STATISTICAL CHARACTERIZATION OF LEARNABLE SEQUENCES

Р.H. Fuchs

Fachbereich Mathematik, Universität Frankfurt a.M.

Throughout this paper x denotes the binary alphabet $\{0,1\}, \mathrm{X}^{*}$ the set of (finite) words over x, x^{∞} the set of infinite binary sequences; $\Lambda d e-$ notes the empty word and $|x|$ denotes the length of $x \in X^{*}$.

First we present some informal considerations concerning learnability of infinite o-1-sequences. Let $R \subseteq X^{*} \times X^{*}$ be a rec. en. relation (an effective system of descriptions; sometimes called operator); we say y describes x iff $y R x$. We suppose that R is an universal rec. en. relation, i.e. if S is any rec. en. relation, there is $w \in X^{*}$ such that $\forall y, x: y S x \Rightarrow$ wyRx . Now, if $z \in .^{m}$ is a recursive sequence, there is a "best" way to describe z : there is $v \in X^{*}$ such that $\forall n \in N$: vRz^{n} (where z^{n} denotes the initial segment $z_{1} \ldots z_{n}$ of z). But usually (if z is not recursive) the length of the description of z^{n} will become larger as n grows, because more and more additional information must be provided by the description. We call z learnable, if there is a "best" way to describe all the initial segments z^{n} of z. The problem to characterize learnable sequences is due to R.P. Daley [1].

Let us pass to the formal definitions. Following Levin [3], we restrict the systems of descriptions to monotonic operators. A rec. en. relation $\mathrm{A} \subseteq \mathrm{X}^{*} \times \mathrm{X}^{*}$ is called monotonic operator iff
(1) $\forall(y, x) \in A: \forall(v, u) \in A: y[v \rightarrow x[u \vee u[x$.
(We write y[v iff veyX*)
There is an universal monotonic operator U; that means: if A is any monotonic operator, then $w \in X^{*}$ can effectively be found such that $\forall(y, x) \in A$: (wy, x) \in. We fix an universal monotonic operator U, a partial recursive function $\varphi: X^{*} \times X^{*} \rightarrow X$ such that domain $(\varphi)=U$ and a running time function Φ for φ. For technical reasons we assume
(2) $\forall \mathrm{y}, \mathrm{x}: \Phi(\mathrm{y}, \mathrm{x}) \geq \log |\mathrm{y}|$.

Notations:
(3) $\operatorname{Km}(x):=\min \left\{|y| \mid y \in X^{*} \wedge y U x\right\} ; \mathrm{Km}$ is called monotonic operator complexity.
(4) Let T be a growth function (i.e. T is recursive, isotonic, unbounded).
$M_{X}^{T}:=\left\{y \in X^{*}\left|\quad \forall i \leq|x|: \exists k \leq|y|: y^{k} U^{i}{ }^{i} \wedge \Phi\left(y^{k}, x^{i}\right) \leq T(i)\right\}\right.$.
Condition (2) ensures that there is a finite set $\widetilde{M}_{x}^{T} \subseteq X^{*}$ such that $M_{x}^{T}=$ $\tilde{M}_{X}^{T} X^{*}$ and $y \in \tilde{M}_{X}^{T} \Rightarrow \log |y| \leq T(|x|)$.
(5) $\mathrm{Km}^{\mathrm{T}}(\mathrm{x}):=\min \left\{|y| \mid y \in M_{x}^{T}\right\}$.
Km^{T} is recursive for sufficiently large functions T.

In order to give a short definition of learnability we introduce a relation s^{*} for (arbitrary) functions $f_{1}, f_{2}: N \rightarrow N$. We write $f_{1} s^{*} f_{2}$ iff $\forall g$ growth funct.: $\forall^{\infty} n: f_{1}(n) \leq f_{2}(n)+g(n)$.

Definition:

$z \in X^{\circ}$ is called learnable iff there is a growth function T such that the function $n \rightarrow \operatorname{Km}^{T}\left(z^{n}\right)$ is s^{*}-minimal among $\left(n \rightarrow K m^{t}\left(z^{n}\right) \mid\right.$ growth funct.).

