STATISTICAL CHARACTERIZATION OF LEARNABLE SEQUENCES

P.H. Fuchs

Fachbereich Mathematik, Universität Frankfurt a.M.

Throughout this paper X denotes the binary alphabet {0,1}, X^* the set of (finite) words over X, X^{∞} the set of infinite binary sequences; Λ denotes the empty word and |x| denotes the length of $x \in X^*$.

First we present some informal considerations concerning learnability of infinite o-1-sequences. Let $R \subseteq X^* \times X^*$ be a rec. en. relation (an effective system of descriptions; sometimes called operator); we say y describes x iff yRx. We suppose that R is an universal rec. en. relation, i.e. if S is any rec. en. relation, there is we x* such that $\forall y, x: ySx \Rightarrow wyRx$. Now, if $z\in \mathbb{C}^n$ is a recursive sequence, there is a "best" way to describe z: there is $v\in X^*$ such that $\forall n\in N: vRz^n$ (where z^n denotes the initial segment $z_1 \dots z_n$ of z). But usually (if z is not recursive) the length of the description of z^n will become larger as n grows, because more and more additional information must be provided by the description. We call z learnable, if there is a "best" way to describe all the initial segments z^n of z. The problem to characterize learnable sequences is due to R.P. Daley [1].

Let us pass to the formal definitions. Following Levin [3], we restrict the systems of descriptions to monotonic operators. A rec. en. relation A $\leq X^* \times X^*$ is called <u>monotonic</u> <u>operator</u> iff

(1) $\forall (y,x) \in \mathbb{A}: \forall (v,u) \in \mathbb{A}: y \sqsubseteq v \rightarrow x \sqsubseteq v u \sqsubseteq x$.

(We write $y \sqsubset v$ iff $v \in y X^{*}$)

There is an <u>universal</u> monotonic operator U; that means: if A is any monotonic operator, then weX* can effectively be found such that $\forall (y,x) \in A$: $(wy,x) \in U$. We fix an universal monotonic operator U, a partial recursive function $\varphi: X^{\bigstar} \times X^{\bigstar} \to X$ such that domain $(\varphi) = U$ and a running time function Φ for φ . For technical reasons we assume

(2) $\forall y, x: \Phi(y, x) \ge \log |y|$.

Notations:

(3) $Km(x) := min \{ |y| | y \in X^* \land yUx \}; Km is called <u>monotonic</u> <u>operator</u> <u>complexity</u>.$

(4) Let T be a growth function (i.e. T is recursive, isotonic, unbounded). $M_{\mathbf{x}}^{\mathrm{T}} := \{ \mathbf{y} \in \mathbf{X}^{\texttt{#}} \mid \forall \mathtt{i} \le |\mathbf{x}| : \exists \mathtt{k} \le |\mathbf{y}| : \mathbf{y}^{\mathtt{k}} \mathtt{U} \mathtt{x}^{\mathtt{i}} \land \Phi(\mathbf{y}^{\mathtt{k}}, \mathtt{x}^{\mathtt{i}}) \le \mathtt{T}(\mathtt{i}) \}.$ Condition (2) ensures that there is a finite set $\widetilde{M}_{\mathbf{x}}^{\mathrm{T}} \subseteq \mathbf{X}^{\texttt{#}}$ such that $M_{\mathbf{x}}^{\mathrm{T}} = \mathbf{x}^{\mathtt{k}}$

 $\widetilde{M}_{\mathbf{x}}^{\mathrm{T}} \times^{*} \text{ and } \mathbf{y} \in \widetilde{M}_{\mathbf{x}}^{\mathrm{T}} \Rightarrow \log |\mathbf{y}| \leq T(|\mathbf{x}|).$ (5) Km^T(x) := min { |**y**| | $\mathbf{y} \in M_{\mathbf{x}}^{\mathrm{T}}$ }. Km^T is recursive for sufficiently large functions T.

