonnegative third derivative as 

exhibited in Leland [Ii] and Mirman [16, Appendix], it is not surprising 

that the third derivative is also the key condition in the model con- 

sidered here. Its import is made all the more plausible when we recall 

the certainty-equivalence results of Theil [25], Simon [24], and recently 

Duchan [6]. Essentially, their results state that with a quadratic utility 

function [third derivative zero) and linear state equation with an additive 

random disturbance, the decisions are unaltered if the random elements are 

replaced by their means. 

In Section 2 we consider the special case of an n period model with 

a quadratic utility function. In addition to showing that the higher 

derivatives of the optimal return function may not exist, this model 

serves as an example where the qualitative results of a two-period model 

do not hold for a multiperiod model. The general model is introduced in 

Section 3~ and, using some earlier results of Miller [15], the main result 

is established. 

II. A Quadratic Utilit~ MultiPeriod Model 

As described in the introduction, the effect of uncertainty on con- 

sumption has been investigated in both two-period models and multiperiod 
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models. The difference between analyzing the two-period and the multi- 

period models is that the multiperiod models require an induction step 

on some property of the optimal return functions of dynamic progranTaing. 

This induction step has been carried out in the uncertain capital incc~e 

case by Fama [7] with the property of concavity (he does not assume addi- 

tive utilities), by Neave [18] for decreasing absolute risk aversion, 

and by both Hakansson [8] and Mossin [17] for isoelastic functions. 

However, Hakansson [9] has given examples where the induction property 

does not hold and this section provides another. At the same time we 

show that the third derivative of the optimal return function may not 

exist even if that O f the utility function does. This motivates the 

definition of the set of functions F in Section 3. 

In order to describe the multiperiod quadratic utility model we 

define: 

x.: 
3 

the nonnegative amount of capital at the beginning of 

the period when j periods remain. 

R.: 
3 

u(cj): 

the nonnegative labor income received at the end of the 

period when j periods remain. We assume that the R. are 
3 

bounded by K, and allow no borrowing against future labor 

income. We let R. stand for the mean of R.. 
3 3 

the utility from consumption of c. when j periods remain. 
3 

We assume u(c.) = c. + bc.2 where b < 0. We also assume 
3 3 3 

that the point where u is decreasing, -i/2b, is very large 

relative to K and the problem parameters. 

r-l: the rate of interest. In this model we set r = i. 

Our objective is to determine the decision rule which maximizes 

N 
E( ~ u(cj)) . 

j=l 

Here, as elsewhere, E stands for expected value. 
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If we let V(x,j) be the optimal return function when capital equals 

x and j periods remain, then the terminal condition is V(x,0) = 0. 

Since we consume all the capital when there is one period to go as long 

as u is increasingt V(x, 1) = x + bx 2, 0 < x < -i/2b. 

For 0 < x < -I/2b - K, and j = 2, 

V(x,2) = max 
0<c<x 

max 
0<c<x 

E(c + bc 2 + V(x-c+R2,1)) 

E(c + bc 2 + (x-c+~) + b(x-c+R2 )2) . 

By concavity, the optimality condition is 

E(1 + 2bc - 1 - 2b(x-c+~)) = 0 , 

or c ~ (1) 
2 

subject to 0 < c < x. Since x, R2 ~ 0, the inequality c ~ 0 is always 

satisfied. If x ~ ~, then the optimal decision is given by (i). If 

x < % the best we can do is set c = x. 

Therefore for the two-period additive model we have the following 

result: the optimal decision depends only on labor income through its 

mean. 

obtain 

In order to evaluate V(x,2) we substitute the optimal decision to 

V(x,2) = K 0 + a0x + b0 x2 0 < x < % 

= K 1 + alx + bl x2 % < x < -1/2b - K 

where a 0 = l, b 0 = b, a I = l+bR 2, b I = b/2. 
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Thus V(. ,2) is described by two quadratic functions. Its third derivative 

is zero except at x = R2 where it is undefined and where the second deriva- 

tive is discontinuous. 