An equivalent, but perhaps more intuitive definition of learnability makes use of the notion of a recursive coding. A recursive function $\psi: X^{*} \rightarrow X^{*}$ is called a recursive coding, iff $\forall x \in X^{*}: \psi(x) U x$. Thus $\psi(x)$ describes x; and $z \in X^{\infty}$ is learnable iff there is a recursive coding ψ such that $n \rightarrow\left|\psi\left(z^{n}\right)\right|$ is s^{*}-minimal among $\left(n \rightarrow\left|\psi^{\prime}\left(z^{n}\right)\right| \mid \psi^{\prime}\right.$ rec. coding).

There is a rec. en. sequence z which is not learnable [2], [4]. Moreover this sequence z can be chosen such that it satisfies the following i.o. cut-down property.
For every growth function T there exists a growth function T^{\prime} such that $\forall q<1: \exists^{\infty} n: \operatorname{Km}^{T}\left(z^{n}\right) \leq K^{T}\left(z^{n}\right)-q \cdot n$.

The attempt to characterize learnable sequences statistically arises from the following idea. Consider random sequences with respect to the equiprobability distribution $\overline{\text { W. }}$. These sequences are completely irregular; we suppose that the best way to describe their initial segments is to describe them by themselves. Recursive sequences are learnable but not at all μ-random. Therefore we first generalize the concept of randomness in order to cover both cases.

Let $\left.p: x^{*} \rightarrow\right] 0,1[\cap Q$ be a recursive function. p defines a recursive probability measure on x^{∞} (i.e. on the σ-algebra generated by the sets $x X^{\infty}$) as follows.
$\bar{p}\left(x x^{\infty}\right):=\prod_{x_{i+1}=1} p\left(x^{i}\right) \cdot X_{i+1}=0\left(1-p\left(x^{i}\right)\right)$.

We call p a recursive probability measure (r.p.m.), too. μ denotes the equiprobability distribution $\forall x \in \mathrm{X}^{*}: \mu(\mathrm{x})=2^{-1}$.

A recursive p-martingale is a recursive function $V: X^{*} \rightarrow Q_{+}$satisfying $\forall x \in X^{*}: V(x)=p(x) V(x 1)+(1-p(x)) V(x 0)$. In analogy to the μ-case [5] we define p-randomness.

Definition:

Let p be a r.p.m.. $z \in X^{\infty}$ is not p-random iff $\exists V$ rec. p-martingale: $\exists \mathrm{h}$ growth function: $\exists^{\infty} n: V\left(z^{n}\right) \geq h(n)$.

We call $\mathcal{K}:=\left\{z \in X^{\infty} \mid \exists \mathrm{pr}\right.$.p.m.: z is p-random the set of general random sequences.

Let z be a recursive sequence. We define

$$
p\left(z^{n-1}\right)=\left\{\begin{array}{l}
\left(2^{n}+1\right) \cdot\left(2^{n}+2\right)^{-1}, \text { if } z_{n}=1 \\
\left(2^{n}+2\right)^{-1}, \text { if } z_{n}=0
\end{array}\right.
$$

It is easily seen that z is p-random. Thus, every recursive sequence is a general random sequence. Martingales and monotonic operator complexity are strongly related as the following theorem shows.