In order to give a short definition of learnability we introduce a relation \leq^* for (arbitrary) functions $f_1, f_2: \mathbb{N} \to \mathbb{N}$. We write $f_1 \leq^* f_2$ iff $\forall g$ growth funct.: $\forall^{\infty}n: f_1(n) \leq f_2(n) + g(n)$.

Definition:

 $z \in X^{\infty}$ is called <u>learnable</u> iff there is a growth function T such that the function $n \to Km^{T}(z^{n})$ is \leq^{*} -minimal among $(n \to Km^{t}(z^{n}) \mid t \text{ growth funct.})$.

An equivalent, but perhaps more intuitive definition of learnability makes use of the notion of a recursive coding. A recursive function $\psi: X^* \to X^*$ is called a <u>recursive coding</u>, iff $\forall x \in X^*: \psi(x) \cup x$. Thus $\psi(x)$ describes x; and $z \in X^{\infty}$ is learnable iff there is a recursive coding ψ such that $n \to |\psi(z^n)|$ is \leq^* -minimal among $(n \to |\psi'(z^n)|| \psi'$ rec. coding).

There is a rec. en. sequence z which is not learnable [2], [4]. Moreover this sequence z can be chosen such that it satisfies the following i.o. cut-down property.

For every growth function T there exists a growth function T' such that $\forall q < 1: \exists^{\infty} n: Km^{T'}(z^n) \leq Km^{T}(z^n) - q \cdot n$.

The attempt to characterize learnable sequences statistically arises from the following idea. Consider random sequences with respect to the equiprobability distribution $\overline{\mu}$. These sequences are completely irregular; we suppose that the best way to describe their initial segments is to describe them by themselves. Recursive sequences are learnable but not at all μ -random. Therefore we first generalize the concept of randomness in order to cover both cases.

Let $p:X^{\overset{*}{*}} \rightarrow]0,1[\cap Q$ be a recursive function. p defines a recursive probability measure on X^{∞} (i.e. on the σ -algebra generated by the sets $xX^{\overset{\bullet}{*}}$) as follows.

 $\overline{\mathbf{p}}(\mathbf{x}\mathbf{x}^{\infty}) := \prod_{\substack{\mathbf{x}_{i+1}=1 \\ \mathbf{x}_{i+1}=1}} \mathbf{p}(\mathbf{x}^{i}) \cdot \prod_{\substack{\mathbf{x}_{i+1}=0 \\ \mathbf{x}_{i+1}=0}} (1-\mathbf{p}(\mathbf{x}^{i})).$

We call p a recursive probability measure (r.p.m.), too. μ denotes the equiprobability distribution $\forall x \in X^*$: $\mu(x) = 2^{-1}$.

A <u>recursive</u> <u>p-martingale</u> is a recursive function $V:X^{\bigstar} \rightarrow Q_{+}$ satisfying $\forall x \in X^{\bigstar}: V(x) = p(x)V(x1) + (1-p(x))V(x0)$. In analogy to the μ -case [5] we define p-randomness.

Definition:

Let p be a r.p.m.. $z \in X^{\infty}$ is not <u>p-random</u> iff $\exists V \text{ rec. p-martingale: } \exists h$ growth function: $\exists^{\infty}n: V(z^n) \ge h(n)$.

We call $\mathcal{K} := \{z \in X^{\infty} | \exists p r.p.m.: z \text{ is } p\text{-random}\}$ the set of general random sequences.

Let z be a recursive sequence. We define

$$p(z^{n-1}) = \begin{cases} (2^{n}+1) \cdot (2^{n}+2)^{-1} , & \text{if } z_{n}=1 \\ \\ (2^{n}+2)^{-1} , & \text{if } z_{n}=0 \end{cases}$$

It is easily seen that z is p-random. Thus, every recursive sequence is a general random sequence. Martingales and monotonic operator complexity are strongly related as the following theorem shows.

Theorem 1.

