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ABSTRACT

The Paper shows the structure of a planning concept for electricity
supply systems which, although developed for the Austrian system, is
applicable on a general basis to other, more extensive, environmental
systems.

1. INTRODUCTION

A system to be studied can be characterised by its elements and their
relationships. The operation of such a system consists in using its
elements to meet a {(public) demand. A growth in demand entails an
extension of the system and this in turn involves aims that conflict
with those of other systems (other systems serving to meet the demand
or other environmental systems). This requires consideration of global
variables and constraints, which leads to the consideration of more

extensive systems.

2. THE PLANNING PROBLEM

The elements of the system under study (e.g. power stations) are
successively added to the system so as to keep pace with the grow-
ing requirements of the system (meeting the demand). The planning
problem is the timing of the system extensions., Due to the mutual
influences between several extensions we must consider a relatively
long planning period. The aim of planning is to make the system ful-

f£il certain tasks at minimum cost, observing the given constraints.

3. TREATMENT OF THE PROBLEM

Let the configuration of the elements of a system be denoted by
"state". As the state changes with time, it can be expressed as a
function of time:

Z(i))t e[to)tej )



497

where i(’(‘.) is a vector whose component %L('&) indicates the number of
realisations (e.g. power stations placed in operation) of the ith
element at. time t 3 if ®} denotes a particular project, either EL('&)-’O
or %-L(t)=1 ; if it is a standard unit (a power station type that can
be realised any number of times), then 2;(‘&)"( with k being a non-

negative integer.

e.g. 2(t) ror some t
0101

projects

023041

standard units

We are trying to find z2* ('t) with 'k(i") = /;;L%h’ (k(i) ) .

Lot az (€)= Lim (2(b)-2(t-€)) .
€40 inv
K2y = KP )+ X ™ az)

The dependence of K on A%(f) is primarily given by the investment
costs of unit additions, or more exactly, the total costs which arise
from the decision to extend the system.

The dependence of 3{_ on %(ﬁ] is expressed by the operating costs. If
2(t) cannot meet the demand subject to the constraints this is ex-
pressed by X @)= oo,

For a finite number of points t"] : AE:“‘—-LJ') >0 .
Hence we can write: -
v = jnv
K ar)= 2 2 KY (az(ty), )
[N |
Let v, () = (\/,| (t) yee vik), oo y Y () ) denote the vector

of output of components ("operation variables™).

We have to include in our consideration the optimal operating costs:

TP a) = K (2, 000) = min KP@y,)
a7
For the purpose of studying the operation of the system we subdivide
the study period into intervals &t whose length is based on the
longest operating cycle in the system (e.g. one year in the Austrian’
hydro system). With respect to system operation, these time intervals
can be regarded as being independent and we can study the relationships

within each interval TJ' separately.

To=[t, +(j-1)*at to+jxat ]
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then:

1 ye

:KDP*(%‘,‘?. ](:f* (x) = 2 (i e 'KDT'; (&,y,) )
with \/:, <

As in most of the other methods of treating this problem (see e.g.
(1),(3),(4)), we make this problem a discrete one with respect to
these intervals and we apply a discrete Dynamic Programming algorithm.
This means that we allow changes in state only at the times i@,fo+di)
to+214£)“. and calculate the operating costs for each interval
[i,*(j"’)'d‘.) to’rj .at] separately.
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The problem can be written: .
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Now define:

K;’(Azf))

Ml

;t' o

oz, Tod .t T=0 T
then: :
nw- oP*
Kz = main (KL (a2 + Koy Pcw))*Kt (2¢)
t

Since hydro power accounts for a large proportion of the Austrian
system, the operation model is very complex. To deal both with the
questions of long~term planning and with questions of detail, two
programs have been developed:
(a) an extension planning program with special routines for
defining the states, with a simplified nonoptimising operatio

simulation model checked with the help of program (Db).
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(b) an operation scheduling program which can solve large-scale
Nonlinear Programming problems and is used to solve guestions
of detail (especially for the hydro system), and to assist

in planning by means of model (a).

4. STRUCTURE OF THE EXTENSION PLANNING MODEL (Fig. 1)

Let 2,° (24{:,--- zgf,--lhg) denote a state at £ with 44+ &T,
We now must generate all the ztéDt

This is done by using a GENER model, which "sieves out" feasible states,
i.e. those which satisfy the given constraints associated with stage t .