Theorem 1.
(a) Let T be a growth function. There is a recursive μ-martingale $V>0$ such that $\forall x \in X^{*}: \log V(x) \geq|x|-\mathrm{Km}^{T}(x)$.
(b) Let V be a recursive μ-martingale, $V>0$. There is a growth function T and a constant c such that $\forall x \in X^{*}: \log V(x) \leqslant|x|-K^{T}(x)+c$. Proof:
(a) Define $\bar{V}(x):=\bar{\mu}\left(M_{x}^{T} X^{\infty}\right) \cdot 2^{|x|}$. From condition (2) we conclude that $\overline{\mathrm{V}}$ is recursive. $\overline{\mathrm{V}}$ is a recursive $\mu-s u b m a r t i n g a l e, ~ i . e . ~ \forall x \in X^{*}: \overline{\mathrm{V}}(\mathrm{x}) \geq$ $2^{-1} \cdot(\overline{\mathrm{~V}}(\mathrm{xo})+\overline{\mathrm{V}}(\mathrm{x} 1))$. Therefore we can construct a recursive μ-martingale $\mathrm{V} \geq \overline{\mathrm{V}} . \mathrm{V}$ satisfies (a) : from $\mathrm{y} \in \mathrm{M}_{\mathrm{x}}^{\mathrm{T}},|\mathrm{y}|=\mathrm{Km}^{\mathrm{T}}(\mathrm{x})$ we conclude $\overline{\mathrm{u}}\left(\mathrm{M}_{\mathrm{x}}^{\mathrm{T}} \mathrm{X}^{\infty}\right) \geq$ $2^{-|y|}$ and this implies $\log V(x) \geq|x|-K m^{T}(x)$.
(b) We define a r.p.m. p as follows: $p(x):=V(x 1) / 2 \cdot V(x)$. It suffices to find a growth function T such that $K^{T}(x) \leqslant|\log \bar{p}(x)|+c$, for we have $V(x)=2^{|x|} \mid \bar{p}(x)(V(N))^{-1}$.
First we define a mapping $F: X^{*} \rightarrow X^{*}$ using the following notations. For $i=1,2,3, \ldots$ we divide the interval $[0,1]$ by $2^{i}-1$ equidistant points into 2^{i} open intervals of length $2^{-\frac{1}{i}}$; these intervals are denoted by I_{k}^{i} $\left(k=1, \ldots, 2^{i}\right)$. To every interval of this kind we assoziate a finite binary sequence by the function B in the following way:
$B\left(I_{k}^{i}\right)=$ the (lexicographically) k-th sequence in X^{i}.
Fact $1: I_{k}^{i} \supseteq I_{r}^{i} \Leftrightarrow B\left(I_{k}^{i}\right)\left[B\left(I_{r}^{i}\right)\right.$.
To define F at $X \in X^{*}$ we consider the interval $\left.I_{X}=\right] \sum_{y<x} \bar{p}(y), \sum_{y \leqslant x} \bar{p}(y)[$,

$$
y \in X^{n} \quad y \in X^{n}
$$

where $x<y$ denotes the lexicographical ordering and $\bar{p}(y):=\bar{p}\left(y x^{\infty}\right)$. Let I_{k}^{i} be an interval of maximal length contained in I_{x} i.e. $I_{k}^{i} \varsigma_{x} \wedge$ $\forall j<i: \forall r\left(0<r \leq 2^{j}\right): I_{r}^{j} \notin I_{x}$. There is one and only one such I_{k}^{i}. Then we set $F(x):=B\left(I_{k}^{i}\right)$.
Fact 2: $\forall x:|F(x)| \leqslant\lceil-\log \bar{p}(x)\rceil+1$. The length of I_{x} is $\bar{p}(x)$; therefore $i \leq\lceil-\log \bar{p}(x)\rceil+1$.
Fact 3: $F: X^{*} \rightarrow X^{*}$ is recursive.
Fact 4: F^{-1} is a monotonic operator.
Let $F(x)\left[F\left(x^{\prime}\right)\right.$. Applying fact 1 we conclude for the intervals $B^{-1}(F(x))$ and $B^{-1}\left(F\left(x^{\prime}\right)\right): B^{-1}(F(x)) \geq B^{-1}\left(F\left(x^{\prime}\right)\right)$. Then $x^{\prime} \beth x$ must hold, for $x^{\prime} \not \ddagger x \wedge x \neq x^{\prime}$ would imply $I_{x^{\prime}} \cap I_{x}=\varnothing$.
Choose $v \in X^{*}$ such that $\forall x, y \in X^{*}: ~ y=F(x) \Rightarrow v y U x$. Define $T(n):=$ $\max \left\{\phi(\mathrm{vF}(\mathrm{x}), \mathrm{x}) \mid \mathrm{x} \in \mathrm{X}^{\mathrm{n}}\right\}$. Fact 3 implies that T is recursive. From fact 2 we conclude $\forall \mathrm{x} \in \mathrm{X}^{*}: \mathrm{Km}^{\mathrm{T}}(\mathrm{x}) \leqslant|\mathrm{F}(\mathrm{x})|+|\mathrm{v}| \leqslant\lceil-\log \overline{\mathrm{p}}(\mathrm{x})\rceil+1+|\mathrm{v}|$.

Theorem 1 is a counterpart.of Levin's theorem 2 [3]; in [4] theorem 1 is used to characterize p-randomness in terms of Km .

Theorem 2. (Statistical characterization of learnable sequences) For every $z \in X^{\infty}$ the following conditions are equivalent.
(a) z is learnable
(b) z is a general random sequence.

