
PIECEWISE TESTABLE EVENTS 

Imre Simon 

Departamento de Matematlca Aplicada 

Unlversldade de Sao Paulo, Brasil 

i. Introduction and definitions 

The free monoid generated by I is denoted by 

identity I. Z+ = E - I. For a word x in ~ , ' 'Ixl 

length. An event is a subset of Z . 

and has 

denotes its 

A word x is a piecewise subword of y, denoted by x ~ y, 

iff there exist Xl,...Xn,Z0,Zl,...,z n in E such that x = Xl...x n 

and y = ZoXlZl...XnZ n. For x and y in E , and a natural m, de- 

fine x ~ y iff for every s in Z , Isl ~ m implies that s ~ x 
m 

iff s ~ y. An event is piecewise testable iff there exists a natural 

m, such that for every x and y in Z , x m Y implies that x E E 

iff y c E. 

Thus, an event E is piecewlse testable iff there exists an 

m such that membership of x in E is determined by the set of 

plecewlse subwords of length at most m, which occur in x. In its 

form, this definition is similar to that of locally testable events 

[I, 6, 7 and Ii], the main difference being the substitution of length 

m subwords by pleeewise subwords of length m. Piecewise testable events 

were introduced in the author's doctoral dissertation [9], where ~I 

denotes the family of piecewlse testable events. It has been shown [1,9] 
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that both locally and piecewlse testable events constitute subfamilies 

of regular star-free events with dot-depth one. The dot-depth of a regu- 

lar star-free event has been introduced in [3]. Indeed, combining propel 

ly these two testing concepts, one gets precisely the family of dot-depth 

one events [9]. Another related result is that an event whose syntactic 

semigroup is a monoid has dot-depth one iff it is pieeewise testable [9]. 

As far as we know, pieeewise subwords were introduced by Haines 

in [5] and he obtains a truly remarkable result, namely that every set 

of pairwise noneomparable elements (with respect to the partial order 

over Z ) is finite. Certain subclasses of plecewise testable events 

were also studied in [5] and [I0]. 

Let a and h be elements of a monold M. We say that a J b 

iff MaM = MbM. This is one of the well-known Green equivalence rela- 

tions [2]. We say that M is J-tr~v~aZ iff for every a and b in 

M, a J b implies a = b. 

Given an event E c E , we define x E y (mod E), for x and 

y in Z , iff for every u and v in E , uxv ~ E iff uyv ~ E. It 

is easy to see that E (mod E) is a congruence relation over E The 
*/~ quotient monoid Z (mod E) is called the syntactic monold of E. It 

is well-known that E is regular iff its syntatie monold is flnlte% see 

for instance [7]. 

The main result of this paper is that an event E is plecewise 

testable iff its syntactic monoid is finite and J-trivial. This was 

first stated and proved in [9]! here we give a much improved version of 

that proof. A corollary to the main result is that it is decidable 

whether a given regular event is piecewise testable. Indeed, it is suf- 

ficient to verify, whether its syntactic monoid is J-trivial. 

We will use the well-known left-right duality for semigroups~ 

see for instance [2]. 

2. Characterization of equivalent words 

In this section we study the properties of ~ and show that 
m 

x m ~ y iff y can be obtained from x by a finite number of steps or a 

-i) Each step of this transformation simple transformation (R m or R m . 
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consists of adding or deleting a single letter, whenever this preserves 

equivalence. A byproduct of the results in this section is that one can 

efficiently verify (in about 0 ((ix I + jyj)3) steps), whether two given 

words are m-equivalent. 

Lemma i. Let x and y be in l and let m be a natural. 

(a) m is a congruence relation of finite index over 

( b )  x m + l  ~ y i m p l i e s  x m ~ y .  

Y Y every Y, (c) If x < then x iff for s < I sl < m implies 
m 

S -( X. 