(a) Let T be a growth function. There is a recursive μ -martingale V > o such that $\forall x \in X^*$: log V(x) $\geq |x| - Km^T(x)$. (b) Let V be a recursive μ -martingale, V > o. There is a growth function T and a constant c such that $\forall x \in X^*$: log V(x) $\leq |x| - Km^T(x) + c$. <u>Proof:</u> (a) Define $\overline{V}(x) := \overline{\mu}(M_x^T x^\infty) \cdot 2^{|x|}$. From condition (2) we conclude that \overline{V} is recursive. \overline{V} is a recursive μ -submartingale, i.e. $\forall x \in X^*$: $\overline{V}(x) \geq 2^{-1} \cdot (\overline{V}(xo) + \overline{V}(x1))$. Therefore we can construct a recursive μ -martingale V $\geq \overline{V}$. V satisfies (a): from $y \in M_x^T$, $|y| = Km^T(x)$ we conclude $\overline{\mu}(M_x^T x^\infty) \geq 2^{-|y|}$ and this implies log V(x) $\geq |x| - Km^T(x)$. (b) We define a r.p.m. p as follows: $p(x) := V(x1) / 2 \cdot V(x)$. It suffices

to find a growth function T such that $\text{Km}^{T}(x) \leq |\log \overline{p}(x)| + c$, for we have $V(x) = 2^{|x|} \overline{p}(x) (V(\Lambda))^{-1}$.

First we define a mapping $F:X^* \to X^*$ using the following notations. For $i=1,2,3,\ldots$ we divide the interval [0,1] by $2^{i}-1$ equidistant points into 2^{i} open intervals of length 2^{-i} ; these intervals are denoted by I_{k}^{i} $(k=1,\ldots,2^{i})$. To every interval of this kind we assoziate a finite binary sequence by the function B in the following way:

 $B(I_{L}^{i})$ = the (lexicographically) k-th sequence in X^{i} . <u>Fact 1:</u> $I_k^i \ge I_r^i \Leftrightarrow B(I_k^i) \subseteq B(I_r^i)$. To define F at $x \in X^*$ we consider the interval $I_x = \int_{y < x} \overline{p}(y)$, $\sum_{y < x} \overline{p}(y) \left[$, vexn where x<y denotes the lexicographical ordering and $\overline{p}(y) := \overline{p}(yX^{\infty})$. Let I_k^i be an interval of maximal length contained in I_x , i.e. $I_k^i \subseteq I_x \land$ $\forall j \leq i : \forall r (o \leq r \leq 2^j) : I_r^j \notin I_x. \text{ There is one and only one such } I_k^i. \text{ Then we}$ set $F(x) := B(I_{\nu}^{i})$. Fact 2: $\forall x$: $|F(x)| \leq \left\lceil -\log \overline{p}(x) \right\rceil + 1$. The length of I_x is $\overline{p}(x)$; therefore $i \leq \left\lceil -\log \overline{p}(x) \right\rceil + 1$. Fact 3: $F:X^* \rightarrow X^*$ is recursive. Fact 4: F^{-1} is a monotonic operator. Let $F(x) \subseteq F(x')$. Applying fact 1 we conclude for the intervals $B^{-1}(F(x))$ and $B^{-1}(F(x')): B^{-1}(F(x)) \supseteq B^{-1}(F(x'))$. Then $x' \supseteq x$ must hold, for $x' \not = x \land x \not = x'$ would imply I_{y} , $\cap I_{y} = \emptyset$. Choose $v \in X^*$ such that $\forall x, y \in X^*$: $y = F(x) \Rightarrow vyUx$. Define T(n) :=max { $\phi(vF(x), x) | x \in X^n$ }. Fact 3 implies that T is recursive. From fact 2 we conclude $\forall x \in X^*$: $\operatorname{Km}^T(x) \leq |F(x)| + |v| \leq \left[-\log \widetilde{p}(x)\right] + 1 + |v|$. Theorem 1 is a counterpart of Levin's theorem 2 [3]; in [4] theorem 1 is used to characterize p-randomness in terms of Km. Theorem 2. (Statistical characterization of learnable sequences) For every $z \in X^{\infty}$ the following conditions are equivalent. (a) z is learnable (b) z is a general random sequence. Proof: "(a) \Rightarrow (b)": Let T be a growth function which learns z. Apply thm.1(a) to T. We find a recursive μ -martingale V>o s.th. log V(x) $\geq |x| - Km^{T}(x)$. Define $p(x) := V(x1) / 2 \cdot V(x)$. p is a r.p.m.. We claim that z is p-random. Assume z is not p-random. Then there is a recursive p-martingale $\overline{
ebla}$ and a growth function g s.th. $\exists^{\infty}n: \overline{V}(z^n) \ge g(n)$. We define a recursive μ martingale V'(x) := $\overline{V}(x) \cdot \overline{p}(x) \cdot 2^{|x|}$. From thm.1(b) we get a growth function T' such that $\log V'(x) \le |x| - Km^{T'}(x) + c$. Using the identity $\overline{p}(x) = (V(\Lambda))^{-1} \cdot V(x) \cdot 2^{-|x|}$ we obtain $\log \overline{V}(x) + Km^{T'}(x) \le Km^{T}(x) + c + \log V(\Lambda)$; and this implies $\exists n: \log g(n) - c' + Km^{T'}(z^n) \leq Km^{T}(z^n)$, which is contradictory to the supposition that T learns z.

