
The Complexity of Negation-Limited Networks - A Brief Survey

t Michael J. Fischer
Massachusetts Institute of Technology

Cambridge, Massachusetts U.S.A.

Io Introduction

Let B = (0,I}, F n = [f I f: Bn ~ B}, and let ~ ~ U F . The combinational
m~l m

complexity CQ(F) of a set of Boolean functions F ~ F is the least size network over
n

the basis ~ which computes each of the functions in F. Combinational complexity

provides a meaningful measure of the difficulty of finite functions and has been

widely studied. Our definitions are similar to those of Savage [20,21] and are

formalized in Section 2.

Combinational complexity is interesting for both practical and theoretical

reasons. The practical motivation comes from its correspondence with the cost of

actual digital hardware. Theoretical interest derives both from its clean mathemati-

structure and its connection with computation time on Turing machines [17]. Namely,

if g: B 4 B can be computed in time T(n) on a multitape Turing machine, then the

restriction gn = g I Bn of g to length n inputs can be computed by a network over any

complete basis of size 0(T(n) log T(n))°+t (Schnorr strengthens this bound to

cp.T(n) log S(n) where p is the number of instructions of the Turing machine, and

S(n) is the number of storage cells visited [22].)

It follows that a lower bound greater than cn log n on the combinational com-

plexity of gn implies a non-linear lower bound on the Turing machine time complexity

of g. Such lower bounds on Turing machine time have never been obtained for particular

concrete functions g except by diagonal techniques.

This research was supported in part by the National Science Foundation under re-
search grant GJ-43634X to M.I.T. The author did some of this work at the Universi-
ty of Toronto and the University of Frankfurt.

tt The lengths of gn(X) may differ for different x E Bn0 Since a network has a fixed
number of outputs, we must assume appropriate conventions for representing the
values of g . For example, if m = max] g~(x) l , then the network might have m

n xEBn ~L

pairs of outputs encoding one of the three symbols 0, I or blank.

72

Unfortunately, few techniques exist for proving lower hounds on the combinational

complexity of specific functions of interest, even though the following theorem shows

that "most" functions are hard.

2 n
Theorem I (Lupanov [8]). C(f) ~-- for all but a vanishing fraction of functions

t n
fEF .

n

For certain natural problems, diagonal techniques can be applied to obtain

large lower hounds [2,25]. A sample of such a result is the following;

Theorem 2 (Meyer [II]). Let D be the decision problem for length n sentences of
n

Presburger arithmetic [5,19]. Then C(Dn) e c n, where c > I is independent of n.

These techniques, however, do not apply to concrete problems, for example, to

any Boolean function whose truth-table can be generated by a multitape Turing machine

in time polynomial in the length of the truth-table. Examples of concrete problems

are binary integer multiplication, Boolean matrix product, Boolean convolution

product, transitive closure of a Boolean matrix, context-free language recognition,

and numerous other problems from automata and language theory, combinatorics, and

other branches of discrete mathematics and computer science.

Recently, attention has been directed toward developing new techniques for

proving lower bounds on concrete problems [6,15,23,24]. To date, only linear lower

bounds have been obtained, hut with a coefficient of linearity greater than one. An

example of such a theorem is the following:

Theorem 3 (Schnorr [23]). Let f = (x I A x 2 A ... A Xn) V (~x I A ~x 2 A ..,A~Xn).

Then C(f) = 2n - 3.

The largest lower bound of this kind is 2.5n, obtained recently by Paul [15].

2. Basic Definitions

Let B = [0,I}. For each n ~ D~, let F = [f I f: Bn 4 B}. Let ~ = U F . For
n ne I n

f E F n, let p(f) = n, the number of arguments of f.

A logical network ~ over the basis ~ ~ ~ and initial functions A ~ F is a
n

directed acyclie graph G = (V,E) with labelled vertices such that the arcs entering

each vertex are ordered. The vertices of indegree zero are called source nodes and

are denoted by V s . The remaining vertices, Vg, are called $ates. The labels are

specified by afunction 9: V ~ ~ U A such that (I) if v E Vs, then ~(v) E A; and (2)

if v E Vg, then ~(v) E Q and the indegree of v = p(~(v)).

