
On the Integrity of Data Bases and Resource Locking

Rudolf Bayer, Technische Universit~t M~nchen

Abstract

The problem of providing operational integrity of data bases as opposed

to operating systems is discussed. Techniques of resource locking, main-

ly individual object locking and predicate locking, are surveyed, im-

proved, and unified. An efficient on-line transitive closure algorithm

for deadlock discovery is presented and analyzed. Several strategies

for preventing indefinite delay of transactions are proposed. Phantoms

and the need for predicate locking are surveyed and reconsidered. Sev-

eral strategies for handling phantoms are proposed: one without predi-

cate locking and two in ~aich predicate locking is needed for writing

transactions only, and in which individual object locking sufficies for

pure readers.

!. INTRODUCTION

PrQviding data base integrity means to guarantee the correctness of the

data (more precisely their accuracy, consistency, and timeliness) through

1) the proper operation ~f the hardware,

2) the proper operation of the software, as well as

3) the proper use of the system.

This paper only covers part of the software aspect of integrity. The

problem of guarding data bases against hardware failures has been covered

extensively by M.~. Wilkes EWil 72]. Proper use of the system is mainly

concerned with quality control in data acquisition and with prevention

of accidental or mieschievous misuse, i.e. with the security of computer
systems.

3~

As opposed to many other computing environments~ data bases give rise

to especially high integrity requirements for at least the following

reasons:

i) Longevity~ Even rare errors will in the long run lead to a certain

contamination and degradation of the quality of a data base. Com-

pletely purging ~rroneous data and all their consequences from a

data base is difficult.

2) Limited repeatability: Even if data or processing errors are dis-

covered, it may be impossible or useless to rectify the situation

due to time constraints, unavailability of the correct source data,

unavailability of a correct system state preceding the fault.

3) The need for immediate and permanent availability: This prevents a

practice o~ten used elsewhere, namely running a program and then

checking by careful inspection and analysis whether the result is

or at least "looks ~' right, correcting and rerunning the program

otherwise°

4) Multiaccess: Data bases are manipulated by many users with probably

quite different quality standards. It is infeasible to completely

entrust the quality control to these users and difficult to track

the source and the proliteration of errors.

II. SEMANTIC AND OPERATIONAL INTEGRITY

We wish to distinguish between semantic and operational integrity of

data bases:

By semantic intesritv we mean the compliance of the data base contents

with constraints derived from our knowledge about the meaning of the

data. Semantic integrity might be enforced by allowing on certain data

only a limited set of precisely specified meaningful operations, by

adopting a set of programming and interaction conventions, by dynami-

cally checking the results of updates, or by proving for each program

manipulating the data base, that the semantic integrity constraints are

satisfied.

Little is known about how to describe, to enforce~ and to implement

such semantic integrity constraints. Still we believe, that semantic

integrity is of a much more basic nature than operational integrity,

and that a better understanding of semantic integrity would greatly

341

help the solution of other integrity problems as well. An approach has

been described in [Bay 74] to obtain semantic integrity via the defi-

nition of "aggregates" which limit the processing of data to the use

of a set of carefully designed operations directly associated with the

data.

Operational Integrity: For the purpose of this discussion let a "trans-

action" [EGLT 74] be the unit of processing for scheduling purposes ahd

for external data base manipulation. A transaction is a sequence of more

primitive "actions". Most work to date concerned with integrity has been

limited to those integrity problems arising from the activity of the

operating system:

i) the effort to schedule transactions to be processed in parallel as

far as possible [EGLT 74], [Eve 74], [KiC 73], [CBT 74],

2) the need to acquire resources, in particular sets of data objects or

individual data objects (also called'~ecord~' in [CBT 74] and'~ntitieg'

in [EGLT 74], for exclusive or shared use by a transaction and to

lock those resources accordingly,

3) the induced problems of deadlock among locking transactions, of dead-

lock discovery, of deadlock prevention, and of preemption of ~e-

sources from transactions to resolve deadlocks.

ili. OPERATING SYSTEMS AND OPERATIONAL INTEGRITY

As opposed to semantic integrity there is at least a brute force,

straightforward solution for operational integrity, namely to avoid

parallelism between transactions completely and to sequence in time

the execution of transactions. This is unsatisfactory for many reasons,

and better solutions have been developed for use in operating systems.

We will survey these solutions briefly and indicate, why they are not

satisfactory for data base applications. As usual in this field we use

"process" as the analogon for "transaction". The list of techniques

is adopted from G.C. Everest [Eve 74]:

Presequence Processes: Processes potentially competing for resources

must be presequenced and must execute one after the other. For data

base transactions it is often not known a priori, which data resources

will be needed. This means that any two transactions will be potentially

competing and must be sequenced. As a consequence, no parallelism is

342

possible and we have the unsatisfactory brute force method mentioned

before. Still presequencing transactions, e.g. through time-stamping,

may be useful for other purposes~ like preventing indefinite delay of

transactions by introducing an aging mechanism to increase the prior~

ities of transactions.

