
ANALYZING FAMILIES OF GRAMMARS

Eberhard Bertsch

Universit~t des Saarlandes

The problem of designing general parsing procedures for arbitrary

families of languages has hardly been studied. One will usually be

satisfied with general procedures for the class of LR(k)-languages,

the class of precedence languages, the class of regular languages, etc.

For the types of abstract families of languages (AFL) studied by

Cremers and Ginsburg [3] , the availability of general procedures may

be of equal importance, however. To put it more precisely, if two

grammars are related by belonging to the same family, it will be

desirable to be able to use the same parser for both of them.

In the present paper we investigate the relationship between

structurally similar grammars from the parsing point of view. Apart

from providing an interesting parsing method, our approach will yield

time bounds for the word problems of related grammars [2] .

Our technique is basically a three-pass mechanism which will analyze a

given language L(G), if the first pass analyzes a language L(G') such

that G can be mapped on G'. The second pass is based on a construction

in [7] which is there used to obtain a decidability result. It takes

the output of the first pass as its input. The third pass produces a

derivation of the original word, if one exists, or else prints an

error message.

Some definitions of structural relatedness

Definitions J and 2 are slight modifications of concepts defined in ~3].

Definition A context-free Grammar form is a 6-tuple F=(V,T,VF,TF,P,S)

where (i) T~V, TF~_T ~ (VF~TF)_ ~ (V~T), TFC_T
(ii) GF=(VF,TF,P,S) is a context-free grammar.

G F is called the form ~rs~mar of the grammar form F.

285

Definition A strict interpretation of a grammar form F=(V,T,VF,TF,P,S)

is a 5-tuple I=(~,VI,TI,Pi,S I) where
(I) /u~ is a substitution on V a such that

(2)

(a)
(b)
(o)

PI is

where

(3) 8I is
(¢) mz is

V I is

2~(a) is a finite subset of T for each a aT F
2~(A) is a finite subset of V~ T for each A ~VF\ T F

/ ~ (~) ~ (s) = ~ f o r ~ , 3 ~ v F, A t B
a s u b s e t o f

U /~-(P) = p r o p / -~(P)
~ (~ B) := ~ - - - ~ v I u ~ (A) , ~ (~) }
in ~ (S)
the set of symbols in T occurring in PI"

the set of symbols in V occurring in PI augmented by S I.

The context-free grammar GI=(Vi,Ti,PI,SI) is called the ~rammar of I.

Definition 3 is an essential concept for the categorial treatment of

grammars presente~ in [5] , [6] . By ~ we mean the set of derivations m
of a grammar G, s(m) is the source of m, t(m) is the target of m.

Definition For two grammars GI=(V I,T I,PI,$I) and G2=(V2,T2,P2,S2),
an x-functor_ _ _ _ ~: G~ --~ G2 is a pair of mappings (~I,~2) where

~I: V~--. V~, ~2:N1--~ M2 such that ~j and ~2 are homomorphisms,
that is

%(A~) = % (~) % (B) for A,B ~ V~

~2(mQo m2) : T2(ml)o T2(m2)]
~2(mQ×m2) = ~2(mI) x ~2(m2)] for ml,m2~M I

and ~I is compatible with ~2, that is

~1(s(m)) : s(~2(m))
J for m@]~ I

~1(t(m)) t(~2(m))

is a len~th-preservin~ functor if ~1(VI\ TI)_cV2\T2, ~2(P1)_¢P2,

~I(sI) = %,~I(~I) = ~2"
Using a proposition in [5] , it can be shown that the following

theorem connects functors with interpretations of grammar forms:

Theorem: Let G F be the form grammar of a c.f.grammar form F. G i is the
grammar of a strict interpretation of F, if and only if there exists
a leno~th-preserving x-functor ~ : G i ~ G F.

286

Our parsin 5 mechanism

The intuitive meaning of a tree-automaton is easy to understand

[7] , [8] , [2] . We will therefore skip the formal definition and

explain the underlying idea in less rigorous terms.

Imprecise definition A tree-automaton(~relative to a grammar G

possesses an alphabet T and a transition function h. Given any derivation

tree m of G, whose terminal nodes are XI,...,X n in left-to-right order,

h assigns a value hm(X1...Xn) to the top node of m. This value is

calculated by going from bottom to top and assigning a letter of T to

each node. Which letter is taken, depends on which letters have been

assigned to the immediately dependent nodes.