We associate with each v E V a function ~v E F n. If v E V s, then ~v = ~(v).

% r(n) N s(n) iff lira r(n) S(n) = I, where r,s: ~ -+ R.

73

If v E Vg, then

~v = ~(v)(~w I ~w k)

where k = 0(~(v)) and (Wl,V) , ..., (Wk,V) are the arcs incident on v, in order.

The fact that ~ is acyclic insures that each ~v is well-defined. Let F ~ F n. We say

N computes F if F c [~v I v E V}.

The cost C(~) of a network ~ is the number of gates it contains. The combination-

al complexity of F ~ F relative to the basis ~ ~ ~ and the initial functions A ~ F
-- n n

is

c~'A(F) = min[C(h) I N is a network over basis ~ and initial functions A, and
h computes F}.

When considering n-argument functions, we will always assume the initial

functions A = [Xl, xn,O,l } , where x.l is the i th projection function of n argu-

ments ky I ... yn.Yi, and 0 and I are the constant functions of n arguments with values

0 and I, respectively. We generally omit explicit mention of the initial functions.

If the basis is also not specified, the full binary basis F 1 U F 2 is assumed.

3. Monotone Networks

In an effort to understand better the difficulties in proving lower bounds on

combinational complexity and hopefully to develop new proof techniques applicable to

the general case, various restrictions on networks have been considered which enable

non-trivial lower bounds to be proved.

Let M = [A,V} ~ F 2. We call a network over M a monotone network, and we denote

, is monotone increasinK cM(F) by MC(F) the monotone complexity of F. A function f E F n

(or monotone for short) if for all x, y E B n, x ~ y = f(x) ~ f(y), where x ~ y iff

x. ~yj for all j, l~j ~n. It is clear by induction that amonotonenetworkcancomputeonly
J

monotone increasing functions. Conversely, every monotone function can be computed by a

monotone network.

A close relationship between monotone functions and general Boolean functions

allows Theorem 1 to be used to establish the existence of hard monotone functions.

Definition. Let f E F n, g E F2n, g is a monotone cover of f if (i) g is monotone

increasing, and (ii) f(xl, ..., Xn) = g(xl, ~x I Xn, ~Xn).

Lermna 4, Every f ~ Fn has a monotone cover g E F2n,

Proof. Take
~I if ~(x i + yi) > n;

g(xl,Y 1 xn,Yn) = ~0 if ~(x~ + yi) < n;

t f(xl, ... Xn) otherwise.

74

Theorem 5. Let MCmaX(n) = max[MC(g) ! g E F and g is monotone}. Then
2n/2 t n

McmaX(n) ~ " ~ n "

Proof. Let m = [n/2j. Choose a function f E F maximizing C(f). Let g be a mono-
m

tone cover of f. Then using Theorem I,

2 (n'l)/2 ~ 2 m < cmax(m) = C(f) ~ C(g) + m ~ MCmax(n) + m,
- - N

n/2 m
2 n / 2

where cmax(m) = max{C(f) I f E Fn}. The theorem follows since m = o(---~-). []

A stronger result can be obtained by looking into the proof of Theorem I. The

lower bound of Theorem I is established by counting the number N of n-input networks q
of size at most q and showing that N ~ (cq) q for some constant c. (Cf. Fischer [3]

q n
or Strassen [26].) Comparing this number with 22 , the number of functions in Fn,

yields the bound. For monotone functions we need only compare Nq with the number of

monotone functions in F . While this number is not known exactly, it is at least
n n

2 (kn/2J) n
, f o r t h e s e t S = (s E B n I # ! ' s i n S = ~/2,.]} h a s c a r d i n a l i t y ([. n / 2 J) , and

./-Z_2 2 n
a m o n o t o n e f u n c t i o n c a n a s s u m e a r b i t r a r y v a l u e s on S. T a k i n g q = (1 - ¢) ~ ° ~ 2

N n
it follows that q ~ 0 as n -~ ~.

monotone functions in F
n

This proves the following:

Theorem 6. All but a vanishing fraction of monotone functions f in F n have

2 n
MC(f) > C(f) > • -~72 •

n

As with general networks, no non-trivial lower bounds are known on the monotone

complexity of particular concrete single functions. However, for sets of monotone

functions, considerable success has been achieved. Several such results follow from

a general theorem about graphs due to Pippenger and Valiant [16,27].

