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INTRODUCTION 

As a part of the preliminary work performed in the Nervion River Valley Bilbao 

Air Pollution Study, the following method has been developed for the evaluation and 

selection of emission control policies and standards. 

Escudero and Jimenez, 1975 describes a methodology used to estimate the probabi- 

lity distribution of pollutant concentrations in each receptor grid square of a studied 

area for a seasonal time period, given the predicted pollutant emissions due to the 

point and area sources with significant influence on the pollutant concentration. This 

probability distribution is estimated over the total range of different meteorological 

conditions that affect the concentration signifieantly. 

The probability distribution, which is estimated on the basis of a stochastic diffu- 

sion model, gives the probability for each meteorological condition and set of contri- 

buting emissions that the concentration in each grid square will exceed the maximum 

limit of concentration. 

A polluted grid square is considered to be one in which this probability is greater 

than the maximum probability allowed, called the relative limit. A contributing areas 

is the set of point sources and area sources which affect the concentration in the 

receptor grid square. A polluted area is defined as the set of contributing areas 

and polluted grid squares which have at least one grid square or emitter source in 

C OTD/non. 

GENERAL OBJECTIVE AND CONDITIONS FOR THE MASC-AP MODEL 

The objective of this model is to evaluate the alternatives for reducing the emi- 

ssion at the point and area sources so that the problem area will no longer be po- 

lluted area° 

The reduction alternatives may be programmed for a single seasonal period or for 

a set of these periods adapting the reduction alternative for each emitter source to 

fixed and constant abatement levels for the entire period programmed (Escudero, 1973). 

This paper treats a single seasonal period, and in contrast to other types of models 

(Gorr and Kortanek, 1970; Kortanek and Gorr, 1971; Teller, 1968), the probabilistie 

limits of the real concentration are used, as it is one of the principal characteris- 
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tics of the reduction model• 

The probabilistic limits of the concentration include the new average theoretical 

concentrations in the polluted grid square when the emissions are reduced (Escudero 

and Jimenez, 1975). These concentrations correspond to a given set of probabilities 

that the real concentration exceed the absolute limit, so that once the new theore- 

tical concentration has been estimated it is assumed that it is the upper limit of 

the interval which corresponds to it in the limit concentrations relative to the 

given set of probabilities. In this way an estimate is made of the probability of 

excess real concentration for each theoretical concentration, and therefore for each 

emission reduction alternative. 

The emission reduction alternatives are estimated such that the emission reduction 

to be imposed on each influence source be both the minimum possible and be in propor- 

tion to its influence on the polluted area. 

THE ELEMENTS OF THE EMISSIONS REDUCTION MODEL 

The elements needed for using this mixed integer programming model for each pro- 

blem area are the following: 

The receptor grid square rVrER which makes up the polluted area where the concentra- 

tion is to be reduced. 

The influence emitter grid square eVecE within the problem area. 

The meteorological condition mVmcM in grid square ~ which, given the set of emi- 

ssions, causes the real concentration C to exceed the absolute limit AL in the sea- 
rm 

sonal period under consideration. 

The type of probability pVp~P which corresponds to the probability PAL of the 
rmp 

limit concentration UC 
rmp 

The predicted pollutant emission AQAe(~g/s) for the seasonal period under conside- 

ration coming from the area sources located in emitter grid square ~.Idem (pg/s) for 

point sources (AQPe). 

The theoretical unit influence KA of the area emissions from emitter grid square 
rem 

upon grid square ~ under meteorological condition m, according to the stochastic 

diffusion model. Idem for the point source emissions (KPrem). 

The average theoretical pollutant concentration TCrm(~g/m3 ) which, in the stochas- 

tic diffusion model, is found in grid square ~, under meteorological condition ~, 

given the actual set of emissions AQA e and AQP e. The pollutant concentration TCrm is 

represented by: 

E 

TCrm = arm + Z (KAremAQA e + KPremAQP e) VmeM, eER (i) 
e=l  

where arm is an independant term considering the background concentration and others. 