~reempt Processes: This technique relies on discovering deadlocks after

they have occurred. It then terminates (or backs up to an earlier state)

one of the processes involved in the deadlock, the resources locked by

that process are freed. As we shall see s this technique plays an im-

portant role in data base locking, too, butthere its application is

much more difficult due to the large number of transactions and re~

sources involved. This makes deadlock discovery and preemption quite

complicated and expensive~

~Fegrder all System Resources: The processes are then required to claim

their resources according to such a total order. It has been Shown~

that more general than linear orders, e.g. hierarchical orders, are

sufficient to support a deadlock-free locking strategy [Ram 7~]. In

data bases the resources are data objects, which often do not have such

an natural order. Furthermore a process might not be able to claim re-

sources according to such an order, since his needed resources might be

data dependent [EGLT 74], [CBT 74].

Preclaim needed Resources: Before starting to execute, a process has to

claim all the resources it will ever need. Typically they are specified

on the control cards preceding a job or job-step, and the process is

not started until the operating system has granted to it all the re-

quested resources~ This is probably the most common technique for assign-

ing non-sharable resources.

In a data base environment this technique requires considerabl~ modi-

fications to become feasibles Claiming resources may itself be a com-

plicated and lengthy task requiring searching through large areas of a

data base. These searches should run concurrently if possible.

Deadlock Prevention Algorithms: They often rely on too special proper~

ties of resources - like Habermann's banker's algorithm [Hab 69] - or

on too special models of computation ~ like Schroff's algorithm [Sch 74]~

to be generally applicable here.

343

IV. THE CHAMBERLIN, BOYCE, TRAIGER METHOD

In [CBT 74] a technique is proposed to provide operational integrity

for data bases. The technique can be considered as a modification and

combination of several methods described in section III. Integrity of

the data base must be guaranteed at the beginning and again at the end

of a transaction, it may be - and generally must be - violated by the

single actions. Due to the potential interference of two or more trans-

actions executing in parallel, transactions must lock certain parts of

the data base for exclusive or shared use. The scheme proposed in

[CBT 74] therefore requires each transaction to lock all its resources

(parts of a data base, e.g. individual records or fields of records)

during a so-called "seize phase" before starting the "execution phase".

During the seize phase the data base must not be modified by the seizing

transaction and therefore

i) preemption of locked resources from a transaction still in its seize

phase is feasible, and

2) backing a transaction in its seize phase up to wait for the preempted

resource is rather easy.

Once a transaction has started its execution phase, it is not allowed

to claim more resources, thus no backup will be necessary. At the end of

an execution phase a transaction must free all its resources before

starting a new seize phase.

The seize phase may be a rather complicated task, thus seize phases of

transactions should be run in parallel. This raises the deadlock problem

again as usual: Let tl, t2 be two transactions, t2 trying to seize re-

source rl already locked by tl must wait until rl is freed by tl. But

since resources are not locked in any particular order, tl may wish to

lock first rl, then r2. If tl successfully seizes rl and t~ successfully

seizes r2, then a deadlock has occurred. Such deadlocks must be dis-

covered and a resource must be preempted from a transaction involved in

the deadlock, say r2 from t2, causing t2 to wait for tl on r2.

In [CBT 74] an aging mechanism is attached to transactions to avoid dead~

lock due to indefinite delay of transactions. It is then shown in [CBT 74]

that the scheme described is deadlock-free in the sense, that each trans-

action will eventually be processed. This requires, of course, the pro-

per algorithms for discovery of deadlocks between transactions in their~

seize phases, for preemption or resources, and for backing up trans~

344

actions to certain points within their seize phases.

It is now clear~ that the scheme proposed in [CBT 74] is a shrewd modi-

fication and combination of the following:

1) Try to preclaim needed resources.

2) If 1) would lead to deadlock, preempt resources.

3) Superimpose a presequencing scheme for transactions - e.g. through

timestamping - to enforce an aging mechanism and to avoid deadlock

due to indefinite delay of transactions.

V. SOME MODIFICATIONS AND AN 0N-LINE TRANSITIVE CLOSURE ALGORITHM

The deadlock discovery algorithm mentioned as useful in [CBT 74] is not

really applicable, since it requires that a transaction tl may wait for

at most one other transaction to release resources. In the CBT-scheme,

however, t! may be waiting for resources to be released by arbitrarily

many transactions tw1~ tw2, ... twk as the result of arbitrarily many

preemptions of resources from t1:

Fig. 1: Transaction tl waiting for other transactions.