Theor~ 7. Let G = (V,E) be an undirected graph with vertices V and edges E. Let

X,Y ~ V, X N Y = @, and let P = [PI' "''' Pk }' where each Pi is a set of vertex-

disjoint paths from X to Y. Assume further, , , ,that for every x E X, y E Y, there is a

path from x to y in P = U e.. Then IEI ~ ~ log(IXl + IYI)
i l

To apply this theorem, we must show the existence of sets of disjoint paths with

the required properties. This is where we make use of the assumption of monotonicity.

r(n) < s(n) (s(n) > r(n))iff lim sup ~ ~i, where r,s: ~q -+ R.
~ - s(n)

75

n Ilo if ~x.(=l I xi = I}I) ~ k ; , Definition. Let Tk(Xl, ..., Xn) = i i [xi

otherwise.

n is the threshold-k function of n arguments. Boolean sorting of n arguments is the T k
s e t

n
BS n = (T k I 1 ~ k ~ n} c Fn.

The f o l l o w i n g c o r o l l a r y t o Theorem 7 was o r i g i n a l l y p r o v e d d i r e c t l y by Lamagna

and S a v a g e [7] .

Corollary 8. MC(BSn) a cn log n for some c > 0.

Proof. Let h compute BSn. Let X = Ix0, ..., Xn_l) be the source vertices of h and

let Y = [Y0' Yn_l} be vertices of ~ such that ~Yk = Tn "''' k+l' 0 ~ k ~ n - I.

We define a family P = [P0' "''' Pn-I } of sets of vertex-disjoint paths.

Intuitively, each set Pk is obtained by initially setting all inputs to zero and then

turning them on one at a time. Since ~ computes BSn, the outputs also turn on one at

a time. Clearly, if an output changes as a result of a change in a single input,

there must be a path in the network connecting the input to the output on which

every vertex changes value. By monotonicity, every vertex on that path changes from

zero to one when the input is turned on. Thus, each such path is distinct from

those previously obtained. These paths comprise the set Pk" By varying the order of

turning on the inputs, we obtain in this way each of the sets in ~.

More precisely, for 0 ~ k ~ n-l, 0 ~ j ~ n, let ~k,j ~ Bn be the input vector

whose i th component is given by

I~ if i = k + ~(mod n) for some 4, 0 ~ ~ < j;

(~k,j)i = otherwise.

Let Gk, j = Iv ~ vertices (~) I ~v(~k,j) = I}. Since ~k,j÷l ~ ~k,j' then

Gk, j+ 1 ~ Gk, j by the monotonicity of ~. Let Dk, j = Gk, j+ 1 - Gk, j, 0 ~ j < n.

Clearly, the sets Dk, o, ..., Dk,n. I are pairwise disjoint. Since ~yj(~k,j+l) = I and

~yj(~k,j) = 0, yj E Dk, j. Also, Xk+j(mo d n) E Dk, j. An easy induction shows that to

every node in Dk, j there is a path from Xk+j(mo d n) consisting entirely of nodes in

Dk, j. Let Pk,j be such a path from Xk+j(mo d n) to yj, and let Pk = [Pk, j I 0 ~ j < n}.

Then Pk is the desired set of vertex-disjoint paths from X to Y.

It is easily verified that P satisfies the hypotheses of Theorem 7, and the

lower bound irsnediately follows. D

For another application of this theorem, we consider networks which rotate a

subset of their inputs under control of the remaining variables.

76

Definition. Let R = [g0' "''' gn-I] ~ Fn+p' ~ E B p. ~ causes an (n,r)-rotation

in R if

gj(Xo' "''' Xn-l' 60 6p-l) = Xj+r(mod n)

for all x0, ..., Xn. 1 E B and all 0 ~ j ~ n - I, where (60 , ~p_l) = ~. R is an

n-rotation set if for all r, 0 K r ~ n - I, there exists ~r E B p which causes an

(n,r)-rotation in R.

