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I. INTRODUCTION 

The problem of determining the optimal design and operation of 

a reservoir has been considered under many different viewpoints. 

engineering procedures such as mass curves techniques [I] Standard 

or classical hydrologic methods of analysis (see [4- [5] for instan- 

ce), have gradually been replaced by the use of mathematical programs~ 

mainly separable [4 and dynamic [7], [4 ones, both in the determini- 

stic and in the stochastic environment. In control theory terminology, 

these approaches correspond to open loop optimization schemes. It is 

an apparent drawback in presence of a stochastic input into the system 

such as the inflow. Of course, more reliable solutions can be obtained 

by introducing control laws (operating rules), that is when applying 

to feedback schemes. In this case, the problem of determining the 

optimal regulation, i.e. the optimal operating rule, is usually turned 

into a finite dimensional one by assuming a specific class of rules. 

In the most common case, the release in any period is made to depend 

upon the total available water in the period (initial storage plus 

inflow). Because of the constraints on the reservoir storage, the choi 

ce of the mule class cannot a priori be quite comfortable, for instan- 

ce it is not possible to apply to linear functions. As a matter of 

fact, the great majority of existing applications considers Z-shaped 

rules~ such as the normal ones. This prevents the optimization pro- 

blem from being formulated as a mathematical program of a standard 

type. Three main different approaches have been proposed in the lite- 

ratur~. 
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a) Pure simulation~ based on the superimposition of a grid in the 

space [9] • decision variables 

b) A procedure consisting of the two following steps ~O~ 

bl) Solution of the open loop control problem via dynamic pro- 

gramming in the deterministic environment supplied by a long 

s y n t h e t i c  record <see [11] [14] for instance and the next 

section), 

b2) Least squares optimization for choosing the operating rule 

that yields a sequence of releases best fitting the optimal 

open loop sequence. 

c) Bypass of the question (see the formulations in the stochastic 

environment in [I~ ~ ~ ) by setting the constraints that the 

"tails" of the Z-shaped pule are never effective~ i.e. in no 

period the reservoir remains either empty or full. 

In this case~ the release turns out to be a linear function of the 

total available water. It must remarked~ however~ that on a montl~y 

or a yearly basis~ the constraint that the reservoir must never 

stay full is not justified by economic reasons and~ in design pmo- 

blems~ yields unnecesserarily large dam sizes. 

In this paper~ the simulation approach is followed~ while taking 

a structural property of the optimization problem into account. Such 

a property enables to apply &n efficient search--simulation scheme 

for determining the solution and hence to obtain a considerable 

decrees of the computational effort with respect to the "brute force" 

approach. 

2, PROBLEM STATEMENT 

Consider the problem of designing and operating a reservoir 

on a yeamlybasis~ while assuming the following char.~cteristies° 

a) The reservoir is regulated ~y means of the normal operating rule 

f(., xl, x2) shown in Fig° I, where 
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Fig. I Normal oneratin~ rule (z.f.r. = zone of feasible releases) 

s(i) = storage at the beginning of the i-th year, i=O,1,...,n-1; 

a(i) = total inflow during the i-th year; 

r(i) = total release during the i--th year; 

x I = lower bound of the regulation range (decision variable) 

x 2 = reservoir capacity (decision variable). 

b) The release in any year is required to be not less than Xl, 

the guaranteed minimum (contmact). This means the downstream users 

are assumed to plan their activities only on the basis of the contract, 

so that the profit due to the reservoir operation turns out to depend 

only on x1~ the extra water possibly supplied having no economic va- 

lue. Let g(Xl) represent such profit (Fig. 2a) and c(.) the total cost 

function of the reservoir (Fig. 2b). 

g(x~ ) c (xz ) '  

D- 

Xl X 2 
(a)  (b )  

Fig.2 Profit (a) and cost (b) functions 
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Therefore, if -the initial storage is ass<~ed to be a given s and 
o 

the continuity equation 

s(i+1) = s(i) + a<i) - r(i) 

is taken into aceount~ Then the reservoir design ~ . d  ~g~l~ion pro-- 

blem is turned into the follosing mathematical program 

max g(x I) - c(x 2) 
x 

s(i+1) = s(i) + a(i) - f (s(i) + a(i ; xlz 2) 

s(i) + a(i) ~ ~I 

Xl~X2 ~ 0 

(2.1) 