The resource state of a transaction t i is determined by the set

A i = {ril, ~..~ r i }

qi

of resources which it has so far acquired, and the set of request pairs

B i = {(r~',) (r i' ~ t i)}
±i til ' Pi Pi

tlj r.' is desired from transaction where (r i , .) indicates that resource l~
d

ti ° Any transaction t i for which B i is non-empty is in a wait state.

0

S45

We may then define the wait relation wcTxT where T is the set of trans-
m

actions, such that

(ti, tj)Ew iff 3 r : (r, tj)EB i.

We say that t i is waiting for tj (to release r). t i may be waiting for

several transactions as noted above, and for several resources from the

same transaction.

The wait graph ~w is the directed graph

a w = (T, w).

Deadlock discovery amounts to finding cycles in G w or, equivalently, to
+

finding pairs (t~ t) in the transitive (but not reflexive) closure w

of w. Thus deadlock exists iff 3t£T:(t,t)Ew +.

Maintaining w is trivial, since something like the Bi's will have to be
+

maintained in any case. Calculating w from w is, on the other hand,

q u i t e e x p e n s i v e , t h e b e s t known a l g o r i t h m s r e q u i r i n g O(n 3) [War 62] o r

O(n.m) [Bay 74] steps, where n is the number of nodes in G and m the
W

number of arcs.

It would be sufficient, however, to have a good "on-line" transitive
+

closure algorithm since w need only be partly modified as arcs are

added to and deleted from w.

More precisely, "on-line" transitive closure algorithm means an algo-

rithm solving the following problem:

Given w, w +, calculate

W' ~ W '+, where

w' = wU{(ti,tj)} or

w' = w~{(ti,tj)}.

+
Although it is quite simple to add an arbitrary arc and calculate w'

+
from w , i t s eems i n t h e g e n e r a l c a s e n o t o r i o u s l y d i f f i c u l t t o d e l e t e

+
an arbitrary arc and calculate w '+ from w . No better alternative seems

to be known than c a l c u l a t i n g w '+ f r o m s c r a t c h , i . e . s t a r t i n g w i t h w' and
+

ignoring the fact that we already have w .

346

For our purpose~ we need a highly simplified version of the on-line al-

gorithm for the transitive closure only. By closer inspecticn one ob-

serves, that we need to delete sinks of G and the arcs leading into
w

sinks of G w only. This is the decisive property which makes the diffi-
+ +

cult general problem tractable in our special case. To get w' from w

now simply amounts to deleting or zeroeing out a column from the Boolean
+

matrix describing w .

We will now develop such an on-line transitive closure algorithm in more

detail. We assume that transactions will wait in queue q(r) for an al-

ready locked resource r. The first transaction on a queue has success-

fully locked (or seized) the resource, it may be in its seize or exe-

cution phase. All other transactions on the queue are waiting (or

blocked). We indicate this as in Fig. 2.

Fig. 2: Transactions waiting for resource r.

tl has locked r,

ti+ I is waiting for t i to release (or free) r; i=l,2,o..,k-i,

when t i eventually releases r (and no preemptions have occurred in the

meantime), then ti+ i will seize r.

Let us first consider the state transition diagram of a transaction

(Fig. 3) and the operations relevant to that diagram, which a trans-

action may perform:

Fig. 3: The stat

A transaction t. can perform the following operations involving resource
l

r and another transaction tk:

347

Seize r:

vrEAi: Free r:

A i :: AiU{r) ; update q(r);

A i :: ¢;

Vr£A i do if t k is next in queue for r

then begin (r,t i) must be in Bk;

B k := Bk~{(r,ti)} ;

A k :: AkU{r) ;

update q(r);

if B k : ¢ then make t k

continue to seize

end;
+

update w and w ;

Seize

~nsuccessfully: t i is still in the seize state,

let t k be last in queue for r:

Case i: no deadlock arises, if t i is queued behind

t k in q(r):

B i :: {(r,tk)) ;

put t i into wait state;
+

update w and w ;

Case 2: A deadlock would arise, if t i were queued as

in Case I. This deadlock is discovered by tentatively,

but not definitely queueing t i as i~ Case 1, updating
+ @

w and checking, whether w contains cycles. In this

case t i might have to preempt r from t k. t k must be

in wait state, since we have a cycle:

In this situation t. should move forward in q(r) un-
i

til it can be inserted and no deadlock arises; update

q(r) accordingly.

Let tz be the first transaction in q(r) (starting

from t k) such that inserting t i between tz and t~_ i

causes no deadlock, then we have Case 2a. If there

is no such tz then we have Case 2b.

Note: In [CBT 74] t. is always inserted as close to
I

the head of the queue as possible. This strategy fa-

vors the younger transactions and must rely heavily

on an aging mechanism to prevent indefinite delay.

The processing costs of this aging mechanism are not

analyzed.