The f r e q u e n c y  ~ o f  m e t e o r o l o g i c a l  c o n d i t i o n  m d u r i n g  t h e  s e a s o n a l  p e r i o d  under  
m - -  

consideration. Only those meteorological conditions are taken into account whose 
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probability MP is significant. 
m 

The meximum allowable probability (relative limit) RL that the real concentration 

C in any grid square exceed the absolute limit AL. 
r 

The theoretical concentration UC in grid square r under meteorological condi- 
rmp 

tion m corresponding to probability PAL 
rmp 

The given set of probabilities PAL that the real concentration in each situation 
rmp 

rm exceed the absolute limit AL. Using the stochastic diffusion model, the theoretical 

concentration is obtained for each possible set of emissions. It is assumed that the 

probability that the real concentration exceed the limit AL is the probability esti- 

mated by the UC value inmediately above the corresponding theoretical concentration. 
rmp 

The probability that for the predicted set of emissions AQA e and AQAP e the real 

concentration in grid square ! under meteorological condition ~ exceed the maximun 

limit AL, taking into consideration the probability of the meteorological condition, 

so that PC = MP PAL . 
rm m rm 

The probability PALrm that, for the predicted set of emissions, the real concentra- 

tion exceeds the absolute limit will be equal to PALrm P. Therefore, UCrm P = TCrm. 

The influence WA of the area sources in emitter grid square ~ during the seasonal 
e 

period considered upon the pollutant concentration in all the grid squares which make 

up the polluted area under all the meteorological conditions considered (Escudero and 

Jimenez, 1975). Idem for the point sources (WPe). The influences WAe and WPe are re- 

presented by: 

R M 
WA = Z Z KA AQA e PC 

e r=l m=l rem rm 

R M 
WP = Z Z KP AQP e PC 

e r=l m=l rem rm 

(2a) 

(2b) 

The maximum percent MRA e of the reduction allowed of the predicted emission AQA e 

in emitter grid square ~, based upon socioeconomic considerations. Idem for the point 

sources AQPe(MRPe). 

The variables used in the model are: The pollutant emission XQA e to be reduced in 

the area source of emitter grid square ~ during the entire seasonal period being 

considered. Idem for the point sources (XQPe). The new average theoretical concentra- 

tion XC in situation r m corresponding to the new emission from each emitter grid 
rm 

square. The binary variable Y whose value is I if the theoretical concentration 
rmp 

UCrm p is the upper limit of the concentration XCrm. If not its value is 0. 

THE FORMULATION OF THE MASC-AP MODEL 

Using the elements described above, the model for the reduction of emissions that 

will eliminate the polluted area is the following: 

Minimize in a weighted form the emission reduction: 
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E 
1 1 

Min. QR= E (W--~--XQA e +W--~-XQP e) (3) 
e=l e e 

such that, with the conditions being the same, priority is given to the emission in 

the grid square that pollutes most. 

Minimization of the Equation (3) is subject to the following conditions: 

i) The estimation of the new theoretical average concentration XCrm corresponding, 

according to the stochastic diffusion model, to the new set of emissions. 

E 

XC = TC - E (KAre m XQA e + KP Vm~M, reR (4) rm rm e=l rem XQPe) 

2) The necessity that only variable Y take on the value 1 if UC is the limit 
rmp rmp 

inmediately above the new average theoretical concentration XC Vm~M, rcR. 
rm 

P 
XC ~ E UC Y Vm~M, r~R (5) 

rm p=l rmp rmp 

P 
i = Z Y VmEM, r£R (6) 

p=l rmp 

3) The equation (8) is the principal condition of the model requiring the probabi- 

lity 
M 
E MP PAL Y (7) 

m rmp rmp 
m=l 

that the real concentration C exceed the absolute limit AL not be greater than the 
r 

relative limit RL in any of the polluted grid square. 

M P 
Z E MP PAL Y ~ RL ¥rER (8) 

m=l p=l m rmp rmp 

In this regard it is important to note that Equation (6) demands that each case 

have only one Equation (7) different from zero. 

4) The variables for the amount of emission reduction are represented by: 

XQA e N MRA e AQA e (9a) 

XQP e ~ MRP e AQP e (9b) 

The principal results of the reduction model are: 

a) The reduction values, expressed in percentages, for the point and area sources 

of each grid square for the time period considered. 

b) The values of the corresponding new emissions. 

c) The new probabilistic distribution of concentration for each receptor grid square 

which makes up the polluted area. 

d) The probability that the new concentration exceed the limit established. 
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THE BRANCH AND BOUND POSSIBILITIES IN THE MASC-AP MODEL 

The model for the reduction of the pollutant emissions needs the use of mixed in- 

teger programming techniques, since the Y variables are binary being able to take on 

only the values 0 and i° Among the many algorithms existing for its solution (Geoffrion 

and Marsten, 1972) the MASC-AP reduction model is based on the IBM MPSX/MIP system 

using the following possibilities. 

SOS conditions 

A Special Order Set is a set (Beale and Tomlin, 1969) of binary variables of which 

one and only one has the value i. In the emissions reduction model the SOS conditions 

are included in Equation (6) so that if one variable has the value 1 the others must 

be null. Accompanying each SOS row there must be anotber condition or some weighting 

that is responsible for the important attributed to it. For the SOS condition the 

corresponding weighting is the probability PC that the concentration C exceed the 
rm r 

maximum limit AL. 

