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I. INTRODUCTION 

The size of linear integer programming problems that can be suc- 

cessfully solved is generally not very large and only a relatively 

small number of integer variables can be considered. 

In fact the normally used packages are conceived for about 150-300 

variables. 

The techniques normally used to solve larger integer or mixed in- 

teger problems using a branch and bound search method, are based on the 

"penalty" approach and the choice of suitable lower and upper bounds for 

the optimal value of objective function. In order to obtain such bounds 

the Gomory's group theoretic methods together with Lagrange multipliers 

have been used in many works 11,2,3,4,5,6,7,8,13,15,16[. 

The solution procedure proposed in the present work makes use of a 

decomposition technique that generates a number of subproblems of the 

original one. 

Let the problem be written as: 

minimize z, 

T 
z = c x (I) 

S°to:AX=b 

x > 0, integer 

where A is a matrix of rank m of order mxn, (m<n), x and c are n-vectors 

and b is an m-vector. Further, let A be partitioned as B and N, B being 

the optimal linear programming basis. Vectors x and c are similarly par 

titioned into XB, XN, c B and c N, respectively. Without loss of general~ 

ty, assume that all the coefficient of A and b are. integer. (This is 

equivalent to assuming that A and b consist of rational numbers). 
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Expression (1) may be written as follows: 

minimize z, 

T T 
z = c B x B + c N x N 

s.t.: Bx B + Nx N = b 

XB, x N ~ 0, integers 

(2)  

where B is of order mxm and nonsingular N is of order mx(n-m), c B and 

x B are of order mxl, and c N and x N are of order (n-m) xl. 

Consider the linear programming problem (2) in the updated form 

(3) : 

minimize z, 

z = (CN T - c T B-IN)XN + cTB-Ib 

s.t.: XB+B-INxN = B-Ib 

x B , x N >_ 0 

(3) 

The optimal conditions of a linear programming problem, 

T T -I 
N ~ 0, must be satisfied, and the non integer optimum is XB=B-Ib CN-CBB 

and x N= 0. In all but trivial cases, B-Ib will not be all-integer. 

Therefore the strategy for finding an integer optimum will be to 

examine certain solutions of the set x N ~ 0 and integer. 
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2. THE GROUP THEORETIC APPROACH 

There are three problems in examining the solutions of the set 

{x N ~ 0 , integer} in general: 

I) x N ~ 0 and integer are not sufficient to assure that x B will be in- 

teger; 

2) x N ~ 0 and integer are not sufficient to assure that the inequali- 

ties x > 0 will be satisfied; 
B - 

3) x N ~ 0 and integer are not sufficient to assure the optimality of an 

integral soiutlon to (3) . 

When a solution x N ~ 0 and integer overcomes these three problems 

simultaneously such x N determines an optimal integer solution of (3). 

The first problem can be resolved by adding the constraints 111, 

171 

(aij - laijl)x j ~ (bi-lbil) (mod. I) ~i=I ..... m (4 
j~N 

where a~b (mod. c) means that a and b are congruent modulo c, or that 

a and b differ by an integer multiple of c (i.e., a-b=r c, r integer). 

In addition, aii are the updated matrix coefficients of (3) and laij 

is the largest integer not larger than a... (Note that no component of 
13 

x B appears in (4)). 

In other words, satisfaction of constraints (4) assures us that 

for XN, only integer values of x B will be considered, and the objective 

function categorizes the optimal solution, therefore solving problem 3. 

Thus, if we could solve the following problem, we would overcome pro- 

blems I and 3. 

minimize z 

T T -I T -I 
z = (c N - CBB N)XN+CB B b 

(5) 

s.t.: B-1Nx N ~ B-lb (mod. 1) 

x N ~ 0, integer 

or 



89 

where: 

minimize z 

~T 
Z = C X N 

s.t.: DX N ~ p (mod. I) 

x N ~ 0, integer 

(6) 

~T T T -I N 
c = [c N - c B B ] 

-I 
D=B N 

-I 
p = B b 

From (6) follows that: 

x B = B-Ib - B-INXN (7) 

It is usually possible to eliminate some of the constraints of (4). 

Any constraints which can be shown to be congruent modulo one to other 

equations or congruent modulo one to linear combinations are redundant 

and may be dropped. 

The constraints that cannot be deleted are generating constraints 

for the group, and are sufficient to admit only valid solutions to the 

group of constraints. Thus, when the group is cyclic, there i~s only one 

constraint necessary to solve the group problem 19,10,11,12,17,18 I . 

Nevertheless in many real cases the number of the constraints and 

especially the number of integer variables in (6) is too large for an 

efficient solution. 

In the following a procedure is proposed to formulate two or more 

I.L.P. problems in a fewer number of variables that can be solved indi 

pendently. The optimal solution obtained is obviously the same of pro- 

blem (6). 
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3. DECOMPOSITION TECHNIQUE 

Consider the I.L.P. problem written in the last form (6). Let 

h 
g.c.d. {-} = greater common divisor of the set of integer nu_m 

bers {.} 

locom°{-} ~ least common multiple of the set of integer num- 

bers { • } 

THEOREM - If there exist a column partition of matrix D (by reorde 

ring rows and columns of D) 

D ~ iD I ° D21 

and two positive integers{kl,k 2} such that 

i) 

ii 

kiD 2 ~ 0 (mod. I) (8) 

k2D I ~ 0 (mod. I) 

For each i=1,2 ~ (li,mi) with (dlimi£D i) (9) 

such that (kidlimi ~ 0 (mod. I)) i=1,2 

ill) g.c.d.{ki,k 2 } = 1 (lO) 

Then the optimal solution of (6) is the same of the optimal solution of 

the following block diagonal form problem (reordering rows of c, XN, P, 

according to D) : 

minimize z 

~T 
z = C x N 

s.t. kiD i x (i) - kiP (mod. I) i=1,2 (11) 

x N >_ 0 integer 

where xN T A r (I) T .° (2) T = LXN x N ] is a partition of the x N vector according to 

the column partition of matrix D. 