348

/ \
Case 2a; B~ := ~B~{(r,t~_i))jU((r~ti)} ;

B i := {(r,t~_i)};

update q(r);

t i goes into wait state;
+

update w and w ;

Case 2b: tl cannot be executing, otherwise t i would

queue behind tl according to Gase 2a. There-

fore tl is seizing or waiting. We make t i

preempt r from tl, i.e. we queue t i in front

of tl;

if BI = @, then make tl wait;

BI := B10((r~ti));

AI := A1~{r};

A i := AiU{r} ;
+

update w and w ;

Necessary Changes to w and w + and Analysis of their Complexity

+ .
For the following analysis we a~sume that w is represented in an nxn

Boolean matrix K with the meaning

K~i~j]~ (ti,tj)£w +.

Complexity of +
Operation Description of Operation the Change to w

+
Seize r: No change to w or w 0

Yr£Ai: Free r: Since t i frees all its resources 0(n)

at the end of its execution phase,

we can remove all arcs (tk,t i)

from w, and delete or zero out

column i of K.

For the analysis of the following

operations we need two auxiliary

procedures first. Let t i be in its

seize state. To insert an arc
+

(ti,t k) into w and to update w

accordingly we need the procedure

INSERTI.

349

Complexity of +
Operation Description of Operation the Change to w

To insert (t~,t i) we need the pro-

cedure !NSERT2.

INSERTI (ti,tk): Comment t i is in seize state;

w :: wU{(ti,tk)}; Constant

Vt 0. : Vtz :w +:=wCU{(tj,t~)}; O(n 2) at worst,

(tj,ti)Ew + (tk,t£)Ew +

Vt~

(tk,t~)EW +

V t .
J +

(tj ,ti)£w

:w+:=w+U{(ti,t£)};

:w :=w+U{(tj,tk)};

0(m) average,
see lager ana-
lysis
O(n)

O(n)

+

w := w+U{ (ti,tk) } ; ~onstant

INSERT2 (t~,ti): Comment t i is in seize state;

w := wU{(t~,ti)} ;

Vtj :w+:=w+U{(tj,ti)};

(tj,tz)Cw +

+
w := w+U{(t~,ti)};

constant

O(n)

constant

Note: Since t i is in the seize state,

there is no t such that (ti,t)Ew +.

Consequently no cycle in w +, and

therefore no deadlock can arise due

to the operation INSERT2 (t£,ti).

Seize r

unsuccessfully: As before, let t k be last in queue

for r:

for j := k step -i until i do

begin tentatively INSERTI (ti,tj) ;

if no deadlock then

begin £ := j+l;

exit to perform Case 2a

end end;

perform Case 2b;

for each dead-
lock O(n ~) or
O(n+m)
resp.

350

Operation Description of 0paration Complexity of @
........... the Chang,e ~o w

Case 2a: make last INSERTI

operation definite;

if ~ # k+i then begin INSERT2 (tz,ti) ;

if ~r'#r:(r',t~_1)6B ~ then

else w::w~{(t~,t~_i)} end;

at worst
O(n 2) or
O(n+m)
O(n)

search of B~

Case 2b: INSERT2 (tl,ti) ; O(n)

Analysis of INSERTI:

Adding a single arc to w, according to INSERT1, say (ti,tk) , requires

oring row k of the Boolean matrix K to all rows j with (tj,ti)6w +. At

worst this part of INSERTI requires O(n 2) operations. If, however, there

are m arcs in w +, then each node on the average will have m/n arcs into

it and m/n arcs out of it. Accordingly the average number of operations

will be

O(n-(m/n)) = O(mD.

VI. FOUR STRATEGIES FOR PREVENTING INDEFINITE DELAY

With the locking and preemption schemes proposed it is still conceivable,

that a transaction is delayed indefinitely from its execuiton phase. To

deal with this problem, we propose four increasingly effective, but also

increasingly costly strategies. It seems quite reasonable to employ sev-

eral strategies within one system successively in order to force trans-

actidns which have passed a certain age threshold into their execution

phase and out of the system.

Strategy i: Let t e be the eldest transaction° Schedule all transactions

t , s u c h t h a t t e W + t , w i t h h i g h e s t p r i o r i t y . T h i s c l e a r l y h a s a t e n d e n c y

to speed up the processing of t e. It is easy to find those t from the
+

t -row of the Boolean matrix describing w .
e

Strategy 2! Stop all transactions in seize phases from further seizing

except those t for which teW+t.

Strategy 3: For all r such that t e is waiting in q(r) let t r be the

transaction that has locked r. If t is seizing or waiting, preempt r
r

from t r and give r to t e. If t r is executing, insert t e in q(r) directly

351

behind t r. No new deadlocks can arise if we assume that all these pre~

emptions are performed together in one step. Then recalculate the new
+

w t

Strategy 4: Stop all transactions, which are not executing from seizing

further. Then apply strategy 3 for t e until t e has reached its execution

phase. Then let the other transactions proceed.