Proof. The proofs are left to the reader. D 

Lemma 2. For every u in E and a in Z, there exists a natural p 

and a word s, such that u ~ ua, Isl = p, s ~ u and sa ~ u. 
P 

Proof. Let p be the greatest natural, such that u ~ ua. The exist- 
P 

ence of p follows from Lemma l(b) and the facts that u 0 ~ ua and 

u luj+l ~ ua. Thus, u p+l ~ u~, hence there exists a word s, such that 

JsJ = p, s ~ u and sa ~ u. 

The p and s refered to in Lemma 2 can be efficiently found 

by the next lemma, which will also be used in section 3. First, we have 
* 

the notation: for u in E , uZ = {a E Z j a ~ u}. 

Lemma 3. Let u and v be in Z + ~ , and let m > 0. Then u m uv iff 

there exist Ul,U2,...,u m in Z +, such that u = UlU 2...u m and UlZ 

_ u2Z ~...=_ _ UmZ m vZ. 

Proof. Let us prove the only if part by induction on m. For m = I, 

u i ~ uv implies that uE = (uv)Z, hence uZ ~ vZ. Suppose the asser- 

tion holds for m ~ i, and let u and v in E + be such that 

u m+l ~ uv. Let u 0 be the shortest prefix of u, such that u0Z = 

= (uv)Z. Such a prefix exists, since u m+l ~ uv implies u i ~ uv, 

hence uZ = (uv)Z. Since u is not empty, so is Uo; and being u 0 = 

' Let = u~a, with a in Z, the choice of u 0 implies that a ~ u O. 

w be such that u = u0w ; we claim that w m wv. Indeed, let s in 

E be such that IsJ ~ m and s ~ wv, then [~sJ K m+l and os 

u0wv = uv. Since u m+l ~ uv, it follows that as ~ u = u~aw, and 

since a ~ u~, s S w. Hence, in view of Lemma l(c), w m wv. By the in 

dnction hypothesis, there exist Ul,...,u m in Z +, such that Ul...u m = u 



217 

and UlZ ~...~ UmZ DvE. Since UoZ = (uv)Z ~ UlE , the assertion fol- 

lows. 

The if part is also proved by induction on m. For m = i, 

u I = u, and uE ~ vZ implies uE = (uv)E; hence u i ~ uv. Let 

u0,ul,...,Um,V in E + be such that u0E ~ UlZ ~...~ UmE ~ rE, and let 

w = Ul...u m. Then u0E = (UoWV)Z , and by the induction, hypothesis, 

w m ~ wv. We claim that u0w m+l ~ u0wv. Let s in ~ be such that 

0 < Isl s m+l and s s u0wv. Let s' be the longest prefix of s, 

such that s' ~ u0, and let s = s's". Since u0l = (u0wv)E , it fol- 

lows that s' is not empty, hence Is"l ~ m. On the other hand, the 

choice of s' and the fact that s's" ~ u0wv , imply that s" ~ wv; 

hence s" ~ w, since w m wv. Thus, s ~ u0w , which in view of 

Lemma l(c) proves the claim. 0 

Corollar~ 3a. For every x and y in Z and m ~ 0, (xy) TM ~ (xy)mx. 
m 

= .. = = xy. 0 Proof. It is sufficient to take u I . u m 

Lemma 4. For u and v in Z and ~ in Z, uvv ~ uv iff there 
m 

exist p and p' such that p+p' e m, u ~ uo and v ,~ ov. 
' p P 

Proof. To prove the if part, let p and p' be as in the statement 

of the lemma. In view of Lemma l(c), it is sufficient to show that if 

sos' ~ uov, with s ~ u, s' ~ v and Isos' I ~ m, then sos' ~ uv. 

Indeed, since p+p' ~ m, and Isos'I s m, it follows that either 

Isl < p or Is'l < p', hence either so ~ u or os' ~ v. In any 

case, sos t ~ uv. 