For 0 < x < -i/2b - 2K, and j = 3, 

V(x,3) = max E(c + bc 2 + V(x-c+~,2)) 
0 <c <x 

so that the optimality condition is 

1 + 2bc - I (a 0 + 2b0(x-c+y))dF(y ) - I (a I + 2bl(X-c+y))dF(y) = 0 

y:x-c+y < % y:x-c+y ~ R2 

where F is the distribution function of R 3. Let x = i0, R2 = 10.01, 

= i0 with probability one in case (a), and ~ = 6, 14 with probability 

one half each in case (b). In case (a), c = (i0 + 10)/2 = i0. In case 

(b), c = (30 + 12 + 14 + 10.01)/7 = 9.43. Therefore for the multiperiod 

model it is no longer true that the optimal decision only depends on labor 

income through its mean. 

One might wonder how this example could be consistent with the 

certainty-equivalence results of [6], [24] and [25] which apply in the 

multiperiod case. The answer is that those results require that there 

be no constraints on the decision variables. It is precisely the con- 

straint c ~ x which causes V(x,2) to be described by two quadratic 

functions. 

III. The Model and the Main Results 

Except for a more general class of utility functions, the model we 

consider is the same as that presented by Miller in [15], so that we will 

limit ourselves to the bare essentials and refer the reader to [15] for 
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discussion of the model. Unlike the example of Section 2, the periods 

are numbered chronologically and some borrowing is permitted against 

future labor income. Consider 

x,3J : 

r-l: 

the state of the system where x represents the 

capital at the beginning of period j. 

the rate of interest for both lending and borrowing 

where r > i. 

U(Cl,C2,C3.o-) : 

Y.: the nonnegative random income received at the end of 
3 

period j. It is convenient to divide Y. into certain 
3 

and uncertain parts by Y~ = y~ + R. where y~ = 
3 3 3 J 

sup{h:F.(h) = 0} and F.(.) is the distribution func- 
J 3 

tion of Y.. We also assume that the Y. are independ - 
3 3 

ent, but not identically distributed, that the means 

of Rj are  uniformly bounded, and tha t  ~i=l r - i y i  < ~" 

It is significant that we do not ass~ne that the Y. 
3 

are identically distributed, for otherwise the optimal 

decision in period j would depend on the value of x. 
3 

and not on j. 

D.: the amount of debt allowed in period j equals 
3 -i 

Zi= 1 r Y'+i-l°3 D. is finite by our assumption 
3 

above concerning the YS" Thus we allow the indi- 

vidual to borrow against certain future income 

and x. can take on values in [-D~,=). 
3 3 

c.: ~he consumption in period j. We require that 
3 

0 < c. < x. + D.. 
-- 3 -- J J 

the utility function for all feasible ci,c2..., equals 

~i-lu(ci ) Zi= 1 , where ~ is a discount factor between 0 and 1. 

We will restrict our attention to u e F where F is defined belov 

Definition. A concave function g:X+R, wi~h the convex set X ~ R, belongs 

to F if for every set of X i, ~i' i = l,.°.~n, satisfying 1'i -- > 0, ZX i = i, 

and ZX.d. = OF 
i 1 
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n n 

g(x I) - Z Aig(xl + ~i ) ~ g(x 2) - Z Aig(x2 + di ) 
i=l i=l 

where x 2 ~ x I, x 2, x I are in the interior of X. 