Accompanying each SOS row there is another weighting row that represents the impor- 

tance attributed to each SOS variable, in this case to each Y variable. For the 
rmp 

SOS row (Equation 6) the corresponding weighting row is the Equation (5). 

The SOS rows possibility is used in the branch and bound phase, once the continuous 

optimum solution is obtained~ when at a certain node the branching integer variable 

(in this case, SOS row) is selected. To branch the SOS row, the value of its weighting 

row (Equation 5) is analyzed, so that (Escudero, 1975b) if it were the case, for exam- 

ple that 

1 = Y1 + Y2 + Y3 + Y4 + Y5 (SOS row) (i0) 

W = 750Y 1 + 500Y 2 + 250Y 3 + 100Y 4 + 50Y 5 (weighting row) (ii) 

and the SOS row did not have any binary variable with a value of i, the value of W 

is noted, and if this is, for example, 300, then, since the only other alternatives 

would be 750, 500, 250~ i00 and 50, either W > 300 (in which case W is 750 or 500) 

or W < 300 (in which case W is 250 or i00 or 50). To establish this dichotomy it 

is necessary that in the first case Y3 = Y4 = Y5 = 0 and in the second case that 

Y1 = Y2 = 0, so that in the corresponding branch 3 and 2 SOS variables respectively 

have been fixed, when in the normal procedure (Benichou et al., 1971) only one of the 

variables would have been acted upon. 

Quasi-integer variables 

In the optimization models with integer variables, it is necessary, in the optimum, 

that these variables take on integer values (0 or i in this case), but often in the 

branching formation the candidate nodes have some variables with integer values and 

others with quasi-integer values (for example, 0.001; 0.995) which means having many 

successor nodes in order to make them integers (primarily if the number of integer 

variables is high and their coefficients in the objective function are not very diffe- 

rent). 
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The need in our case for binary variables only is motivated by the requirement 

in Equation (8) that the probability that the concentration exceed the absolute 

limit not be greater than the relative limit. Thus, even though the binary variables 

had only quasi-integer values, the objective would also be achieved, since the quasi- 

integrality of the binary variables will really bring about the probability of ex- 

ceeding the absolute limit, even though it were not the relative limit, but were a 

value very close to it. Given the probabilistic form of the model this would not ruin 

the plan adopted for the reduction of the emissions. 

Pseudo-cost of the inteser variables 

There exist in the literature many controversies over the strategy to be used in 

the branch and bound phase, mainly in regard to the choice of the next branching node 

and the choice of the branching variable. Although in the choice of the branching node 

the criterium may be used of the best functional value (Roy et al., 1970) or a mixed 

criterium, the best functional value until the first integer solution and then the 

best estimated value (Benichou et al., 1971), the MASC-AP model uses the criterium of 

the best estimated value. In regard to the branching variable, although the penalties 

criterium may be adopted (Roy et al., 1970), the MASC-AP model uses the criterium of 

the pseudo-costs (Benichou et al., 1971) since it has been observed experimentally 

that it better incorporates the influence of each variable upon the objective function. 

Therefore, using the SOS rows as the "branching variables" (Escudero, 1975b), the 

elements of this strategy are the following: 

. The real value of the weighting row W of the "branching SOS row" in the opti- 
c c 

mum solution of the subproblem (or node) k. 

f(r). The sum of SOS variables (E Y.) that make up the SOS row i, being fixed to 
c j~r 3 

zero in the first branch of the dichotomy !. In the case of Equations (i0) and (ii), 

r=2 then f(2)= yl + Y2" Therefore, for the second branch of the dichotomy r we have 
(2)= c 

1 - fc Y3 + Y4 + Y5" 

F k. The optimum functional value in subproblem k. 

F n+l . The optimum functional value in the subproblem (n+1). 

F n+2. The optimum functional value in the subproblem (n+2). The subproblems (n+l) 

and (n+2) have been generated by means of branching on the SOS row with the dichotomy 

r. 