Conversely, assume that uov ~ uv. By Lemma 2, there exist 
m 

p and s, such that u ~ uo, Isl = p, s ~ u and so ~ u. By 
P 

duality, there exist p' and s', such that v p, ~ ov, Is'I = P', 

s' ~ v and Os' ~ v. It follows that Isos'! = p+p'+l, sos' ~ uov and 

sos' ~ uv. Thus, if p+p' < m, then uov ~ uv, a contradiction, hence 
m 

p+p' ~ m. 0 

Lemma 5. Let u, v and w in l , and o and ~ in E, be such 

that u~v ~ u~w, and o # ~° Then, either u~w ~ uOv or 
m m 

u~v ~ u~w. 
m 

Proof. By Lemma 2 there exist p, q, s and t, such that 
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u ~ u ~ ,  I s [  = p ,  s S u a n d  s ~  ~ u ,  ( 1 )  
P 

and u ~ u~, It] = q, t ~ u and t~ ~ u. (2) 
q 

By duality, there exist p', q' and t', such that 

ov , ~av, [ s ' l  " p '  ' - , s 5 av and ~s' ~ ~v, (3) 
P 

and ~w ,~ o~w, It'[ = q', t' ~ ~w and ~t' ~ ~w. (4) 
q 

If p+p' ~ m, then by Lemma 4, (i) and (3), u~ov ~ ugv, and since 
m 

uav ~ u~w by hypothesis, we have u~ov - u~w. Similarly, if q+q' ~ m, 
m m 

then uo~w ~ uov. In either case the lemma holds. 
m 

Assume therefore that 

p+p' < m and q+q' < m. (5) 

Assume further that q' ~ p' Now, we claim that t' ~ v. Indeed, 

' be the longest suffix of t' such that from (4), t' ~ ~w. Let t 2 

' ' with ' = I or ' = ~, and [t~l < q' t 2' -< w. Then t' = tlt 2 t I t I - • 

Then, from (i), s ~ u, hence s~t~ ~ u~w. On the other hand, since 

ItS1 ~ q', q' E p' by assumption, Isl = p from (I), and p+p' < m 

from (5), it follows that Is~t~l ~ m. This implies that s~t~ ~ u~v, 

since nay ~ u~w by hipothesis. Now, from (I), s~ ~ u, hence 
m 

, , 
' ~ v. Since either t' = t 2 or t = ~t , it a # ~ implies that ~t 2 

follows now that t' ~ v. But then, tot' ~ uov, since t ~ u by (2). 

On the other hand, from (2), (4) and (5), Itat' I = q+l+q' ~ m; since 

uav ~ u~w, it follows that tot' ~ u~w. This is impossible, since 
m 

to ~ u by (2), at' ~ ~w by (4), and o # ~ by hipothesis. Thus 

q' > p'. By a similar argument, one proves that p' > q', a contra- 

diction which shows that (5) is untenable, which in turn establishes 

the lemma. D 

Before proceeding, we need a definition. For x and y in 

E , define x R m y (x m-reduces to y) iff x m Y' and there exist u 

and v in E , and a in E, such that x = uav and y = uv. Let 

* denote the reflexive and transitive closure of Rm, and let R -I R m m 
*-i * and R denote the inverse of R and Rm, respectively. In view 
m m , 

of Lemma l(c), it is easy to see, that z R x iff x < z and x N z. m m 

Lemma 6. For every x and y in ~ , x m Y iff there exists a z 

in E , such that z R m x and z R m y. 

Proof. We proceed by induction on Ixl + IYl 21ul, where u is the 

longest common prefix of x and y. If Ixl + IYl - 21ul = 0, then 

x = y = u, and z = u satisfies the proposition. Let then v' and 

w' he such that x = uv' and y = uw', with v'w' # I. 
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If v' = k, then x ~ y, and since x m Y' it follows that y R m x. 

Thus z = y satisfies the lemma. If w' = k, a similar argument holds. 

