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Throughout this paper X denotes the binary alphabet {o,1}, x* the set
of (finite) words over X, X the set of infinite binary sequences; A de-

notes the empty word and |x| denotes the length of xex¥.

First we present some informal considerations concerning learnability
of infinite o-1-sequences. Let R ¢ X*xX* be a rec. en. relation (an
effective system of descriptions; sometimes called operator); we say

y describes x iff yRx. We suppose that R is an universal rec. en. rela-
tion, i.e. if S is any rec. en. relation, there is weX* such that
V’y,x: ySx = wyRx . Now, if ze. is a recursive sequence, there is a
"best" way to describe z: thers is veX* such that V¥ neN: vRz" (where

z" denotes the initial segment ZgeeZy of z). But usually (if z is not
recursive) the length of the description of z" will become larger as n
grows, because more and more additional information must be provided by
the description. We call z learnable, if there is a "best" way to de-
scribe all the initial segments z™ of z. The problem to characterize

learnable sequences is due to R.P. Daley [1].

Let us pass to the formal definitions. Following Levin [3], we restrict
the systems of descriptions to monotonic operators. A rec. en. relation

A ¢ x*xx* is called monotonic operator iff

(1) Viy,x)eaA:V (v,u)eA: yLCv =» xLCu v ulx .

(We write yLC v iff veyx¥)

There is an universal monotonic operator U; that means: if A is any mono-
tonic operator, then weX¥ can effectively be found such that W(y,x)eA:
(wy,x)eU. We fix an universal monotonic operator U, a partial recursive
function <P:X"E><X"Q + X such that domain(?) = U and a running time function

¢ for ¢. For technical reasons we assume

(2) Vy,x: ¢(y,x) = logly]|.
Notations:
{3) Km(x):= min {|y|| vex* A yUx}; Km is called monotonic operator com-

plexity.
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(4) Let T be a growth function {i.e. T is recursive, isotonic, unboun-
ded) .

M£:= {yex*| Vis|x]:Jdks|y|: kaxl A@(yk,xl)S T(i)}.
Condition (2) ensures that there is a finite set ﬁg ¢ x¥ such that M§=
ﬁi x¥ and yeﬁg = logly| = T(|x|).

{5) KmT(x}:= min {|y]| yeMi}.

KmT is recursive for sufficiently large functions T.

In order to give a short definition of learnability we introduce a re-
lation <* for (arbitrary) functions £1,£,:N > N. We write f, s¥* £, iff
Vg growth funct.: V' n: £,(n) = £,(n) + g(n).

Definition:

zeXm ig called learnable iff there is a growth function T such that the

*

function n » KmT(zn) is s"-minimal among (n - Kmt(zn){ t growth funct.).

An eguivalent, but perhaps more intuitive definition of learnability
makes use of the notion of a recursive coding. A recursive function

w:x‘ + %¥ is called a recursive coding, iff ¥xex¥:y(x)Ux . Thus y(x)

describes x; and z€X is learnable iff there is a recursive coding ¢

such that n - Iw(zn)[ is =*-minimal among (n - [w'(zn){] ' rec. coding).

There is a rec. en. sequence z which is not learnable [2], [4]. Moreover
this sequence z can be chosen such that it satisfies the following i.o.

cut~-down property.

For every growth function T there exists a growth function T' such that

T

Yq < 1:3%: ra® (2" < xa’ (z%) - gen .

The attempt to characterize learnable sequences statistically arises
from the following idea. Consider random sequences with respect to the
equiprobability distribution U. These sequences are completely irregu-
lar; we suppose that the best way to describe their initial segments is
to describe them by themselves. Recursive sequences are learnable but
not at all u-random. Therefore we first generalize the concept of ran-
domness in order to cover both cases.

Let p:X% > ]o,1[ N Q be a recursive function. p defines a recursive
probability measure on X" (i.e. on the c-algebra generated by the sets
*X*) as follows.

Pexxy:i= 1 pxH) - 1 (1-p(x1)) .
Xi417] Xi4170
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We call p a recursive probability measure (r.p.m.), too. y denotes the

equiprobability distribution V xeX¥: u(x)=2".

A recursive p-martingale is a recursive function Vix¥ - Q, satisfying
¥V xex*: V(x) = p(x)V(x1) + (1~p(x))V(x0). In analogy to the u-case [5]

we define p~randomness.

Definition:
Let p be a r.p.m.. zeX  is not p-random iff 3V rec. p-martingale: Jh
growth function: 3 n: vz = nn.

We call J(:z{zexm[‘gp r.p.m.: z is p-random} the set of general random

seguences.

Let z be a recursive sequence. We define

-1

(2R+1) - (2™42) ;) if 2=

(2P42y 7!

, 1if z,=0
It is easily seen that z is p-random. Thus, every recursive sequence is
a general random sequence. Martingales and monotonic operator complexity

are strongly related as the following theorem shows.

Theorem 1.

(a) Let T be a growth function. There is a recursive y-martingale V > o
such that Vxex¥: log v(x) = |x| -~ Kn® (x) .

