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Throughout this paper X denotes the binary alphabet {o,I}, X ~ the set 

of (finite) words over X, X = the set of infinite binary sequences; A de- 

notes the empty word and Ixl denotes the length of xcX ~. 

First we present some informal considerations concerning learnability 

of infinite o-l-sequences. Let R ~ X*xX % be a rec. en. relation (an 

effective system of descriptions; sometimes called operator); we say 

y describes x iff yRx. We suppose that R is an universal rec. en. rela- 

tion, i.e. if S is any rec. en. relation, there is w~X ~ such that 

y,x: ySx=YwyRx . Now, if za_~ ~ is a recursive sequence, there is a 

"best" way to describe z: there is vex ~ such that ~n~N: vRz n (where 
n 

z denotes the initial segment Zl...z n of z). But usually (if z is not 

recursive) the length of the description of z n will become larger as n 

grows, because more and more additional information must be provided by 

the description. We call z learnable, if there is a "best" way to de- 

scribe all the initial segments z n of z. The problem to characterize 

learnable sequences is due to R.P. Daley EI~. 

Let us pass to the formal definitions. Following Levin ~3~, we restrict 

the systems of descriptions to monotonic operators. A rec. en. relation 

A ~ X~×X ~ is called monotonic ogerator iff 

(I) ~(y,x)~A:~(v,u)~A: yCv --~ xEu v uEx . 

(We write yCv iff v~yX ~) 

There is an universal monotonic operator U; that means: if A is any mono- 

tonic operator, then w~X ~ can effectively be found such that ~(y,x)EA: 

(wy,x)&U. We fix an universal monotonic operator U, a partial recursive 

function ~:X&×X ~ ÷ X such that domain(~) = U and a running time function 

for ~. For technical reasons we assume 

(2) Vy,x: ~(y,x) ~ iogly [ . 

Notations: 

(3) Km(x) := min {IYl i yeX ~ A yUx}; Km is called monotonic operator com- 

plexity. 
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(4) Let T be a growth function (i.e. T is recursive, isotonic, unboun- 

ded) . 
• , k x i) MT:: {Y ~X~I ~iLlxl : ~k~lYi : Y kUxl A ~[y , ~ T(i) }. 

x 

Condition (2) ensures that there is a finite set ~ X; MT= such that x x 

M~ X ~ and y~M~ ~ log lyl ~ T(Ixl). 

<5) KmT(x) : = min {IY[ I y~M~}- 

Km T is reeursive for sufficiently large functions T. 

In order to give a short definition of learnability we introduce a re- 

lation ~ for (arbitrary) functions fl,f2:N + N. We write f] ~ f2 iff 

Vg growth funct.: V~n: fl (n) ~ f2(n) + g(n). 

Definition: 

zEX ~ is called learnable iff there is a growth function T such that the 

function n ÷ KmT(z n) is m~-minimal among (n ÷ Kmt(zn) I t growth funct.). 

An equivalent, but perhaps more intuitive definition of learnability 

makes use of the notion of a recursive coding. A recursive function 

~:X { + X ~ is called a recursive coding, iff ~x~X~:~(x)Ux . Thus ~(x) 

describes x; and z(X ~ is learnable iff there is a recursive coding 

such that n ÷ 19(zn) I is ~-minimal among (n + I~' (zn) I[ ~' rec. coding). 

There is a rec. en. sequence z which is not learnable [2] , [4]. Moreover 

this sequence z can be chosen such that it satisfies the following i.o. 

cut-down property. 

For every growth function T there exists a growth function T' such that 

q < I: ~n: KmT' (z n) ~ KmT(z n) - q.n . 

The attempt to characterize learnable sequences statistically arises 

from the following idea. Consider random sequences with respect to the 

equiprobability distribution ~. These sequences are completely irregu- 

lar; we suppose that the best way to describe their initial segments is 

to describe them by themselves. Recursive sequences are learnable but 

not at all ~-random. Therefore we first generalize the concept of ran- 

domness in order to cover both cases. 

Let p:X ~ ÷ 3o,I[ ~ Q be a recursive function, p defines a recursive 

probability measure on X ~ (i.e. on the o-algebra generated by the sets 

xX ~) as follows. 

p(xX~) : = K p(x i) • K (1-p(xi)). 

xi+1 =I xi+1 =o 
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We call p a recursive probability measure (r~p.m.) , too. Z denotes the 

equiprobability distribution ~x6X~: V(x)=2 -I . 

A recursive p-martingale is a recursive function V:X ~ ÷ Q+ satisfying 

~xex~: V(x) = p(x)V(xl) + (1-p(x))V(xo). In analogy to the ~-case [5] 

we define p-randomness. 

Definition: 

Let p be a r.p.m., zeX is not p,random iff 

growth function: 3~n: V(z n) ~ h(n). 

~V rec. p-martingale: ~h 

We call ~:={zEX~[ ~p r.p.m.: z is p-random} the set of general random 

sequences. 

Let z be a recursive sequence. We define 

~ (2n+I). (2n+2) -I , if Zn=1 

P(zn-1)= ((2n+2)-1 , if Zn=O 

It is easily seen that z is p-random. Thus, every recursive sequence is 

a general random sequence. Martingales and monotonic operator complexity 

are strongly related as the following theorem shows. 

Theorem I. 