~ome Oberservations on Strategies i~ 2~ 3~ 4: It is clear that all straw

tegies will tend to bring t e closer to its execution phase,

Strategy i can be generalized to establish a partition of the trans-

actions into a linearly ordered set of priority classes, which can serve

as the basis for a general scheduling strategy. Strategies i and 3 might

still allow indefinite delay. It is easy to construct a plausibility

argument, that strategies 2 and 4 will prevent indefinite delay of

transactions.

VII. AN ALTERNATIVE APPROACH: PREEMPTION AND PARTIAL BACKUP

Although it seems feasible to maintain the basic locking and preempting

mechanism proposed in [CBT 74] using the special algorithms described

in the preceding sections, there is another argument supporting a more

radical preemption than that proposed in the CBT-scheme:

Let us assume that rl is preempted from tl by t2, which probably updates

rl. Depending on the value of rl, t~ might have locked other resources

ri', r1",.., already. But since the value of rl changes, the decision of

tl to lock r1', r1", ... should be reconsidered. In other words, t~

should be backed up within its seize phase to precisely the state it

was in just before seizing r1~ it should then be waiting for t2 on rl,

and the resources r1', r1", ... locked by tl should be freed again.

In such a preemption scheme a transaction tl will generally be waiting

for at most one other transaction t2 on precisely one resource rl. The

wait relation tlwt2 shall now mean that tl waits for the holder t2 of

rl and not for the predecessor in q(rl), since we do not need to main-

tain such queues. The resulting G w is obviously a forest of oriented

trees, the arcs pointing towards the roots. Only roots are processing

in the execution or seize phases. All other transactions are waiting.

352

Since a transaction tl is waiting for tz on precisely one resource r1~

we may label that arc with rl.

The following simple algorithms then describe the necessary operations.

Seize unsuccessfull~£

Case 1, no deadlock arises: tl trying to lock r already locked by t2

means that the tree with root tl, i.e. T(tl), is appended as a subtree

to t2, the new arc being labelled with r.

Case 2~ deadlock arises: Deadlock discovery is quite simple: Each

seizing or executing transaction is the root node of one tree. Dead-

lock arises precisely when tl is also the root node of the tree in

which t2 is. To find this out, just follow the arcs from t2 tO the root.

In this case a cycle would be generated by inserting an arc (tl,t2).

The deadlock is resolved by preempting the resource r from t2.

Preemption works as follows: tz must free r and all resources it locked

after r. In the process - see the Free operation - corresponding sub-

trees of tz will be detached - allowing their roots to continue seizing -

and the arc (t2~t3) from t2 to its father t3 in T(tl) will be deleted.

The tree T'(t2) remaining after pruning T(tz) will be attached as a su~-

tree of tl by introducing the new arc (t2,tl) with label r.

Free r': If t2 frees a resource r' either due to being backed up in its

seize phase or due to finishing an execution phase and there is an arc

(t~,t2) labelled r'~ then this arc can be deleted, thereby t4 becomes

a root and can proceed in its seize phase. To free such arcs one must

represent these trees by data structures in which it is possible to

follow arcs in both directions.

VIII. PREVENTING INDEFINITE DELAY

It is possible that for individual transactions t a situation similar

to a deadlock might again arise due to t being preempted and backed up

in its seize phase again and again. Strategies i and 2 of section ~I are

easily adapted to work for the preemption and backup technique of sec~

tion VII.

353

The analogon to strategy 3 of section VI is much easier to implement

now: Let t be the eldest transaction in the system again. Assume that
e

t is waiting for t on r and t is not executing. (If t is executing,
e

nothing can be done except scheduling t with highest priority until t

has finished executing.) Then t will preempt r from t and t will be
e

backed up in its seize phase to a state just before seizing r. t e be-

comes a root and continues seizing. A new arc (t,t e) labelled r is in-

troduced. The preemption process works precisely as described in sec-

tion VII. The main difficulty of strategy 3 of section VI has dis-

appeared, since we do not explicitly store w +. Instead, cycles are dis~

covered by just following the path from an arbitrary node of a tree to

its root, a simple and fast operation. To prevent pathological cases

of data bases changing faster than t e being able to catch up in its

own seize phase, we can apply an analogon to strategy 4 of section V!

again. Instead, however, it suffices to prevent that transactions will

enter from their seize phases into their execution phases. Let this be

strategy 5. Since only finitely many transactions are in the system at

any one time~ and since each executing transaction will run only a

finite time, t e will eventually be able to finish both its seize and

execution phase, and indefinite delay of t e cannot occur.