(b) Let V be a recursive u-martingale, V > o. There is a growth function
T and a constant ¢ such that VxzeX¥: log v(x) = |[x| - Km® (x) + C .
Proof:

(a) Define V(x):= E(ngw)~21x]. From condition (2) we conclude that V

is recursive. V is a recursive u-submartingale, i.e. Vxex¥: V(x) 2
2~t{§{xo)+V(x1)). Therefore we can construct a recursive p-martingale

V = V. V satisfies {a): from yeMz , vl o= Kn® (x) we conclude E(szw) =

271 ¥lang this implies log v(x) = |x| - kn(x).
(b) We define a r.p.m. p as follows: p(x):= V{x1) / 2-V(x) . It suffices

to find a growth function T such that Km® (x) € |log p(x)| + ¢ , for we

- olxls -1
have V(x) = 2 pix) (V{AY)Y .
First we define a mapping F:x¥% > x* using the @ollowing notations. For
i=1,2,3,... we divide the interval lo,1] by 2%-1 equidistant points
into 2i open intervals of length Z"i; these intervals are denoted by Ii
(k=1,...,2i). To every interval of this kind we assoziate a finite bina-

ry seguence by the function B in the following way:
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B(Ii) = the (lexicographically} k-th sequence in x*.
i i i i
Fact 1: Ik 2 Ir &> B(Ik)ELB(Ir).
To define F at xeX¥ we consider the interval IX=] s py).z pw[ .
y<x y=x
yEXn yeXn

where x<y denotes the lexicographical ordering and ply):=p(yX ).

Let Ii

V;%dx Vr(o<r$2]): Ig & IX. There is one and only one such I

set F(x):i= B(Ii).

Fact 2: Vx: |F(x)| s [-log p(x)] + 1.
The length of I_ is p(x); therefore i = [-log p(x)] + 1.

be an interval of maximal length contained in Ix’ i.e. Ii [ IX A
i

X" Then. we

Fact 3: F:X¥ > x¥ is recursive.

Fact 4: F~! is a monotonic operator.

Let F(x)IL F(x'). Applying fact 1 we conclude for the intervals
5 F ) anda 37T Fx')): BT'(F(x)) 2 BT (F(x')). Then x'Ix

must hold, for x'fAxax fix' would imply I,NI =¢

Choose veX¥ such that Vx,yeXx¥: y=F(x)=>vyUx. Define T(n):=
max {0 (vF(x),x)]| xex™}. Fact 3 implies that T is recursive. From fact 2
we conclude VxeX¥: Km' (x) s [F(x)| + |v| € [~log PG + 1 + |v].

Theorem 1 is a counterpart.of Levin's theorem 2 [3]; in [4] theorem 1 is

used to characterize p-randomness in terms of Km.

Theorem 2. {Statistical characterization of learnable sequences)
For every zeX" the following conditions are equivalent,
(a) z is learnable

{b) z is a general random sequence.

Proof:

"(a)=»(b)": Let T be a growth function which learns z. Apply thm.1{a)
to T. We find a recursive u-martingale V>o s.th. log V{x) = [x[—KmT(x).
Define p(x):= V(x1) / 2:V(x) . p is a r.p.m.. We claim that z is p-ran-

dom.
Assume z is not p-random. Then there is a recursive p-martingale V and

a growth function g s.th. 3%n: v(zn) = g(n). We define a recursive u-

martingale V* (x) = V(X)-E(X)~2IX]. From thm.1(b) we get a growth func-
tion T' such that log V'(x) = Ixi—KmT'(x)+c. Using the identity pl(x) =
(V(A))—1~V(x)-2—ix we obtain log V(x) + KmT (x}) = KmT(x) + ¢ + log V{(A);
T, n T
(z") < Km

and this implies F"n: log g(n) - c' + Knm (z") , which is

contradictory to the supposition that T learns z.
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"{b)y=>(a)": Let z be p-random. Consider the y-martingale V(x)=2‘xlg(x)
and apply thm.1(b). We obtain T and ¢ such that o = |log 5(x)%—Km$(x}+c.
We show that T learns z. If not, there would be T' and a growth function
g such that 3%n: KmT'(zn) + g(n) = KmT(zn). Applying thm.1(a) to T' we
obtain a recursive j-martingale V' such that 3*n: g(n) = log v (z®) +
|log B(z™| - n + ¢. But this is contadictory to the p-randomness of z,

~V'(X)'(§(x))'—1 is a recursive p-martingale.

for V(x):= Pk

A learnable sequence z may have many algorithmically recognizable regu-
larities; but if T learns z, then all these regularities are found with-
in running time T. Beyond that, z must be quite irregular. The character-
ization theorem shows that all regularities of a learnable sequence

can be completely condensed into a r.p.m. p.

The correspondence between growth functions and r.p.m.'s is effective
in the sense that given T (which learns z), one can effectively find a

r.p.m. p such that z is p-random and vice versa.

The set of non-learnable seguences, i.e. x"\X is rather small. In fact,

we have Vp r.p.m.: p(XvX) = o.
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