(S(O)=SO) i = 0,I,...,n--I 

(2.2) 

(2.3) 

(2.4) 

This should be regarded ro as a p~ogram in the stochastic environ- 

ment (see [1~ )~ in view of the nature of a(.). In particular~ if 

x(°)(n) denotes the optimal solution of (2.1)-(2.4), that is in cor~ 

respondence with a pl~uning horizon of n years, the sequence 

L J 
n=1 

i) Such a process is a priori non-stationary because of the ar-- 

bitrary choice of s . However it is reasonable to assume 
o 

that~ for n large~ the process tends to become a stationary 

one o 

ii) The distribution of such "asymptotic" stationary process has 

small variance, i.e. the long run solution is not much af- 

fected by the introduction of a particular realizazion of 

the inflow p~ocess into (2.!) -- (2°4). 

This may be verified a posteriori by solving (2.1) - (2°4) 

in correspondence with different synthetic long records of 

inflows (see below). 

In conclusion~ it is reasonable to replace n in (2.1)-(2.4) 

by N = kn (e.g. n = 20 , k = 50) and to introduce a given 

{ ] N-I into (2.2)-(2.3), so that the program record ~(i) i=o 

is formulated in the deterministic environment : 
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max g(x I) -- c(x 2) (2.5) 
X 

s(i+l )=s(i)+~(i)-f(s(i)+~(i) ;Xl~2) (s(0)=So) , i=0,1,... ,N-I (2.6) 

s(i)+[(i) _> x I i=O,I,...,N-I(2.7) 

x l,x 2_> 0 (2.8) 

N-I C ) 
• 

~ J i=O 
storical datum through synthetic hydrology methods• 

Specifically, the following procedure is adopted 
-I f 7 

I) The historical data {~(i)l are considered as a (partial) 
i --=m 

realization of an ergodic process. Of coumse~ the distribution 

of the mandom vamiables of the process turns out to be skewed 

since the inflow is a non-negative variable (usually a lognor-- 

mal or a Pearsom type III distribution can be assumed). Then 

are normalized or quasi-normalized [13] the data 

~(i) = h (~(i)) 

via a proper transformation h(.) 

and subsequently standardized 

~(i) - ~b 

b 

where ~b and ~-b represent the mean and variance of the normalized 

process respectively. 
-I 

% J 

i ~ ~ i=-m 
tion, t~en a model o~Ic <i)l is ~uilt. 

i 

Usually such a model is selected among the ARMA (p~q) stationary 

mo~e~ [17] 

• ~(±-q) c(i+1)= ~ic(i)+¢2c(i--1)+...+¢pC(i--p+1)-- [(i)--(9 I~(i-I)-. .-- ~q 

where 

{~(i)l 

(2.9) 

= purely random stationary gaussian process with zero 
i 

mean and variance ~ ; 
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and 

and  ~ = model  p a r a m e t e r s  t o  be  e s t i m a t e d  

j=1 k=1 on the basis of the data 

-I 

i ~ - m  

In most cases q : 0 or I, while p = 0 or I, or 2. 

N-I 
I I I ) A  r e a l i z a t i o n  ~ $ ( i ) }  i s  o b t a i n e d  by g e n e r a t i n g  a r e a l i z a t i o n  

i 0 

Of ~(i)~. by means of a Hontecarlo technique (see [18]. for exam- 

ple) and Isubsequently introducing it into (2.9). 

N-I 
IV) A realization @~(i)~ (synthetic record) is supplied by anti-- 

~ J i=0 
standardizing and subsequently anti-normalizing the sequence 

N-I 

3. PROBLEM SOLUTION 

Turning to program (2.5)- (2.8) and letting s(., Xl,X2) denote 

the result of a "system simulation"~ i.e. the solution of (2.6)~ it 

is possible To choose an efficient algorithm by means of the following 

property (the proof is given in the Appendix). 

Proposition 

The f~nction s(i~.~x 2) is non-increasing~ the fucntion s(i;xl,.) is 

non-decreasing. 