IX. PHANTOMS AND PREDICATE LOCKS

In [EGLT 74] a technique is described to use so called predicate locks

("predicate locking") for locking logical, i.e. existing as well as po-

tential subsets of a data base instead of locking individual data ob~

jects ("individual object locking"). This technique also solves the

"phantom problem". To explain briefly, what phantoms are, let us assume

that there is a universe~ of data objects (called "entities" in [EGLT 741

and "records" in [CBT 741) which are the potential data objects in the

data base B. Thus B c ~. Two transactions tl, t2 may have successfully

locked all their needed resources, and they may be executing, tl may

add a new object ri£~ to B and t 2 may add a new object r2E~to B, such

that tl would have locked r2 and t2 would have locked rl, if tl or t2

would have seen r2 or rl resp. during their seize phases.rl and r2 are

called "phantoms", since they might, but not necessarily will appear

in B (materialize) while tl or t2 are in their execution phases.

The appearance of just a single phantom, say rl,does net cause any diffi-

culty, since this has the same effect as running the transactions tl,t2

354

serially, namely in the order t2 followed by tl. In this case also t2

would not see the object rl created by tl and therefore t2 could not be

able to lock rl. It is the goal of predicate locking to schedule trans-

actions in parallel as far as possible under the restriction, that the

parallel schedule is equivalent to - i.e. has exactly the same total

effect on the data base as - a serial schedule. One also says that such

a schedule is a "consistent schedule", or that each transaction sees a

"consistent view" of the data base.

To enforce consistent schedules each transaction t is required to lock

(for read or write access) all data objects E(t)~ - irrespective of

whether they are in B or are just phantoms - which might in any way in-

fluence or be influenced by the effect of t on B. E(t) shall be locked

by specifying a predicate P defined on~ (or on a part of-~, e.g. on a

relation [Cod 70]) such that E(t)~S(P) where S(P) is the subset of ele-

ments of~ satisfying P.

Two transactions t1~t2 are then said to be in conflict, if for their

predicates PI, P2 it is true that 3r£S(PI)flS(P2) and tl or t2 performs

a write action on r~ Thus conflict can arise even if r is a phantom. In

this case tl, t2 cannot run in parallel, but must be run serially. The

order in which they are run is irrelevant for consistency. This order

might be important for other reasons which are not of interest here,

The main difficulties in using such a locking and scheduling method seem

to be the following:

i) Find a suitable predicate Pt for t. Ideally E(t) : S(Pt) should hold,

but then Pt might be too complicated. If Pt is chosen in a very simple

way, then S(P t) might be intolerably large, increasing the danger of

phantoms~ which are really artificial phantoms.

2) The problem "S(PI)NS(P2)~" may be very hard~ In general this problem

is even undecidable. Thus for practical applications and a given

it is necessary to find a suitable class of locking predicates, for

which the problem "S(PI)NS(P2)~" is not only decidable, but for

which a very efficient decision procedure is known. For more details

and a candidate class for suitable locking predicates see [EGLT 747.

3) Phantoms might turn out to be a very serious but mostly artificial

obstacle to parallel processing in the following sense: phantoms in

355

S(PI)NS6P2) prohibit tl and t2 from being run in parallel. But if these

phantoms do not materialize, and if furthermore S(PI)NS(P2)OB=¢, then,

of course, t~ and t2 could have been run in parallel. How much of an

artificial obstacle phantoms are to parallel processing seems to be un-

known and can probably be answered only for concrete instances of data

bases.

X. A UNIFICATION OF INDIVIDUAL OBJECT LOCKING AND PREDICATE LOCKING

Let us start with the crucial observation for this section:

"Transactions,which are pure readers, do not need to lock phantoms".

A transaction is a "pure reader", if it is composed of read actions only.

Obviously for many data base applications the pure readers are a very

important class of transactions.

To understand our observation, consider two pure readers tl, t2 first.

Since there are no write actions at all, there is no possibility for

phantoms to materialize, thus they need not be locked. Phantom locking

is only necessary to control the interaction with a transaction, say

t3, which also performs write operations. We call t3 a "writer". Con-

sider the interaction between tl and t3. Let us assume that there is a

phantom rES(P~)NS(P3) such that t3 might perform a write on r. Then tl

and t3 could not run concurrently, if tz would use predicate locking.

If however, tl uses individual object locking and successfully termin-

ates its seize phase, then tl can run in parallel with t3 provided that

s(P1)ns(P3) :

where S(PI) = S(PI)nB, i.e. the set of real data objects (without phan-

toms) inlB which tl needs to lock in order to see a consistent view of

B. But now S(PI) can be locked by tl using oQnventional "individual

object locking" as e.g. described in [CBT 74] instead of predicate

locking. If t~ should materialize phantoms, then running tl and t3 in

parallel still is consistent and has the same effect as the serial

schedule tl followed by t~.