(2) 

In this paper x will be [0,®) or (0,~) if g is a utility function, 

and [-D.,=) if g is related to the optimal return function of period j o 
3 

The decision making takes place as follows. In period 1 the indi- 

vidual has x I units of capital. He decides to consume Cl, where 

0 < c I < x I + D I, and he receives a utility U(Cl). The resulting capital 

(or debt) grows to r(xl-c I) and a random income Y1 is received at the 

end of period 1 so that x 2 equals r(xl-Cl) + YI" In general starting 

from state (x,j) the new state is given by 

T(x,j) = (r(x-o) + Yj, j + l) . (3) 

By a policy 6 we mean a decision rule that specifies the amount 

c. = 6(x,j) that we consume given that we are in state (x,j). We let 
] 

f~ (x,j) be the expected value of U when using an admissible policy 6 and 

starting from state (x,j), and define f(x,j) = sup f6(x,j). 
6 

A policy 6" is said to be optimal if %, = f. The functional equa- 

tion of dynamic progra/mning is 

f(x, 9) = sup (u(cj) + aEf(T(x,j))) . (4) 
0<c .<x.+D. 
--3,3 3 

Some useful notation is 

h((x,j),c,v) = u~) + uEv(T(x,j)) 

(Av)(x,j) = sup h((x,j),c,v) . 
O<c<x+D. 
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Thus equation (4) can be written as 

f(x,j) = Af(x,j) (5) 

so that the problem of finding solutions to (4) is then equivalent to the 

problem of finding fixed points of A. 

An interpretation that can be given to the function h((x,j),c,v) 

is that it represents the expected return in a one-period model where 

the state is (x~j)g the decision is c, and v is the terminal reward 

function. In turn, (Av)(x,j) represents the expected return in the same 

situation when an optimal decision is made. Often the v chosen will 

be the optimal return function. 

Let v be fixedl and for a given state (x,j) let c*(x,j) be the (feasible) 

value of c which maximizes h((x,j),c,v). If both v and u are concave func- 

tions, then it is known (and also very easy to prove) that both 

c*(xFj) and x-c*(x,j) are nondecreasing functions of x . (6) 

In the event that there is more than one optimal decision we let c*(x,j) 

be the smallest such decision. 

In this paper we will ass~e that we are only considering utility 

functions such that a unique finite-valued f satisfying (5) exists. In 

[15] this question was examined in detail for the isoelastic functions. 

For example, with the log utility function it was shown that a unique 

finite valued f satisfying (5) exists if we restrict c(xj+D 9) < cj < 

(l-c) (xj+Dj) for any fixed c > 0. In order to go to the case here of 

0 _< cj _ < (xj+Dj) one needs to go through the exercise of showing the 

nonoptimality (with respect to f) of the newly admissible cj. The diffi- 

culty is that the basic papers of discrete dynamic progrs/m~L%ng, Blackwe!l 
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[I] and Denardo [3], require that the reward function be bounded over 

all admissible states and decisions, an assumption which is not satis- 

fied by any unbounded u. Only recently have techniques been developed 

which get away from this restriction (Lippman [12,13] and Harrison [10]). 

Fortunately, there is no difficulty whatsoever in the finite perioa case, 

so our results apply without qualification for all u e F. 

Theorem 1. A concave function g:X+R, where the convex set X c R, belongs 

to F if and only if the first derivative of g, g', exists everywhere on 

the interior of X and is convex. From Rockafeller [19, Theorems 23.1, 

24.1, 24.2 and Corollary 24.2.1.] the convexity of g' implies that 

(a) the right hand and left hand derivatives of g', g+ and g", exist 

everywhere on the interior of X, are increasing, and satisfy g+ >__ g". 

(b) for any x, y £ X, 

Y Y 
g'(y) - g' (x) = I g+(t)dt = I g"(t)dt . 

x x 

Proof. We first establish the "if" part of the theorem by showing that if 

the first derivative of g exists everywhere on the interior of X and is 

convex, then g belongs to F. We must show that (2) holds which we rewrite as 

~li[g(x I) - g(xl+~ i) - g(x 2) + g(x2+Ai)] >__ 0 . 