Furthermore let 

p(i;xl,x2) = s(i; xl,x 2) + a(i) - x I (3.1) 

Program (2.5) - (2.8) is then turned into the following : 

max g(x 1)-c(x 2) (3.2) 
x 

p~(x 1,x 2) ~ 0 (3.3) 

x I ,x 2 ~ 0 (3.4) 
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where 

p* (xl,x2) = min p(i;x1~x2) . 
O mi ~ N-I 

In view of the pmoposition and (3oi), the functions p*(o,X2) and 

p~(x1~. ) turn out to be non-increasing and non-decreasing respecti- 

vely. Hence, the optimal solution of (3.2)-(3.4) apparently lies 

on the curve implicitly defined by 

p*(xl,x 2) = o . 3.5) 

Let x2(xl) denote the explicit foz~n of (3.5). Since 

~p* (xl,x 2) 
dx 2 (x I ) ~x I 

dx I DP* (Xl,X 2) 

x 2 

the function x2(. ) is a non-decreasing one. No convexity property~ 

however, can be established in correspondence with any inflow datum 

&(.), so that optimality situations of different kinds might occur 

(Fig. 3). Recall that the feasible region F, which has been defi- 

F 

X2 

Fig. 3 

( a) x~ ( b) xl 

Different optimality condition (F = feasible region) 

ned via simulation is not explicitly known. Then assume the case is 

the one described in Fig. 3a and consider the solution algorithm, 

whose k-th step is the following. 

at the beginning of the step is an interval Jk= x(k) x ~k)) i) The data 
( 11 ~ 12 
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s u c h  t h a t  x (k) ( o ) ~  (k)  (k) ( h ) ) ,  11 ~ x I _ x12 ~ as well as the pairs (x21 ,x22 

(k) (k) (k) k)) z(k) = g(x I )) _ c(x~. ) )  <z I , z 2 ) where x2j = x2(xlj ' J ~J ' 

j = 1 ,2 .  
(k) f ~ 

x12~k)) in accordance with a Fibonae- I n  ~ _ s e l e c t  a c o u p l e  ( X l i  

c i  s e a r c h  s c h e m e  0 ~ " 

- ,~ (k)~ 
ii) Determine x~. = x2kx~ j~ j = 1,2, that is values of x 2 such 

that ~ f[@ 0 and (k) x~2))=_ 0 respectively. ~ 11 ' 21 "- PC<X12 

These zeroes can be evaluated by means of simulation of (2.6)~ 

in accordance with a bisection search scheme, since p@(xl,.) is 

a monotonic function. 

iii Compute ~!k)d = g~x1~'~(k)) _ ckx2j'~ (k)), j = 1,2 and select ~k+1' 

on t h e  b a s i s  o f  z< k l  a n d  ~ < k )  j = 1 , 2  a n d  t h r o u g h  t h e  c r i t e r i o n  
J J 

u s u a l l y  f o l l o w e d  i n  t h e  F i b o n a c e i  s e a r c h .  

T h e  a l g o r i t h m  s t o p s  w h e n  k = } s u c h  t h a t  3 ~  i s  s m a l l e r  t h a n  a p r e a  S 

s i g n e d  i n t e r v a l .  T h e  u s e  o f  s e a r c h  m e t h o d s  a l l o w s  t o  o b t a i n  t h e  s o -  

l u t i o n  w i t h  r e m a r k a b l e  p r e c i s i o n ~  a c h a r a c t e r i s t i c  o f  some i n t e r e s t  

when  d e a l i n g  w i t h  p r o b l e m s  w h e r e  c o u s p i c u o u s  p r o f i t s  a n d  c o s t s  a r e  

i n v o l v e d .  

To o b t a i n  t h e  same  d e g r e e  o f  p r e c i s i o n  by  m e a n s  o f  g r i d  s a m p l i n g  t e c h -  

n i q u e s  w o u l d  i m p l y  a m u c h  g r e a t e r  a m o u n t  o f  c o m p u t a t i o n .  Of c o u r s e  i f  

t h e  s i t u a t i o n  i s  n o t  t h e  o n e  d e s c r i b e d  i n  F i g .  3 . a ,  t h e  a l g o r i t h m  

may yield a local optimum instead of a global one. Some attempts 

different starting intervals ~o are usually enough to have a with 

screening of the local solutions. 