"(b) \Rightarrow (a)": Let z be p-random. Consider the μ -martingale $V(x)=2^{\left|x\right|}\overline{p}(x)$ and apply thm.1(b). We obtain T and c such that $0 \le \left|\log \overline{p}(x)\right| - Km^{T}(x) + c$. We show that T learns z. If not, there would be T' and a growth function g such that $\exists^{\infty}n$: $Km^{T'}(z^{n}) + g(n) \le Km^{T}(z^{n})$. Applying thm.1(a) to T' we obtain a recursive μ -martingale V' such that $\exists^{\infty}n$: $g(n) \le \log V'(z^{n}) +$ $\left|\log \overline{p}(z^{n})\right| - n + c$. But this is contadictory to the p-randomness of z, for $\overline{V}(x) := 2^{-\left|x\right|} \cdot V'(x) \cdot (\overline{p}(x))^{-1}$ is a recursive p-martingale.

A learnable sequence z may have many algorithmically recognizable regularities; but if T learns z, then all these regularities are found within running time T. Beyond that, z must be quite irregular. The characterization theorem shows that all regularities of a learnable sequence can be completely condensed into a r.p.m. p.

The correspondence between growth functions and r.p.m.'s is effective in the sense that given T (which learns z), one can effectively find a r.p.m. p such that z is p-random and vice versa.

The set of non-learnable sequences, i.e. $X^{\infty} \times \mathcal{K}$ is rather small. In fact, we have $\forall p \text{ r.p.m.: } \overline{p}(X^{\infty} \times \mathcal{K}) = 0$.

References:

[1]	R.P.	Daley	THE PROCESS COMPLEXITY AND THE UNDERSTANDING OF SEQUENCES. Proceedings of Symposium and Summer School MFCS, High Tatras, September 3-8, 1973.
[2]	Р.Н.	Fuchs	PROGRAMMKOMPLEXITÄT,ZUFÄLLIGKEIT,LERNBARKEIT. Dissertation, Frankfurt 1975.
[3]	L.A.	Levin	ON THE NOTION OF A RANDOM SEQUENCE. Soviet Math. Dokl. 14, 1973.
[4]	С.Р. Р.Н.	Schnorr Fuchs	THE COINCIDENCE OF LEARNABLE, OF OPTIMALLY COMPRESS- IBLE AND OF GENERAL RANDOM SEQUENCES. Preprint, Fachbereich Mathematik, Universität Frankfurt 1975.
[5]	C.P.	Schnorr	ZUFÄLLIGKEIT UND WAHRSCHEINLICHKEIT. Lecture Notes in Math., vol 218, Berlin and New York, 1971.