For any i, 

(g(Xl) - g(xl+di) - g(x 2) + g(x2+Ai)) 

XI+A i X2+A i 

: -J" g' (y) dy + ~ g' (y) dy 
x 1 x 2 

Xl+~ i ~y 

= _~ [g'(x I) +, 
x I x 1 

x2+Ai ~Y 

+ ~ [g' (x 2) + 
x 2 x 2 

g+[z)e~]dy 

g+" (z) dz] dy 
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using (b) of Theorem l, 

> -A i[g~(x I) - g'(x 2)] (7) 

~i ""z " since g+ is increasing. To see this inequality, observe that g+~ 2~ > 

g+ (z I) where z 2 is the same distance above x 2 that z I is above x I when 

A.l > O. If A.l < 0 then y < x I or y < x 2 as the case may be, and 

g+(z 2) > g+( 1 ) where z 2 is the same distance below x 2 that z I is below 

x I . Therefore 

Eli(g(xl) - g(x I + A i) - g(x2) + g(x 2 + Ai)) 

> -ZliAi[g ~ (~) - g' (x2)] = 0 . 

We begin the proof of the "only if" part by establishing that g' 

exists everywhere on the interior of X. Ass~e the contrary, that is 

for some x, the derivative does not exist. Since g is concave, both the 

right and left hand derivatives exist at x and we must have g+(x) - g'_(x) = 

k < 0, or 

lira g(x+•) - g(x) - g(x) + g(x-y) = k < 0 . 

y+ 0 Y 

Since g £ F we observe frcm~ (2) that (-g(x) + g(x+y)/2 + g(x-y)/2) is 

an increasing function of x. Consequently the derivative cannot exist 

for any x ~ < x which is inconsistent with the concavity of g. 

It remains to show that for any x 2 > x I in the interior of X 

and0<l <i, 

-g'(IXl+(i-l)x ~ + lg'(x l) + (1-1)g'(x 2) > 0 . 

The derivatives equal the right hand derivatives so that the left hand 

side equals 
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Z 
lim ~[-g(Ix I +(l-l)x 2 + y) + g(Ix I + (I-I)X 2) 
y+0 

+ Ig(xl+Y) - Ig(xl) + (l-l)g(x2+Y) - (l-l)g(x2) ] . 

The term in brackets is nonnegative, since by (2) 

g(lx I + (l-l)x2)-Ig(x I) - (l-l)g(x2) > 

g(~x I + (1-X)x 2 + y) - Xg(xl+Y ) - (1-X)g(x2+Y) . 

Q.E.D. 

We note that F is large enough to include utility functions u whose 

absolute risk aversion, -u"/u', is decreasing. This is true since u' is 

decreasing by concavity and therefore we must have -u" decreasing. 

We also want the result that if g ~ F and Z is any random variable 

with zero expectation such that Eg(Xl+Z) and Eg(x2+Z) exist (are finite), 

then 

E[g(x l) - g(Xl+Z) - g(x 2) + g(x2+Z)] >0, when x 2 > x I . (8) 

This follows from the definition of F if Z is a simple function. In order 

to go from simple functions to random variables we apply the same method 

of proof as that in Chung [2], Theorem 9.1.4. The result is also true if 

we replace x I and x 2 by x I + X and x 2 + X where X is a random variable, 

and if Z is a random variable such that E(zIx = x) = 0 for all x. Again 

assuming that all expectations are defined we get (by conditioning on X = x) 

E[g(Xl+X) - g(Xl+X+Z) - g(x2+X) + g(x2+X+Z) ] > 0 . (9) 

If X is a nonnegative random variable with a finite mean, then v(x) = 

Eg(x+X) also exists and is concave. If we let Z be the discrete random 

variable P(Z = Ai) = li, where Ai, li" i = l,...,n, have the properties 

of those same terms in the definition of F, and be independent of X, then 

(9) shows that v e F. 
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Next~ we examine the idea of increasing risk as defined by Rothschild 

and Stiglitz [20,22]. There they establish the equivalence of three 

measures of risk when comparing two random variables. The definition 

most useful for our purposes is that Y is more risky than X if and only 

if 

Y=X+Z 
d 

where = means "has the same distribution as" and Z is a random variable 
d 

such that E(ZIX = x) = 0 for all x. Clearly from (9) we have that if Y 

is more risky than X land all expectations exist) then g c F and x 2 > x 1 

imply that 

E[g(Xl+X ) - g(Xl+Y ) - g(x2+X) + g(x2+Y)] > 0 . (10) 

The proof of Theorem 2 starts with a lemma which establishes the 

induction step of the kind mentioned at the beginning of Section 2 for 

property of belonging to the set F. 