The following observation should also be claar now: To control the inter-

action between the writer t~ and the pure reader tl if suffices, that t 3

use individual object locking according to [CBT 74]. t~ need not lock

its phantoms, since tl is not interested in phantoms anyway. We can con-

356

clude that the problem of phantoms - and therefore predicate locking -

arises only between writers~

The preceding observations suggest several alternative approaches for

handling the phantom problem:

Strategy i - Serialize Writers:

Since, as we just observed, phantoms cause difficulties only between

writers, the simplest solution is, not to schedule any writers to run

concurrently. Concurrency is possible between arbitrarily many pure

readers and at most one writer. Consistency is guaranteed by indivi-

dual object locking and by handling deadlocks and preemptions as de-

scribed in the earlier part of this paper. The problem of phantoms does

not arise.

As mentioned before~ in many applications most transactions are pure

readers. Serializing writers in those cases should notcause a signi-

ficant lo~s of concurrency and has the advantage that predicate locking

with its associated difficulties is not needed.

~trategy 2 - Predicate Locks between Writers:

Use predicate locks as described in [EGLT 74] only to determine whether

two writers t3~ t~ can run in parallel. After a writer is allowed to

proceed on account of his predicate locks, he then starts individual

object locking to compete for further processing with other transactions,

which are pure readers, exactly as in strategy i. For more details on

the individual object locking phase, in particular the types of locks,

see strategy 3.

Using predicate locking and individual object locking at thia point

allows a more general notion of conflict than that used in [EGLT 74].

Let Ul or RI be the set of objects including phantoms which are updated

or only read respectively by a transaction tl. Define Uz and R2 for t2

analogously. Obviously UINRI:~ and U2NR2:@.

Then define BI :: UI~U2

Bz :: UI~R2

B3 :: R~nU2

B4 :: RlnR2

(X.1)

Diagrammatically this can be shown as in Fig. 4.

357

BI

B3

U2

Updated by tl

UI

RI

Read by t l

R21

B2

B~

Fig. 4: Possible intersections of update and read-only sets.

For t I and t 2 to proceed in parallel with individual object locking the

following conditions must hold:

B~ = ¢ (x.2)
B2 = @ v B~ : @

Without individual object locking the stronger condition B~=@^Bs=¢ is

required in [EGLT 74]. To see that our weakend condition suffices let us

assume without loss of generality that B2=¢ and B3#¢.

B3 is read only by tl, but is updated by t~. Also B3 may contain phan-

toms which are materialized by t2. Let us assume that both tl and t2

are successful in their seize phases, i.e. while locking individual ob-

jects excluding phantoms, and then continue to run in parallel. We claim

that this is equivalent to the serial schedule tl followed by t2.

Since BI. and B2 are both empty, the effect of tl on B cannot in any way

influence t2, thus t2 has the same effect on B if it is run after tl or

parallel to tl.

B3 is not empty, but tl successfully locked all the resources it needed

to see a consistent view of the data base. tl may have missed phantoms

materialized by t~ , thus the effect of tl will be the same as in the

serial schedule tl tz. Consequently running tl and t2 in parallel is

equivalent to the serial schedule tlt2, and is therefore consistent.

The conditions (X.2) for tl and t2 to proceed in parallel can be gener-

358

alized for ti,t2,.oojt n to proceed concurrently. This is left to the

reader.

Strategy 3: This strategy sacrifices some concurrency, but is much

simpler to implement than strategy 2. There a writer t i was required

to perform individual object locking both in the sets U i and R i. It

turns out that with the conflict condition of [EGLT 74] between writers,

writers need perform object locking only within Ui, but they need not

set any read locks.

Assume that a writer ti first locks the sets U i and R i by specifying

i and l The condition for two writers t i and tj to the predicates PU PR"

run concurrently then is:

s(P~) n s~P u) = ¢

s(P~) n s(P~) = , (x.3)

s(P~) n s(P~) = ¢

After successfully locking U i and R i the writer then proceeds to perform

individual object locking within U i by setting "u-locks" for exclusive

use of data objects to be updated. These u-locks are necessary for pre-

venting pure readers from reading those objects while they are being

updated. Since the sets S(P$) are pairwise disjoint, there is never any

possibility for conflict between u-locks of different writers.

We observe that writers need not set any individual read~lo~ks, called
i j "r-locks", since S(PR)OS(Pu)=¢, and conflict of u-locks of one writer

and r-locks of another would not be possible anyway. Furthermore, sev-

eral r-locks of readers and writers on the same data object would be

allowed, since data objects are shareable as long as they are only read.

The only potential conflict still remaining is between read-access of

pure readers and update-access of a writer to the same data object s,

which is not a phantom. To control this we require pure readers to set

r-locks on individual data objects s to be read. This must happen during

a seize phase. Several r-locks can be on s, but not both r-locks of pure

readers and a u-lock of a writer. Thus if a reader (writer) sets an r-

lock (u-lock) first then a writer (reader) trying to set a u-lock (r-

lock) on the same data object must wait for the reader (writer) to re-

lease s. This leads to the usual wait situations with the possibility

for deadlock and the need for preemption and backup as described in the

3~

first part of this paper.