Corollary 9. There exists c > 0 such that for all n-rotation sets R, MC(R) > cn !ogn.

Proof. The proof is identical to that of Corollary 8 except that we define

I I if 0 ~ i < n and i = k + ~(mod n) for some ~, 0 ~ ~ < j;
(~k,j) i = 0 if 0 ~ i < n and i # k + £(mod u) for any ~, 0 ~ ~ < j;

6k, i.n if n ~ i < n + p

where 6 r = (6r,O, ..., ~r,p_l) causes an (n,r)-rotation.

Still a third application of Theorem 7 is to Boolean matrix product.

Definition. The Boolean matrix product of two n x n matrices A = (aij) and B = (bij)
n

is the set MP n = (cij] cij = k=l~/ aik A bkj , I ~ i,j < n} ~ F2n 2.

Corollary I0. C(MPn) > cn21og n for some c > 0 independent of n.

This bound was greatly improved using more refined techniques developed original-

ly by Pratt [18].

Theorem II (Mehlhorn [I0] and Paterson [14]). MC(MP n) = 2n 3 - n 2. Moreover, the

straightforward network obtained from the definition of MP is uniquely optimal to n
within the associativity and cormnutativity of the basic operations in M.

The lower bound techniques we have discussed so far depend critically on the

monotone restriction, for asymptotically smaller networks are known using a full

basis.

Theorem 12 (Muller and Preparata [12]). C(BS n) = O(n).

I°g27 I+ c), for any c > 0.
Theorem 13 (Fischer and Meyer [4]). C(MP n) = 0(n .(log n)

The combinations of Corollary8 with Theorem 12, and Theorem II with Theorem 13,

establish that a considerable savings in the complexity of a network for a set of

monotone functions can be realized by using negations. To discuss the extent of such

savings, we define the gap between monotone and general combinational complexity.

Definition. Let F ~ Fn, F monotone. Then GAP(F) = MC(F)/C(F). (If C(F) = O, let

GAP(F) = 0).

77

Question. How big is max[GAP(F) i F ~ Fn, F monotone} as a function of n?

It follows from Theorem II and 13 that GAP(MPn) ~ n ~ for any ~ < 3 - Iog27 ~ .19.

Just how much larger the maximum can be is not known -- it is not even known if the

maximum grows exponentially in n. If a good upper bound on GAP(F) could be obtained,

then a lower bound on MC(F) would translate into a lower bound on C(F), giving a new

technique for obtaining lower bounds on combinational complexity.

4. Inversion Complexity

An obvious way to generalize the class of monotone functions is to consider

those functions that can be realized by a network over the complete basis A = [A,V,~}

but using only a limited number of negations. The monotone functions are the extreme

case in which no negations are permitted.

For a network ~ over A, let I(~) = the number of negations in ~. For F ~ Fn,

define I(F) = min (I(~) I ~ computes F}.

I(F) can be characterized quite simply. Let IF1 = m and treat F as a function

B n * B TM. A sequence C = (~I,~2 , ,.., ~k) of vectors ~i E B n is called a chain of

length k. For such a chain, define

altF(C) = I{ i I 1 ~ i < k and F(~i) ~ F(~i+l)}l.

Let A(F) = max(altF(C)] C is a chain}, and let b(n) = [log2(n+l)].

Theorem 14. I(F) = [log2(A(F) + I)].

Corollary 15.

(a) max I(f) = Llog2(n+l)j ;
fEF

n

(b) max I(F) = [log2(n+l)] = b(n).
F_CF

n

Theorem 14, stated for singleton sets F, and Corollary 15 are due to Markov and

appear in [9]. Nakamura, Tokura and Kasami [13] and this author [3] give algorithms

for finding a network for F with only [log2(A(F) + i)] negations. A proof that

I(F) m [log2(A(F) + I)] also appears in [3].

We now define the negation-restricted complexity of a set F ~ F such that
n

I(F) ~ k to be

NCk(F) = min{CA(N) I h is a network over A, ~ computes F, and I(h) ~ k}.