Lemma i. If u ~ F, then f ~ F. 

Proof. Our starting point is (5) which states that f is a fixed point of 

A. We have assumed that we are only considering utility functions such 

that a unique finite valued f satisfying (5) exists. It remains to sh~ 

that the range of A is contained in F, since this will imply that the 

fixed point of A is in F. 

It is known (for a proof in this particular case, see Miller [15]) 

that if g is concave then Ag is concave. We need to show that if g(x,j)~F 

(and hence is concave) then the concave function Ag satisfies 

n n 

Ag(Xl,9) - Z liAg(xi+Ai,j ) -Ag(x2,J) + Z liAg(x2+Ai,J) >__ 0. (ll) 
i=l i=l 
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i 
Let c l, i = l,...,n, be the optimal decisions (with respect to g) for the 

states x I + A i and c 2 and c I be the optimal decisions for the states x 2 and 

x I respectively. From (6) we know that c 2 ~ c I and x2-c 2 ~ Xl-C I. Let 

i 
c2, i = l,...,n, be the decisions associated with the state x 2 + ~i, and 

be given by c~ = c2-cl+c ~. They are feasible (0 ~ c~ ~ x2 + Dj) since the 

i 
c I are feasible, c 2 ~ Cl, and x2-x I ~ c2-c I. 

We have that 

AgC~ l+A i , j ~  = u ¢ c ~  + o~-.,g(~ 1 + A i - c~ + Y j ,  j + l~  , 

i 
and similar equations hold for x I and x 2. Since the c 2 may not be optimal 

Ag(x2+~i,j) ~ U(C~) + eEg(x 2 

i i i 
Let 41 = Cl-C .z = c2-c 2. By (7) 

+ A i - c~ + Yj, j+l) • 

• i(u , (Cl) - u'(c2) ) ulc l ucoi u c2  ÷ > - A  1 

since c 2 ~ c I and u ~ F. By the development after equation (9), the function 

v(x) = uEg(x+Yj,j+l) belongs to F. Therefore by (7) 

+ i 
(V(Xl-Cl) - V(Xl+~i-c~) - v(x2-c2) + v(x 2 ~i-c2 )) 

>-(Ai-dl) [v'(xl-Cl) - v'(x2-c2) ] , 

+ i 
since v c F and x2-c 2 ~ Xl-Cl, and (Xl+Ai-c~) - (Xl-Cl) = (x 2 Ai-c2) - 

i 
(x2-c 2) = ~i-~l. Combining the above equalities and inequalities we have 

that the left hand side of (ii) is greater than or equal to 

-ZI.[~(U'(C~)I ~ ~ - U'(C2)) + (Ai-A~)(V'(Xl-C l) - v'(x2-c2))] . (12) 
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If both c I and c 2 are interior points of their respective constraint 

sets~ 0 ~ c I ~ x I + Dj and 0 ~ c 2 ~ x 2 + Dj, then u~(c I) = v'(xl-c I) and 

u'(c 2) = v'(x2-c2), by the optimality of c I and c 2 and the fact that the 

derivatives of u and v exist everywhere in the interior. In this case 

(12) equals -Z/iAi[u' (c I) - u' (o2)] = 0. 

We will consider the boundary cases of c I = 0 or c I : Xl+D j and 

c 2 = 0 or c 2 = x2+D j by giving the proofs for the cases c I = 0 and c 2 = 0 

only. A similar situation arises in the proof of Theorem 2, and there we 

give the proofs of the cases c I = Xl+D j and c 2 = x2+D j only. 