Now we need some notation which will be used in the proof of the

following theorem. Suppose that we have two grammars GI=(VI,TI,PI,Sl) ,

G2=(V2,T2,P2,s2) and a length-preserving x-functor ~ : G I ~ G 2.
We construct an automaton ~= (T~h) relative to G 2. T is identified with

2(VI). h is given by

hp(X1...Xlt(p)l) := { A6Vdl ~ ~ = A--~ A1...Alt(p)1£P1 with

~2(~) = p and Ai~X i (i ~It(p)l) }
for all p6 P2"

By a lemma in [7], we know that then for all m£M 2 hm(X1...Xlt(m)l) =

{A~V~I ~ ~&M I with s(~) = A, t(~) = A1...A~t(m)i ~ T2(m) = m

and Ai~ X i (i~ It(m)[)}.

The main result

This gives us our next theorem, whose proof will also contain a

description of how the tree-automaton is to be employed.

Theorem: Let ~ : GI--~ G 2 be a length-preserving functor, where G I and G 2

are c.f.grammars and G 2 is unambiguous. Suppose there is an algorithm

which will construct a parse for w6 L(G 2) and reject w~L(G 2) in less

than f(~w}) steps. Then there is a constant c and an algorithm which will

accept w6L(G I) and reject w~L(G I) in less than cf(lwl) steps.

287

If there is an m~M 1 with t(m)=w and s(m)=sl, then by Proof: Let w~T 1.

the definition of ~ there exists an m'~H 2 with ~2(m)=m', s(m')=s2,

t(mr)=w'6T~. By the unambigui~y of G2, there is no m"6 M 2 with

s(m")=s2, t(m")=w', such that ~2(m) I m". So we construct w'=~l(W)

in realtime and try to find a parse o£ w'in G 2. If there is none~ we

have w@L(Gd). If there is one, we have to check whether there is a

coimage m o£ m'CH 2 such that s(m)=sl,t(m)=w. By the construction of our

finite automaton, this amounts to calculating hm,(~ al}{a2~ ... {an})

where w=al...a n. m" has a coimage whose root is s I if and only if s I is

an element of the resulting set. Let n m be the number of nodes in a

derivation tree m 6H 2. Simulating tree-automata in time cn m poses no

problem. We simply represent parse trees by words of the bracketed

c.f.language [~] which is generated by the rules Pb:= { ~--~[p ~]p I

P = ~--~ e P2) " Then each transition of our tree-automaton corresponds

in an obvious way to a reduction step on a sentential form~ As shown in

[4] , a reduction sequence can be obtained in linear time.

So far we have just specified how a yes-no decision can be reached. To

use our mechanism as a parser in the strict sense of the word, some

additional considerations are necessary. What we have to do, is to store

a trace of all direct transitions and walk back from top to bottom.

Within our categorial framework, this can be compactly stated as follows:

Suppose hm(X1...Xz)=X where m=~, ~ , ~, h~(XI...Xz)=~I.°.XlkI..

such t h a t h~(X1~...~kl...~ik!)=~1o..~ 1 and £=(m 1~ o.. ~ml) ,
m i~Pq uld V with
h (~. 2~.~)= ~ f o r i < i
m i 11 ... l~ i i - "

• Xik I

Suppose further that Tree(~,XlO..~l) has been defined. If mi~Pfi, take a

rule pieP1 with s(p)~ ~i,t(p)~Xi~...~ik (i~ i) and construct
Tree(mo m. X X..) :=(m~ ~ .~ m~) o m Tree(~,~fl..XI) where

• ~ ~K I ~ ~° ± °

m(=p if m ~ P~ and ~ m(&Id.. otherwise
1 1 1 N 1 v 2 "

To start this top-to-bottom process, we have to set Tree(p,X I X ~
"-- n]

as a rule Pstart=A-~ Aft A n in P2 with A~X, Ai~ X i for i~ n and

hp(Xl-o.Xn)=X.

288

List of references (necessarily incomplete, as the subject matter

touches several rapidly growing fields of study):

I) Bertsch,E.: Surjectivity of functors on grammars, appearing in
Mathematical Systems Theory, vol.10, no.1

2) Bertsoh,E.: An observation on relative parsing time, appearing
in Journal of the ACM, voi.22~ no.3

3) Cremers,A. and S.Ginsburg: Context-free grammar forms, in Lecture
Notes in Computer Science, vol.q~

4) Ginsburg,S. and N.Harrison: Bracketed context-free languages,
Journal of Computer and System Sciences (1967)

5) Hotz,G.: Eindeutigkeit und Mehrdeutigkeit formaler Sprachen,
Elektr. Inform. und Kybern. (1966)

6) Hotz,G. and V.Claus: i~tomatentheorie und formale Sprachen, vol.3,
BI-HTB 823a, Duden-Verlag (1973)

7) Schnorr,C.: Transformational Classes of Grammars, Information and
Control (1969)

8) Thatcher,J.: Characterizing derivation trees of context-free grammars
through a generalization of finite automata-theory~
Journal of Computer and System Sciences (1967)