5. AN EXA/~iPLP 

The algorithm has been used in the case of a meservoim~ whose 

yearly inflow may be described by an AR(1) lognormally distributed 

stationary process characterized by : 
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mean = 75.106 m3/sec 

st.dev.= 29.106 m3/sec 

corr.coeff.= 0,I05, 

The value of N has been set equal to 500. Profit and cost functions 

o# the respective forms. 

g(x I) = 109 (1_e-10-T&1) 

c(x 2) = 10 ~ (I- e -25"I0-9A2) 

has been used for different values of the parameters XI 

The results are summarized in Table I, 

~ I ~  0.2 0.6 I .0 1 .L~ 

I 
I 
! 0 , 6  

1.0 

1.J+ 

1.8  I- 
I 

and ~2" 

35 

3/+ 

72 

31 

I 29 

I [ 82 

25 

23 

86 

30 

28 

T 
~-9 

22 

20 

63 

I 

16 

1 
I 7o 

21 I 15 

1 
19 I 13 

4 
88 I 

I 75 

24 

22 

3/+ 

18 

16 

5O 

15 

13 

6O 

18 

17 

I .... 
23 

15 

13 

41 

13 

11 

52 

12 1 11 

I0 I 9 

I .... 
66 I 59 

1.8 

13 

12 

15 

13 

11 

33 

11 

9 

45 

10 

8 

53 

Table I Optimal solutions for different ~I' ~2" 
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(o) (!06 m3), x2(O)(106 m 3) and g(xl(°))-c(x2 (°)) w h e r e  in each box x I 

(10 7 £) are reported from top to bottom. The computer time required 

t o  s o l v e  a l l  c a s e s  d e s c r i b e d  i n  T a b l e  1 h a s  b e e n  2 . 2 2  m i n ,  on  a 

UNIVAC 1108 computer. 

5. CONCLUDING REMARKS 

The problem of determining the optimal design and contract 

release of a reservoir has been described in the paper and a solu- 

tion algomithm~ based on the alternative use of well-known search 

procedure has been proposed. 

A general remark concerns the use of policies~ such as the normal o- 

perating ru!e~ that make the decision on the release in any period 

also depend on the inflow in the period. Hence the choice of the out- 

flow volume should be based on an information, not available at 

the beginning of the period~ when the decision is actually taken. 

A more reasonable viewpoint would be the one of using operating rules 

based on the storage as well as on inflow forecast~ supplied by the 

stochastic model of the inflow process. This approach, anyway, has not 

yet been widely investigated in water resources literature. 
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Proof of the Proposition 

Only the property of s(i~.,x2) is proved~ since quite similar ar- 

guments hold for s(i;x I,.). 

' " with ' >_ " : The proof is based on induction. Consider Xl, x I x I x I 

since, in view of the continuity equation~ 

s(1;  x 1 ' , x 2 ) - s ( 1 ; ~ 7 ' x 2 )  = f ( S o + ~ ( 0 ) ; ~ , , x 2 )  - f ( S o + ~ ( o ) ;  x,1, x2) 

it turns out that 

s(1;x"x2)-~l s(1; x I,'' x 2 ) .  

Moreover  assume that s ( i ; x ~ ,  x2) _~ s ( i ;  x~', x2) . Then 

s ( i + 1 ) ;  ~ , x  2) s ( i + 1 ; ~ , ,  ~2) = s, s,, + f,, f ,  

where,  f o r  s i m p l i c i t y  o f  n o t a t i o n ,  

s' = s ( i ;  x~, x 2) 

s" = s ( i ;  =~', ~2) 

x 2 ) f '  = f ( s ,  + ~(i); xl, 

tf f "  = f ( s "  + ~ ( i ) ;  X l ,  x2) 

i )  I f  s '  + £ ( i )  ~ x~, t hen  s ( i + l ;  X l '  , x2) = 0 , so t h a t  

s ( i + 1 ;  x1 '  , x 2) ~ s ( i + 1 ;  x~, x 2 ) .  

ii) If s"+a(i) _~ x"1 + x2 then s(i+1; x~', x2) = x 2~ s(i+1; x'1, x2)" 

iii) Finally if 

" + x 2 it turns out that x 1' _ s ' +  ~ ( i ) s  s" + £ ( i )  <_ x 1 

f' = x~ , f" = x~ and hence 

! s<i+1;  x~ , x2) - s( i+1~ x~, x2) = (s , -s , , )  + ( h " -  h ) ~ 0  