The pseudo-costs lower and upper of the SOS row in the dichotomy L (if they have 

not been obtained previously) are estimated as follows: 

- Fn+ll (12) 
PCL(r)c = [Fkf(r) 

C 

PCU (r) = ]Fk - Fn+2[ (13) 

c I- f(r) 
c 

So that, if for each dichotomy ~ (in our case r=l, 2, 3 and 4) of each SOS row i 
~(r) 

we have obtained the value o. : 
1 
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~!r) = ( _(r) PCU~ r) (l-f(r))} (14) min {PCLir) t i i 
i ' " 

the estimations of each node are obtained in the following way. Using the pseudo-costs 

of the I SOS rows in which one SOS variable has not taken the value 1 in the node (k), 

the calculation is made on the basis of the formula: 

I ~!r) 
E k = F k + E (15) 

i= 1 i 

where r is the corresponding dichotomy of each of the I SOS rows considered. Equation 

(15) represents the funcional value E k of the best integer solution which is estima- 

ted may be obtained with the nodes generated from the node k. 

The pseudo-costs (Equations 12 and 13) represent the deteriorization of the optimum 

value (F k) of the function for every unit of change in the corresponding SOS row. These 

values depend on the node in which they have been obtained. However, on the basis of 

the preliminary experiments which have been carried out, it may be assumed that al- 

though they do not remain constant, they have generally the same order of magnitude. 

THE MASC-AP MODEL STRATEGY 

The strategy of the ~ASC-AP model, since it has a large percentage of binary vari- 

ables and can thus be considered "quasi-pure", is the following. 

The selection of the branching variable and the branching node. 

The SOS row in Equation (6) to bifurcate will be that which has not yet reached 

an integer or quasi-integer value, whose associated value PCrm is greater, since this 

is the most difficult SOS condition to fulfill, and therefore the condition which 

causes a greater deteriorization in the objective function. Once the first integer 

solution is obtained, the SOS row is chosen whose value ~(r). (Equation 14) is the one 
i 

which offers a greater deteriorization in the objective function. 

These deteriorizations are classified in dynamic order such that the "list" of the 

different deteriorizations is composed by the actualized pseudo-costs. When the SOS 

row to bifurcate has been selected, the criterium for creating the two successor nodes 

is based on Equation (5). 

Except in the node (0), before selecting the branching SOS row it is necessary to 

select the branching node from among all the candidate nodes. The criterium adopted 

by the MASC-AP model is to choose the node with the best estimated value so that, 

since the pseudo-costs are not calculated for the SOS rows which are not yet branch- 

ing SOS rowsj the estimated value in the first branches, and practically until some 

integer solution is reached, differs very little from the functional value. 

Dropped nodes and selection of the candidate nodes 

Before obtaining the optimum continuous solution, the MASC-AP model obtains a fea- 

sible integer solution such that in the branch and bound phase those nodes are dropped 

whose functional value is worse than that of the previously obtained integer solution. 
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Once the integer solution has been obtained, the branch and bound phase drops the 

nodes whose functional value is greater say by 10% than that of the integer solution. 

Also, this phase "postpones" nodes whose functional value even if it is greater than 

the value of the integer solution does not have a difference greater than the previous 

value (e.g. 10%), so that once the optimality of the best integer solution has been 

proved it is observed whether among the postponed succesor nodes there is some integer 

solution which differs from the optimum solution by no more than 10%. In this way, 

different alternatives for the reduction of emissions are produced. 

Now, given that the alternatives for the emission are estimated, since the effects 

of each emitter source on the pollution of the problem area are estimated for only the 

polluted area, a node is not admitted as candidate node if its functional value is not 

better, say, as a minimum by 10%, than the value of the best integer solution. In this 

way much of the CPU time is saved, and at the same time little of the accuracy of the 

quasi-optimum integer solution is lost. 

CONCLUSION 

The model presented in this paper must be considered to be an effective tool for 

establishing bases for corrective alternatives for an abatement problem of air pollu- 

tion. It should also be considered a very useful instrument for qualifying, within the 

development policies for a given area, the standards that are more and more indispen- 

sible for protecting our air environment. 

It should be noted that the basic statistical parameter considered in the formula- 

tion of the model is the maximum probability allowed that the concentration in a given 

grid square exceed the maximum limit allowed, in contrast to models which use averages 

as their standards of quality. This methods avoids the danger of large concentrations 

being masked with smaller concentrations. This probability depends conjointly on the 

probabilistic matrix of the typology by which the different meteorological factors 

have been stratified and the probability that for a theoretical concentration estimated 

on the basis of a predicted set of emissions the real concentration might exceed the 

maximum limit permited. 

It is of interest to point out that in order to estimate the concentration in each 

grid square, stochastic diffusion models have been used for each meteorological stra- 

tum, depending on the emissions, so that the tabular form of the model is in function 

with the emitter grid squares. 

The criterium which minimize the model is the weighted reduction of the emission 

levels for each contributing grid square in accord with the effect it has on the po- 

llutant concentration in the sum of the grid squares which make up the polluted area. 
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