Assume therefore that v' # k and w' # X; then, from the choice of 

u, there exist a and ~ in E, such that ~ # ~, and x = uav and 

y = u~w, for some v and w in E By Lemma 5, either ua~w m uav, 

~ ~ ~ or u~av m u~w. If ua~w m uav, then, since uav m u~w, ua~w m u~w, 

hence ue~w R u~w = y. On the other hand, letting u' be the longest 
m 

common prefix of uo~w and uov, we have luo~w I + luov I - 21u' I 

I~wl + Ivl < l~wl + lavl = Ixl + lyl - 21ul. Thus, by the induction 

hypothesis there exists a z, such that z R uav = x and z R ua~w. 
m m 

Since ug~w R u~w = y, it follows that z R* y. A similar argument 
m m 

holds if u~av ~ u~w. D 
m 

Corollary 6a (Characterization of ~). For every x and y in E , 
m~ 

x m ~ y iff x (R ~-I o R~) y iff x (R m u R-I) * m m Y" 

Proof. Follows immediately from Lemma 6. D 

3. The main result 

In this section, we derive the main result , using the lemmas 

in section 2. 

Lemma 7. Let E c E be a piecewise testable event, and let M be its 

syntactic monoid. Then M is a finite J-trivial monoid. 

Proof. Let m be a natural, such that, for every x and y in E , 

x m Y implies that x ~ E iff y ~ E Since m is a congruence 

relation (Lemma l(a)), it follows that x ~ y implies x E y (mod E). 
m 

Thus, since m is of finite index (Lemma l(a)), so is ~ (mod E), 

i.e. M is a finite monoid. Let y:E + M be the natural epimorphism 

defined by E (mod E). Assume now, that for some a and b in M, 

a J b, i.e. there exist Cl,dl,C 2 and d 2 in M, such that a = Clbd I 

and b = c2ad 2. We claim that a = b. Indeed, a = (ClC2)ma(d2dl)m 

Let Yl and Y2 in E be such that yiy = di, then by Corollary 3a, 

(y2Yl)m m ~ (y2Yl)my2, and since this implies that (y2Yl)m 

(Y2Yl)m Y2 (mod E), it follows that (d2dl)m = (d2dl)md2 , i.e° 

a = ad 2. By a dual argument, a = c2a , hence b = c2ad 2 = a. Thus, 

M is a J-trivial monoid. 

Lemma 8. Let M be a finite J-trivial monoid, and let y:E ÷ M be 
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-I 
an epimorphism. Then for every subset X of M, XT 

testable event. 