Proof:
" $(\mathrm{a}) \Rightarrow(\mathrm{b})$ ": Let T be a growth function which learns z. Apply thm. 1 (a) to T. We find a recursive μ-martingale $V>0$ s.th. $\log V(x) \geq|x|-\mathrm{Km}^{T}(x)$. Define $p(x):=V(x 1) / 2 \cdot V(x)$. p is a r.p.m.. We claim that z is p-random.
Assume z is not p-random. Then there is a recursive p-martingale \bar{V} and a growth function g s.th. $\exists^{\infty} m: \bar{v}\left(z^{n}\right) \geq g(n)$. We define a recursive u martingale $\mathrm{V}^{\prime}(\mathrm{x}):=\overline{\mathrm{V}}(\mathrm{x}) \cdot \overline{\mathrm{p}}(\mathrm{x}) \cdot 2^{|\mathrm{x}|}$. From thm. $1(\mathrm{~b})$ we get a growth function T^{\prime} such that $\log V^{\prime}(x) \leqslant|x|-K^{T^{\prime}}(x)+c$. Using the identity $\bar{p}(x)=$ $(V(A))^{-1} \cdot V(x) \cdot 2^{-|x|}$ we obtain $\log \bar{V}(x)+\mathrm{Km}^{T^{\prime}}(x) \leq \mathrm{Km}^{T}(x)+c+\log V(\Lambda)$; and this implies $\exists^{\infty} n$: log $g(n)-c^{\prime}+K^{T^{\prime}}\left(z^{n}\right) \leq K^{T}\left(z^{n}\right)$, which is contradictory to the supposition that T learns z.
" $(b) \Rightarrow(a) ":$ Let z be p-random. Consider the μ-martingale $V(x)=2|x| \bar{p}(x)$ and apply thm. $1(b)$. We obtain T and c such that $o \leq|\log \bar{p}(x)|-\operatorname{Km}^{T}(x)+c$. We show that T learns z. If not, there would be T and a growth function g such that $\exists^{\infty} n$: $\mathrm{Km}^{T^{\prime}}\left(z^{n}\right)+g(n) \leqslant \mathrm{Km}^{\mathrm{T}}\left(z^{n}\right)$. Applying thm. 1 (a) to T^{\prime} we obtain a recursive μ-martingale V^{\prime} such that $\exists^{\infty} n: g(n) \leq \log V^{\prime}\left(z^{n}\right)+$ $\left|\log \bar{p}\left(z^{n}\right)\right|-n+c$. But this is contadictory to the p-randomness of z, for $\overline{\mathrm{V}}(\mathrm{x}):=2^{-|\mathrm{x}|} \cdot \mathrm{V}^{\prime}(\mathrm{x}) \cdot(\overline{\mathrm{p}}(\mathrm{x}))^{-1}$ is a recursive p-martingale.

A learnable sequence z may have many algorithmically recognizable regularities; but if T learns z, then all these regularities are found within running time T. Beyond that, z must be quite irregular. The characterization theorem shows that all regularities of a learnable sequence can be completely condensed into a r.p.m. p.

The correspondence between growth functions and r.p.m.'s is effective in the sense that given T (which learns z), one can effectively find a r.p.m. p such that z is p-random and vice versa.

The set of non-learnable sequences, i.e. $X^{\infty}, ~ K$ is rather small. In fact, we have $\forall \mathrm{p}$ r.p.m.: $\overline{\mathrm{p}}\left(\mathrm{X}^{\infty} \backslash X\right)=0$.

References:
[1] R.P. Daley
[2] P.H. Fuchs
[3] I.A. Levin ON THE NOTION OF A RANDOM SEQUENCE. Soviet Math. Dokl. 14, 1973.
[4] C.P. SChnorr THE COINCIDENCE OF LEARNABLE, OF OPTIMALLY COMPRESSP.H. Fuchs
[5] C.P. Schnorr
THE PROCESS COMPLEXITY AND THE UNDERSTANDING OF SEQUENCES. Proceedings of Symposium and Summer School MFCS, High Tatras, September 3-8, 1973. PROGRAMMKOMPLEXITÄT, ZUFÄLLIGKEIT, LERNBARKEIT. Dissertation, Frankfurt 1975. IBLE AND OF GENERAL RANDOM SEQUENCES. Preprint, Fachbereich Mathematik, Universität Frankfurt 1975. ZUFALLIGKEIT UND WAHRSCHEINLICHKEIT. Lecture Notes in Math., vol 218, Berlin and New York, 1971.