Note that NC 0 = MC.

As mentioned in the last section, little is known about the behavior of GAP(F),

or even if it is bounded by a polynomial in the number of arguments of F. A natural

generalization of GAP is to let GAPk(F) = NCk(F)/C(F). (If C(F) = 0, let GAPk(F) = 0.)

Thus, GAPk(F) is defined only for those F which can be realized with at most k

negations and is an expression of the increase in network size when the number of

78

negations is restricted to k. Note that GAPo(F) agrees with our previous definition

of GAP(F).

In view of our inability to bound GAP(F) nontrivially from above, the following

theorem and its corollary come as somewhat of a surprise.

Theorem 16. NCb(n)(F) ~ 2.CA(F) + 0(n21og2n) ~ 6.C(F) + 0(n21og2n) for all F ~ F n.

Corollary 17. GAPb(n)(F) ~ 0(n log2n) for all F ~ Fn.

Proof of Corollary 17. We say a function f E F n depends on its i th argument if there

exist al,...,ai.l, ai+l, ..., a n E B such that

f(al, ..., ai.l, 0, ai+l, ..., an) ~ f(al, ..., ai.l, I, ai+l, .,,, an).

Let F ~ Fn, let X be the set of argument positions upon which some function in F-A n

depends, and let m = IX1 ~ n. (Recall thatA is the set of initial functions, so the
n

functions inF-A must be computed by gates.) Let F' ~ F 5ethe restriction of F-A to
n m n

the argument positions in X. It is easily shown that C(F') = C(F) and NCk(F') =NCk(F).

Also, C(F') e m/2 since we permit only gates of at most two inputs, and F' depends on

all of its arguments. By Theorem 16~

cm21o$2m
GAPb(n) (F') ~ 6 + C(F')

for a fixed constant c. Hence,

GAPb(n)(F) = GAPb(n)(F') ~ 6 + 2cm log 2 m ~ 6 + 2cn log2n = 0(n log2n).

Note that GAPb(n)(F) can only be as large as 0(n log2n) for F of low complexity;

if o(C(F)) = n21og2n, then GAPb(n)(F) < 6. The behavior of GAPk(F) is not well-

understood, however, for any k < b(n).

Before proving Theorem 16, we generalize and strengthen Lermna 4. A monotone

cover of a set of functions F ~ F n is a set G ~ F2n that contains a monotone cover

of each function in F.

Lemma 18. Every F ~ F n has a monotone cover G ~ F2n such that MC(G) ~ 2.~(F).

Proof. We proceed by induction on ~(F).

Base: If ~(F) = 0, then F is monotone, so G is trivially constructed.

Induction: Let s > 0 and assume the le~aa holds for all F' such that ~(F') < s.

Let ~(F) = s and let h be a network over A of cost s which computes F. By choosing

an initial gate of ~, F may be decomposed in one of three ways, depending on the

label of the gate, for some F' ~ Fn+l:

I. F(x I x n) = F'(x i V xj, x I Xn) ;

2. F(x I , xn) = F'(x i A xj, x I , Xn) ;

3. F(Xl, ..°, x n) = F'(~ x i, x I, ..., xn).

79

~(F') ~ s - 1 since a network for F' is obtained from h by deleting the chosen

gate. By the induction hypothesis, there is a monotone cover G'(y,y',xl,x i ,Xn,X~)

of F' such that MC(G') ~ 2.~(F'). Define G according to the case that obtained

above:
T v I. G(Xl,X 1 xn,x~) = G'(x i V xj, x I A x~, Xl,X ~ Xn,X~) ;

t v ' .. = x[V Xj, Xl,Xl, .. Xn,Xl) ; 2. G(Xl,Xl, ., Xn,X~) G'(x i A xj, z "'

3. <Xl,X i Xn,X i) : '(xi,xi,xl, l , x i) .
It follows easily using DeMorgan's law that G is a monotone cover for F. Also,

MC(G) g 2 + MC(G') g 2 + 2.~(F') g 2"~(F), proving the lemma for ~(F) = s. That

the lemma holds for all s follows by induction.