Proof - Let us consider the sets 
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A 
A = {XNIDX N. -= p(mod.1), x N > 0, integer} (12) 

Ak.~{ , > XNlkiDx N ~ kip (mod.1) x N _ 0, integer} 
1 

i = 1 , 2  

k. p o s i t i v e  i n t e g e r  
1 

(13) 

Since 

(XNSA) ~x B is an integer vector 

(XNeAki)~kix B is an integer vector 

i=I,2 

(14) 

we can write 

AC~'] Ak, 
i=I i 

(15) 

Further, since (8) and (9), hold, we can write 

Ak.={XNlkiDix~i) { k i p (mod.1) , x N ~ 0 integer} 
1 

(16) 

i=I ,2 

From (14) and (7) follows: 

Ik I x B = h 1 

(XN ~ Ak__D Ak 2) 
k 2 x B = h 2 

(17) 

where h I and h 2 are positive integer m-vectors. 

Then 

h I h 2 

x B - kl - k2 

and 

(18) 

k2h I = klh 2 (19) 

From (19) it derives that k I divides each component of k2.h I. 

Then k I and k 2 being relatively prime, for hypothesis (10), it 

follows 

h I = k I q , h 2 = k 2 q 
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with q positive integer m-vector. 

Therefore 

2 

(x N E N Ak ) 
i=I 1 

x B is an integer m-vector (20) 

or 
2 

A = ~ Ak. 
i=I l 

(21) 

Hence the theorem is proved. 

REMARK - The problem (11), with respect to the vector x N, is in a 
(i) 

block diagonal form and then it can be solved with respect to each x N 

indipendently. 

minimize z. 
l 

~(i) T (i) 
Z i = c x N 

_ (i) (mod. I) s°t. ~iOiXN ~ kip 

(i) 
x N ~ 0 integer 

(22) 

~T ~(I) T " ~(2) T 
where c = Ic . c ! . 

Since the components of D are rational numbers a value of k. that 
1 

satisfies (8) can be found as follows. Let: 

A ~th 
d. = 3 column of D 
3 

A 
#j = {set of column indices of Dj} 

A 
F = {set of column indices of D} 

j=1 ,2 ..... (n-m) 

j=1 ,2 

(23) 

(24) 

we can define the following linear programming problems in a single va 

riable 

minimize yj 

djyj ~ 0 (mod. I) j=I,2 ..... (n-m) 

yjz0 

The optimum solution y~ of each problem is inbeger. 

If {kl;k 2} are relatively prime, with: 

(25) 



k I = l.c.m. {y~ljs¢2} 

k 2 = l;c.m. {y~}jc~1} 
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(26) 

and then: 

the solution of problem (11) is such that 

x B is an integer vector 

Proof - If: 

k 2 = k~ 

from (15) we can write: 

k; i h I = k I h 2 

h I = k i q (30) 

therefore the vector k x B is an integer vector equal to q. 

REMARK - The problem (11) with the hypothesis of the previous co- 

rollary is a relaxation of problem (6). In many cases the optimal solu 

tion is such that x B become an integer vector. 

COROLLARY - If in the previous theorem the constraint (10) is dro~ 

i.e. g.c.d. {kl,k 2} = 

with k positive integer 

(27) 

(28) 

(29) 

pe d 

the conditions (8), (9) and (10) of the previous theorem are satisfac- 

ted, and than we can solve the problem (11). 
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4. DECOMPOSITION ALGORITHM 

The decomposition procedure consists first in solving the problems 

(25) for j=1,2,..o,(n-m) o In order to found a partition of the set F,if 

exists, that satisfies the conditions (8), (9) and (10) with {kl,k 2} g! 

ven by (26) we can use the following algorithm (~ is the empty set): 

Algorithm: 

I. Set: ~I = 92 = ~ = 9, A = {jlj~£} 

2. Take a tEA, remove t from A, add t to the set 91 

3. VieA calculate: 

gi g c.d { ~ y~} 
= ° " Yi' 

If gi ~ I remove i from A and add i to 

4. If A = 9 go to 7 otherwise go to 5 

5. If ~ = ~ go to 7 otherwise go to 6 

6. Take a te~, remove t from S, add t to the set ~I" Go to 3 

7. 92 = {ili~Fr i~9 I} Stop. 

Since: 

~ ~j~92) ~ (g.c.d.{kl,k2}=1) (g.c.d°{Yi,Yj}=1; ~i~9 I, 

with k I and k 2 calculated by (26) the partition obtained with this al- 

gorithm satisfies the conditions of the previous theorem. 

REMARK - In the previous algorithm it is sufficient to consider on 

w 
ly the different values of yj. 

REMARK - The subproblem defined by the set 91 cannot be further de 

composed. On the other hand the same decomposition procedure can be ap- 

plied to the subprob!em defined by the set 92. 
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5. CONCLUSIONS 

In this work, using the group theoretical approach we point out so 

me conditions on the B-IN matrix, often verified in practice, that make 

it possible to transform the system of linear congruences (constraints 

of problem 2) in a block diagonal form. In some cases, using this proce 

dure, the number of constraints can increase with respect to the number 

of constraints of problem 2. However, the problem can be solved indipen 

dently for the variables associated with each block. 

This procedure leads to the indipendent solution of a number of 

subproblems in a smaller number of variables. 

In the worst case each subproblem requires the same number of con- 

straints as the original problem, but generally this number is smaller. 
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