One possibility at the boundary is c I at a boundary, say c I = 0, 

but c 2 is not. In order to apply (12) where c I is a left end point we 

need to verify that 

x+A. 

u(x) - u(x+A.)l -- > -/ Z[u+ (x) + fyx u+"(z)]dz 
x 

(13) 

for x = c 1. Since u is nondecreasing U(Cl) < lim u(x) . If U(Cl) < lim u(x) 

x+c I x+c 1 

then u+(c I) = +~ and (13) holds. If U(Cl) = lim u(x), then (13) holds 

x+c 1 
for x = c I since u~(cl) _> lim u w+(x) = lim u' (x) (Rockafe!ler [19, Theorem 

x~c I x+c 1 
24.1]) ~ and (13) holds (with equality) for all x > c I. Returning to the 

main argument~ the optimality of c I implies that u+(c I) < v' (Xl-Cl) and 

i 
clearly A 1 >_ 0 for all i. Therefore (12) is greater than or equal to 

if 
-Zli[A~v1(xl-Cl) + (Ai~Al)V (Xl-Cl)] - ZliAi(-u'(c2)) = 0 . 

The other possibility at the boundary is c 2 at a boundary, say c 2 

i i 
By (6) c I = 0, and therefore c I = c 2. Then (Ii) becomes 

=0. 

+ i 
V(Xl) - E1iv(x I Ai-c I) - v(x2) + ZXiv(x2+Ai-c~) • 
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This quantity is nonnegative since v(x I) - ZAiV(Xl+Ai ) - v(x2) + ZAiv(x2+Ai) 

+ i + i 
> 0 by (2) since v e F, and V(Xl+A i) - v(x I Ai-Cl) - v(x2+Ai) + V(X 2 Ai-c2) 

> 0 for all i since v is concave. Q.E.D. 

Theorem 2. Let u e F and XI,X2,... be a sequence of random variables 

describing labor income (case a), and YI,Y2,... be a second sequence of 

random variables describing labor income (case b). If for each i, Y. is 
1 

riskier than Xi, then the optimal amount to consume as a function of the 

state (x,j) in case a is greater than the optimal amount to consume in 

case b. 

Verifying the hypothesis of the following lemma leads directly to a 

proof of Theorem 2. 

Le~na 2. Let fx be the optimal return function in case a and fy be the 

optimal return function in case b. If d(x,j) = fy(X,j) - fx(X,j) is a 

nondecreasing function of x then the conclusion of Theorem 2 holds. 

Proof. By Lemma 1 we know that fX' fY e F. Let c* be the optimal deci- 

sion for state (x,j) with the optimal return function fx" For c > c*, 

h((x,j),c*,fy) - h((x,j),C,fy) = u(c*) 

+ uEfx(r(x-c*) + Y ,j+l)3 + ~Ed(r(x-c*) + Yj,j+I) 

- u(c) - ~Efx(r(x-c ) + Xj,j+l) - eEd(r(x-c) + Yj,j+l) . 

Since d is nondecreasing and c > c* we have that the right hand side is 

> U(C*) + ~Efx(r(x-c* ) + y.,j+l) 
-- 3 

- u(c) - ~Efx(r(x-c ) + Yj,j+l) 

> u(c*) + uEfx(r(x-c* ) + X ,j+l) 
-- 3 

- u(c)- uEfx(r(x-c) + X ,9+I) 
3 
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by (10) since r(x-c*) > r(x-c) and fx £ F, 

= h((x,j)~c~,fx) - h((x,j)~C,fx) > 0, since c* is optimal. 

Therefore the optimal amount to consume in case b is less than or equal 

to c*. Recall that in case of ties (which could not happen with strict 

concavity) we pick the smallest c. 

The following lemma from [15] is needed to establish that d is non- 

decreasing. 