From Lemma 18 we see that any F can be realized with no negations and with only

a factor 2 increase in complexity if the negations of the variables are available as

inputs.

Definition. Vn = [Xl' ~ Xl' Xn' ~ Xn}"

Lemma 19. NCb(n) (V) -< 0(n21og2n).

Proof. Let rl if G x. > k;

T n IO j~i]
k, i(Xl 'xn) = otherwise.

Note that T n k,0 is the function ~n k defined previously in connection with Boolean

sorting. We use the fact that

-~ x. = I ~ x. = 0
l l

Vk[Tk,0(x) = T n k, i (x)]

Vk[~k,o(X) _~ n k,i (x) J

A[-~ T n o(X) V T k k k, , i (x)].

Thus, -~ x i can be computed from the functions ~ ~n k,O and Tn k,i using only 2n-I A- and

V-gates. It remains to compute U I = [~k,i I 1 ~ k ~ n}, 0 ~ i _< n, and

V n = [~ n I I ~ k < n}.
k,0

Fact (Batcher [I]). MC(U n) N 0(n log2n).
n

It follows in~aediately that MC(U U I) ~ 0(n21og2n).
i=O

To compute V n, it suffices to find a network 9]I for any set of functions
n

Fn = [YI ¥:} c_ Fn with the property that

n n . . . , - 1 T n
Yi(T l,o(X), T: ,o (X)) = i,o(X) ;

n
8j(x I ~) = (xj

that is, when the inputs are sorted in decreasing order, ¥~ is the complement of the
.th .
m input.

2 r _ Let n = i. We define F inductively on r.
n

1
r = I: ~l(Xl) = x I •

r > I: Let m = 2 r-l. For I ~ j s m - I, let

Now define

x 1

Xm. 1

Xm+ I

x
n

A network~ for F
n n

i - ~ x m) Vxj+ m.

ym-1 n , , 6rim I(x))A ~ x m i (81(x)' "" -

y~(X I Xn) =]-~ Xm i f i = m;
m-I 11

is pictured in Figure I.

if I ~ i S m-l;

if m + i ~ i ~ n.

%-I

Figure I. A network for F o
n

80

~---- ynm_ 1

- - Ym
n

¥m+l

To see that F has the desired properties, we consider separately the two cases
n

x = 0 and x = I. Note that if the inputs are sorted in decreasing order, x = 0
m m m

implies that x k = 0 for all k > m, and Xm = 1 implies x k = 1 for all k < m. The

remaining details are left to the reader.

Proof of Theorem 16. Let F ~ F . By Lermna 18, there is a monotone cover G of F such
n

that MC(G) ~ 2-~(F). By LeTmna 19, NCB(n)(Vn) ~ 0(n21og2n). Since F can be

realized as the composition of GwithVn, NCh(n)(F) ~ 2"~(F) + 0(n21og%).

To complete the proof, we must show that 6~(F) ~ 3"C(F). But that is irmnediate

since for every f E F 1 U F 2, ~(f) ~ 3. Hence, each gate in a general network for F

can be replaced by a sub-network of at most three gates from 4.

81

5, Conclusion

Proving lower bounds on the combinational complexity of concrete functions is a

difficult and challenging problem. Previous successes in establishing lower bounds

for monotone networks and the known gaps between the monotone and general combinational

complexity indicate the key role that negations play in determining combinational complexity.

We have investigated the way in which the complexity of a set of functions F

decreases with the use of additional negations beyond the minimum number necessary

to realize F. For sets F of maximum inversion complexity, at most a factor of 2 and

an additive term of order n21og2n is saved. However, for sets of lower inversion

complexity, no interesting bounds are known on the amount of savings possible. Good

upper bounds on the amount of such savings would enable lower bounds on combinational

complexity to he concluded from lower bounds on the negation-restricted complexity.

Acknowledgment

The author is grateful to A.R. Meyer, M.S. Paterson, and N. Pippenger for

several helpful discussions.

References

I. Batcher, K.E., Sorting networks and their applications, Proc. AFIPS Spring Joint
Computer Conference, Vol. 32, AFiPS Press, Montvale, N.J.,(1968), 296-291.