Other models are now applied to the sets of states so generated, yield-
ing results which we associate with each state. Thus e.g.: The SECUR
model determines a security level of a state; or the SIMUL model deter-
mines the operating cos over a year calculated on the basis of a suit-

able but non-optimising operation strategy.

Running the problem with different security levels, we study only
the respective associated values and temporarily delete some states if
these do not meet the requirements. (We superimpose a mask EtCI%
"on the sets of states). In the case of running the problem with differ-
ent parameters, some of the models need be run only once. In each case,

however, the DP algorithm must be run.

This is done in the STEP model:
It serves to asscciate in each DP step from stage t-1 %o stage t
the total cost value Kl(%e’ with each z, . TQSSG values are the optimal
costs in relation to state 2, if state }téfk has been reached by
an optimal path through the stages 1 to t . The optimal extension alter-
native results from the optimal path to sz of the last stage with
Ky (2%) = min Ki(3g) o
2,¢D

T

5. OPERATTON SCHEDULING OPTIMISATION MODEL

As stated earlier, large-scale systems must be studied. The relation-
ships between their elements can usually be subdivided, in a multistage
manner, into "global" and "local" ones, that is to say, we can subdivide
the total system into subsystems (as e.g. overall generating system and
hydro power stations on a certain river), which in turn contain local
relationships. These can again be subdivided into global and local ones.

Thus we obtain a multi-level structured system model.
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Now consgider the operation scheduling model to treat questions of
detail.

The dimension of the operation model results from the great number of
intervals c¢f which the optimisation period consists, and from the fact
that we express the period (year) by some characteristic daily load
curves. We can derive the following NLP problem:

The thermal subsystem provides a cost basis for evaluating the hydro
system. This results in the following objective function:
max 2. v (PH-E)
t
teT,
where V¢ is a nonlinear evaluation function for the hydro capacity

PHt and PHta.%LPHit 3 where PHit denotes the capacity of power plant
L€

t&U at time interval k£

Let Q'Li: be the flow rate at power station ¢ at time interval t . Then
we can write PHLtt](i(Qit) .

For QH; , we have to consider lower and upper bounds

inm % alt < QLmax Vielt )V{;e'ﬁ,

Let us define a storage - unit - incidence matrix as shown in Fig. 2.

Let th be the volume of storage node k at the beginning of the time
t-1 —

interval £ , then Vk.&’-' k0+Z Avk’l.' with AVk% =.Z (-“’kl)* Qit .
Teq &N

V. o < £V

The Vi 4+ are constrained by kaiu, th K weax

This results in a NLP problem in the variables QLE with the linear

constraints resulting from those of the th

Let us now consider these constraints: If we are faced with a structured
problem, this is expressed by the !¢ “matrix, which might e.g. take the
following form:

T

i
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That means that we can subdivide the nodes kek into
(1) coupling storage nodes kGKL and
(2) storage nodes in subsystem ; : /<€KL

L

Since in hydro power systems individual storages are scheduled on
different cycles (3aily, weekly and yearly cycles), we can also define
"subsystems" with respect to time, because the constraints for the th

do not extend beyond the operation period of the power stations.
That is: k = K‘l + Kw + K

/ ! |
yearly weekly daily eycle

i .

Kt
annhual storage

//\
//

) short-term storage (week)

\_/ \/'\*-/\/

>t
I N\
L’—)I daily storage
Twi

< Ty

£\

Let: kd,(,::KOkAKL ) Kd-f‘::KdAKS;'

L

Thus we obtain a multi-level structure with coupling constraints as
shown in Fig. 3.

6. APPLICATION OF A MULTI-LEVEL ALGORITHM

The above NLP problem has been handled by a method taking advantage of
the structure of the constraint matrix. The projection Pp of the grad-
ient 3 is used as a feasible direction. Instead of calculating the
projection vector by the projection matrix P=I-Q(QTQ)™1 QT

and P=Pg where Q=(q,4,._.(i,w) is the matrix of active constraints (as e.g.
in Rosen's Gradient Projection Method), we use orthogonal vectors

?i,'”_“ ’Zi;“" > Which form a basis for the linear space L(l},,,._.,?,m),
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The projection vector can be expressed as follows:

P=2”‘4°(.L'¢2 ) cc“:(g)%b)/filll 3

13

My

v

where (a,4) denotes the inner product of vectors e, .

The advantage of the given structure is that constraints from parallel
subsystems (i.e. from subsystems whose variable vectors have disjoint

index sets) are a priori orthogonal.
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