is a piecewise 

Proof. It is sufficient to prove that there exists an m, such that 
, 

for all x and y in E , x ~ y implies xy = yy. Let k be the 
m 

cardinality of M, and let m = 2k. First we show that if u in E + 

and ~ in E are such that u k ~ uo, then uy = (uo)y. Indeed, by 

Lemma 3, there exist Ul,U2,...,Uk in E +, such that u = ulu2...u k 

and UlE ~ u2E = ... ~ UkE ~ {o}. Let w 0 ffi k, w I = Ul, w 2 = UlU2, ..., 

w k = UlU2...u k = u. Since M has k elements only, there exist i < j 

such that WiT = wjy. Now we claim that for all ~ in ui+ I Z, 

wiY ffi (wi~) T. Indeed, if E ~ ui+iZ , then ui+ I ffi Zl~Z 2 for some z I 

and z 2 in E . Since each element in the sequence wi, WiZl, WiZl~, 

wj is a prefix of its successor, it follows that M(wjT)M ~ M(WiZl~Y)M 

M(WiZlY)M c M(wiY)M. Since wiY ffi WiT, it follows that all sets in 

the chain are equal, and since M is J-trivial, this implies that 

wit ffi WiZlY = WlZl~ Y. It follows that WiT ffi wi~ Y. Then, since 

(Ui+l...UkO)Z ffi ui+iZ , it follows that uT ffi (uo)y. By a dual 
+ 

argument, if v in Z and ~ in E are such that v k ~ ~v, then 

vy = (av)y. Consider now u and v in E and ~ in l, such 

that u~v ~ uv. By Lemma 4, there exist p and p', such that 
m 

p+p' ~ m, u ~ uo and v ,~ ov. Since m ffi 2k, either p e k or 

p' ~ k, henc~ by Lemma l(b~, either u k ~ uo or v k ~ ~v. Thus, either 

uy = (uo)y or vy ~ (~v)y; in either case (uov)~ - (uv)T. But this im 

plies that for all x and y, x R y implies xy = yy, hence by Lemma 6, 
m 

for ell x and y, x m ~ y implies xy = yy. This completes the proof. 

Thus we have: 

Theorem. An event E is plecewlse testable iff its syntactic monold 

is finite and J-trivial. 

Proof. Immediate from Lemmas 7 and 8. D 

4. Other characterizations of pieeewise testable events 

In this section we indicate other characterizations of piecew~e 

testable events. Proofs and further details can be found in [9]. Our 

notation on automata follows [4]. 

First we need a few definitions. Let C be the smallest 
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family of events which contains I c ~  for every c in Z, and is 

closed under concatenation. Let D be the smallest family of events 

which contains C and is closed under the Boolean operations. 

Let A = (Q,Z,M) be a semiautomaton. A is a chain-reset, 

iff there exists a linear ordering q0,ql,....q m of Q, such that for 
A 

all qi ~ Q - {qm ), and for all c E Z, qi c is either qi or qi+l' A 
and qm ~ = qm for all o E I. A is partially ordered iff for all q 

* A A in Q and for all x and y in Z , q(xy) = q implies qx = q. 

A component of A is a minimal nonempty subset P of Q, such that 

for all q ~ Q and for all c ~ Z, q A E P iff q e P. Let 8 be 

a nonempty subset of E. The restrictlon of A to 8 is the 

semiautomaton AI8 = (Q,8,N), where c AI8 = c A for all c E 8. A 

dead state of A is a state q ¢ Q such that for all c ¢ E qc A = q. 

Now we have 

Theorem. Let E ~ I be a regular event, let E T be the reverse of 

let ~ and ~ be the reduced automata accepting E and E T respec- 

tively, and let M be the syntactic monoid of E. The following are 

equivalent: 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

E, 

E is piecewise testable. 

E is in D. 

A can be covered by a direct product of chain-resets. 

A and B are both partially ordered. 

A is partially ordered, and for all q ~ Q and for all x,y ~ Z , 
A A A )A A qx = q(xx) A = q(xy) A and qy = q(yy) = q(yx imply qx A = qy . 

A is partially ordered and for every nonempty subset 8 of Z, 

each component of Ale contains exactly one dead state of Ale. 

M is J-trlvlal. 

It is relatively simple to show the equivalence of (a), (b) and 

(e), and that of (d), (e), (f) and (g). The most difficult part in the 

proof of this theorem is to show that one of (d) to (g) implies one of 

(a) to (c). In the previous section we proved that (g) implies (a). 

Another possibility would be to give a proof of (g) implies (b) (or 

even more interesting would be (f) implies (b)) by constructing regular 

expressions, of the form required to show that an event is in D, which 

would denote each congruence class of E (mod El (denote the event 

accepted by each state of A, respectively). Such a construction has 

been carried out by Schutzenberger in [8], constructing star-free 
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regular expressions for events whose syntactic monoid is group-free. 

Unfortunately, his proof, when applied to J-trivial monoids, does not 

produce expressions in D. We have been unable to carry out such a 

proof, unless in the very simple case of idempotent and commutative 

monoids. 

Acknowledgment. I am indebted to Professor J.A. Brzozowski for intro- 

ducing me to the fascinating world of star-free regular events. 
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