2.

3.

4.

5.

6.

7.

8.

9.

Ehrenfeucht, A., Practical decidability, Report CU-CS-008-72, Dept. of Computer
Science, Univ. of Colorado, Boulder, Colo., (1972), 14 pp.

Fischer, M.J., Lectures on network complexity, University of Frankfurt, Germany,
June 1974, 25 pp.

Fischer M.J., and A.R. Meyer, Boolean matrix multiplication and transitive
closure, Proc. 12th IEEE Symp. on Switching and Automata Theory (1971), 129-131.

Fischer, M.J. and M.O. Rabin, Super-exponential complexity of Presburger
arithmetic. In Complexity of Computation, SIAM-AM~ Proceedings, Vol. 7 (1974),
27-41.

Hsieh, W.N., L.H. Harper and J.E. Savage, A class of Boolean functions with linear
combinational complexity, MAC Technical Memorandum 55, M.I.T. Project MAC,
Cambridge, Mass. (1974), 38 pp.

Lamagna, E.A. and J.E. Savage, Combinational complexity of some monotone functions,
Proc. 15th IEEE Symp. on Switching and Automata Theory (1974), 140-144.

Lupanov, O.B., A method of circuit synthesis, Izvestia v.u.z. Radiafizike, No. I
(1958), 120-140.

Markov, A.A., On the inversion complexity of a system of functions, J. ACM ~, 4
(1958), 331-334.

I0. Mehlhorn, K., On the complexity of monotone realizations of matrix multiplication,
Technical report A74-II, Fachbereich Angewandte Mathematik und Informatik,
Universit~t des Saarlandes, Saarhrucken, Germany (1974), 17 pp.

82

II. Meyer, A.R., Private communication.

12. Muller, D.E. and F°P. Preparata, Bounds to complexities of networks for sQrting
and for switching, J. ACM 22, 2 (1975), 195-201.

13. Nakamura, K., N. Tokura, and T. Kasami, Minimal negative gate networks, IEEE
Trans. Comp., Vol. C-21, No. I (1972), 5-11.

14. Paterson, M.S., Complexity of monotone networks for Boolean matrix product,
Theoretical Computer Science I, I (1975), to appear.

15. Paul, W.J., A 2.5 N-lower bound on the combinational complexity of Boolean
functions, Proc. 7th ACM Symp. on Theory of C~ u _ ~ (1975), 27-36.

16. Pippenger, N., Private con~unication.

17. Pippenger, N., and M.J. Fischer, Relationships among complexity measures, in
preparation.

18. Pratt, V.R., The power of negative thinking in multiplying Boolean matrices,
Proc. 6th ACM Symp. on Theory of Computing (1974), 80-83.

19. Presburger, M., Uber die Vollst~ndigkeit eines gewissen Systems der Arithmetic
ganzer Zahlen in welchem die Addition als einzige Operation hervortritt.

• . .

Comptes-rendus du I Congr~s des Mathematlclens des Pays Slaves, Warsaw (1930),
92-101, 395.

20. Savage, J.E., Computational work and time on finite machines, J. ACM 19, 4 (1972),
660-674.

21. Savage, J.E., The Complexity o f Computing, manuscript~ 1974.

22. Schnorr, C.P., The network complexity and the Turing machine complexity of
finite functions, manuscript, University of Frankfurt, Germany (1975), 18 pp.

23. Schnorr, C.P., The combinational complexity of equivalence, Theoretical Computer
Science, to appear.

24. Schnorr, C.P., Zwei lineare untere Schranken fur die Komplexit~t Boolescher
Funktionen, Computing 13 (1974), 155-171.

25. Stockmeyer, L.J., The complexity of decision problems in automata theory and
logic, Project MAC Technical Report 133, M.I.T., Cambridge, Mass. (1974), 224 pp.

26. Strassen, V., Berechnungen in partiellen Algebren endlichen Typs, Computing II
(1973), 181-196.

27. Valiant, L.G., On non-linear lower bounds in computational complexity, Proc.
7th ACM Symposium on Theory of Computin$ (1975), 45-52.