Ler~ma 3. Consider the model in the case where YI,Y2f... are the random 

variables describing labor income (case b). Let v e F and suppose that 

v satisfies Condition A below. Then fy(X,j) - v(x,j) is a nondecreasing 

function of x. 

Condition A. Given ~ny two states Xl~ j and x2,J, x 2 > Xl, and decision 

c I for (Xl, j) , there is a feasible decision c 2 for (x2, j) such that 

(a) x 2 - c 2 > x I - c 1 

(b) (v(~,j) - h((~,j),cl,v) - v(x2,J) + h((x2,J),c2,v)) >0 . 

Equation (b) by itself is a necessary and sufficient condition that 

Av-v be a nondecreasing function. The proof of the lemma consists of 

verifying an induction hypothesis in order to show that Anv-v is non- 

decreasing, and using the fact that fy = lira Any. By Any we mean A applied 

n times to v. A2v = A(Av). 

Proof of Theorem 2. By Lena 2 and Lemma 3 we need to show that Condition A 

holds where we let v = fx" Let c~ and c~ be the optimal decisions for 

states (xl,J) and (x2,J) with the optimal return function fx" Given a 

_ . e 
c I we set c 2 c I + c 2 - c 1. 
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* > Cl, and x2-x I > c2-c I. Thus c 2 is * and * satisfy (6), c 2 Since c I c 2 _ _ 

feasible since c I is feasible, and c2-c I = c2-c 1. * _< x2-x I and (a) of Condi- 

tion A holds. 

Recalling that %= A%, the left hand side of (b) in Len~a 3 equals 

(U(Cl) + UEfx(X 1 - c~ + Xj, j+l) - u(c I) - UEfx(X 1 - c I + Yj, j+l) 

* s -- I - U(c 2) - C~fx(X 2 - c 2 + Xj j+l) + u(C 2) + UEfx(X 2 c 2 + Yj j+l)) 

> U(Cl) + ~Efx(X 1 " c I + Xj, j+l) - u(c I) - ~Efx(X 1 - C 1 + Xj, 9+1) 

- U(C2) - UEfx(X 2 - c 2 + Xj, j+l) + U(C 2) + Efx(X 2 - C 2 + Xj, j+l) 

(14) 

by (I0) since x2-c 2 >_ Xl-C 1 and fx e F. 

* * and we will show that (14) is nonnegative. Now let ~ = c2-c 2 = Cl-Cl, 

By (7)(U(Cl)- U(Cl)- u(c2)+ u(c2))>_-d(u'(cl)- u'(c2)), since u ~ F 

and c 2. _> c I. As in the proof of Lemma 1 we let v(x) = eEg(x+Xj,j) . Then 

v E F and (V(Xl-Cl) - V(Xl-Cl) - v(x2-c2 ) + v(x2-c2)) _> A(v, (x 1-cl)* - 

v' (x2-c 2) ). Therefore (14) is greater than or equal to 

~(u (c~l + v (~1c~) ÷ u (c~) v (x2 c~)) 

If both c I and c 2 are interior points of their constraint sets, then 

, * is at u (o~) = v C~l-C~.)  u (c~) = v ~x~,-c~) and ( l ~ )  equals , , e r o .  ",'f c., 

! * 

= * is not, then u' (c I) > v+(xl-c I) and a boundary, say c I x I + Dj, and c 2 

u'(c2) = , * v (x2-c2). Since A must be nonpositive in this case, (15) will 

* is at a boundary, be nonnegative. Here we use (13) as applied to v. If c 2 

Dj * V(Xl-C l) and say c 2. = x 2 + D.3, then c I must equal x I + , and v(x2-c2) = 

v(x2-c 2) = V(Xl-Cl). Then (14) becomes (U(Cl) - U(Cl) - u(c2) ÷ u(c2) ) 

which is nonnegative by the concavity of u. Q.E.D. 

(15) 
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