(a) Let T be a growth function. There is a recursive b-martingale V > o 

such that Vx&X~: log V(x) ~ Ix[ - KmT(x) 

(b) Let V be a recursive ~-martingale, V > o. There is a growth function 

T and a constant c such that ~x&X~: log V(x) ~ Ixl - KmT(x) + c . 

Proof: 

(a) Define ~(x) : = ~(M~X~).2 Ixl . From condition (2) we conclude that 

is recursive. ~ is a recursive ~-submartingale, i.e. ~x~X~: ~(x) 

2-1.(~(xo)+~(xl)). Therefore we can construct a recursive z-martingale 

V A ~. V satisfies (a) : from ycM~ , IYl = KmT(x) we conclude ~(M~X ~) 

2-1Yland this implies log V(x) ~ Ixl - KmT(x). 

(b) We define a r.p.m, p as follows: p(x):= V(xl) / 2.V(x) It suffices 

to find a growth function T such that Km T(X) ~ l!og p(x) I + c , for we 

have V(x) = 21Xlp(x)(V(A)) -1 

First we define a mapping F:X ~ ÷ X % using the following notations. For 

i=1,2,3,.., we divide the interval [o,I] by 2i-1 equidistant points 
• i 

into 2 i open intervals of length 2-1; these intervals are denoted by I k 

(k=1,...,2z). To every interval of this kind we assoziate a finite bina- 

ry sequence by the function B in the following way: 
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B(I k) = the (lexicographically) k-th sequence in X i. 

i I i 4=~ B(Ik) E B(Irl). Fact I : I k m r 

To define F at x~X ~ we consider the interval Ix= ] ~ p(y), E p(y)[ , 
y<x y~x 
y~X n y~X n 

where x<y denotes the lexicographical ordering and p(y):=p(yX~). 
i i 

Let I k be an interval of maximal length contained in Ix, i.e. I k m I x ^ 

i Then~ we j<i: ~r(o<r~2J): I j £ I x . There is one and only one such I k- r i 
set F(x) := B(Ik). 

Fact 2- Vx- IF(x)[ ~ F-log ~(x)~ + I. 
The length of I x is p(x); therefore i ~ ~-log p(x)~ + I. 

Fact 3: F:X ~ ÷ X ~ is recursive. 

Fact 4: F -I is a monotonic operator. 

Let F (x)C F (x'). Applying fact I we conclude for the intervals 
B-I B-I B-I(F(x)) and B-I(F(x')) : (F(x)) m (F(x')). Then x'] x 

must hold, for x'~x^x~x' would imply Ix, ~ I x = ~ . 

Choose veX ~ such that ~x,y(X~: y=F(x)=~vyUx. Define T(n):= 

max {%(vF(x),x) I x6xn}. Fact 3 implies that T is recursive. From fact 2 

we conclude ~xEXe: KmT(x) s iF(x) I + [v I ~ I-log p(x)~ + I + Ivl . 

Theorem I is a counterpart of Levin's theorem 2 [3]; in [4] theorem I is 

used to characterize p-randomness in terms of Km. 

Theorem 2. (Statistical characterization of learnable sequences) 

For every z6X ~ the following conditions are equivalent. 

(a) z is learnable 

(b) z is a general random sequence. 

Proof : 

" (a)~ (b)": Let T be a growth function which learns z. Apply thm.1 (a) 

to T. We find a recursive z-martingale V>o s.th. log V(x) > IxI-KmT(x) . 

Define p(x):= V(xl) / 2.V(x) . p is a r.p.m.. We claim that z is p-ran- 

dom. 

Assume z is not p-random. Then there is a recursive p-martingale ~ and 

a growth function g s.th. ~n: ~(z n) ~ g(n). We define a recursive ~- 

martingale V' (x):= g(x)-p(x)-2 Ixl . From thm. 1 (b) we get a growth func- 

tion T' such that log V' (x) ~ Ixl-Km T' (x)+c. Using the identity p(x) = 
T' (V(A))-I-V(x)-2 -Ixl we obtain log ~(x) +Km (x) s KmT(x) + c + log V(A) ; 

and this implies ~n: log g(n) - c' + Km T' (z n) ~ Km T(z n) , which is 

contradictory to the supposition that T learns z. 
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I I- 
"(b) ~(a)": Let z be p-random. Consider the z-martingale V(x)=21Xlp(x) 

and apply thm. 1 (b) ° We obtain T and c such that o m flog p(x) l-KmT(x)+c. 

We show that T learns z. If not, there would be T' and a growth function 
T ~ g such that B n: Km (z n) + g(n) ~ KmT(zn). Applying thm. 1(a) to T' we 

obtain a recursive z-martingale V' such that 3~n: g(n) ~ log V'(z n) + 

flog ~(zn) I - n + c. But this is contadictory to the p-randomness of z, 

for ~(x) := 2 -Ixl .V' (x) . (p(x))-1 is a recursive p-martingale. 

A learnable sequence z may have many algorithmically recognizable regu- 

larities; but if T learns z, then all these regularities are found with- 

in running time T. Beyond that, z must be quite irregular. The character- 

ization theorem shows that all regularities of a learnable sequence 

can be completely condensed into a r.p.m.p. 

The correspondence between growth functions and r.p.m.'s is effective 

in the sense that given T (which learns z), one can effectively find a 

r.p.m, p such that z is p-random and vice versa. 

The set of non-learnable sequences, i.e. X ~ is rather small. In fact, 

we have ~p r.p.m. : p(X ~\~) = o. 
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