If a deadlock is discovered then a reader or a writer is backed up

within its seize phase for setting r-locks or u-locks resp. as de-

scribed before. For simplicity we can assume that locking with the pre-

dicates PU and PR is one indivisible operation, thus deadlock between

writers is not possible during this phase of predicate locking.

To

i)

3)

summarize, a writer t i proceeds as follows:

i i If conditions (X.3) are satisfied for all Lock predicates PU and PR"

other writers tj which have successfully locked their predicates
• " i and i P$ and P~ then proceed with step 2), otherwise wait, until PU PR

can be successfully locked, then proceed with step 2).

Start a seize phase setting u-locks on individual data objects to be

updated within S'(P~).- In case of conflict with r-locks wait or be

backed up within this seize phase.

A pure reader performs a seize phase setting r-locks on data objects

to be read. In case of conflict with u-locks the reader must wait or

be backed up within this seize phase.

Summarizing the main advantages of strategy 3 we observe:

o Only writers use predicate locking to handle phantoms.

o Concurrency between writers is possible.

o Writers need an individual object locking phase for setting u-locks

in their update areas only. In this phase phantoms are ignored.

o Pure readers do not use predicate locking, they set r-locks during an

individual object locking phase only and ignore phantoms completely.

Note: Since predicate locking is now needed for writers only, it might

be quite feasible to replace arbitrary predicates by a fixed partitien-

ing of the data base or by a fixed family of subsets of ~, whose inter n

section properties are known once and for all and recorded in a Boolean

matrix (intersection between two subsets is empty or not). Instead of

locking predicates the above subsets are then locked by writers.

Acknowledgement: I wish to thank Mr. John Metzger, with whom I had many

useful discussions during the writing of this paper.

380

Bibliography

[Bay 74] Bayer~ R., "AGGREGATES: A Software Design Method and its Appli-

cation to a Family of Transitive Closure Algorithms". TUM-Math.

Report No. 7432, Technische Universit~t M~nchen, Sept. 1974

[Bjo 73] Bjork, L.A.~ "Recovery Semantics for a DB/DC System". Pro-

ceedings ACM Nat'l. Conference 1973, 142-146

[CBT 74] Chamberlin~ D.D., Boyce, R.F., Traiger, I.L., "A Deadlock-free

Scheme for Resource Locking in a Data Base Environment". In-

formation Processing 1974, 340-343

[Cod 70] Codd, E.F., "A Relational Model for Large Shared Data Banks".

Comm. ACM 13, 6 (June 1970), 377-387

ICES 71] Coffman~ E.G. Jr., Elphick, M.J., Shoshani~ A., "System Dead-

locks". Computing Surveys 3, 2 (June 1971), 67-78

[Dav 73] Davies, C.T.~ ~'Recovery Semantics for a DB/DC System". Pro-

ceedings ACM NatTl. Conference 1973, 136-141

[EGLT74] Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger I.L., "On the

Notions of Consistency and Predicate Locks in a Data Base

System". IBM Research Report RJ 1487, Dec. 30, 1974

[Eve 74] Everest, G.C., "Concurrent Update Control and Data Base Inte-

grity". In: Data Base Management (ed. Klimbie, J.W., and Koffe-

man~ K.L.), North Holland 1974, 241-270

[Fos 74] Fossum, B.M., ~'Data Base Integrity as Provided for by a Par-

ticular Data Base Management'System". In: Data Base Management

(ed. Klimbie, J.W., and Koffeman, K.L.), North Holland 1974,

271-288

[Hab 69] Habermann~ AoN., "Prevention of System Deadlocks". Comm. ACM

12, 7 (July 1969), 373-377, 385

[KiC 731 King, P.F., Collmeyer, A.J., "Database Sharing - an Efficient

Mechanism for Supporting Concurrent Processes". AFIPS Nat'l.

Comp. Conf. Proceedings 1973, 271-275

361

[011 741011e, T.W., "Current and Future Trends in Data Base Management

Systems". Information Processing 1974, 998-1006

[Ram 74] Ramsperger, N., 'Werringerung yon Proze~behinderungen in

Rechensystemen". Dissertation, Technische Universit~t M~nchen,

1974

[Sch 741Schroff, R., "Vermeidung von totalen Verklemmungen in bewerte-

ten Petrinetzen". Dissertation, Technische Universit~t M~nchen,

1974

[War 62] Warshall, S., "A Theorem on Boolean Matrices". Journal ACM 9,

1 (January 1962), 11-12

[Wil 721 Wilkes, M.V., "On Preserving the Integrity of Data Bases".

The Computer Journal, 15, 3 (August 1972), 191-194

