On the generative capacity of the strict global grammars

by Sorin CIOBOTARU and Gheorghe PAUN

Universitatea Bucureşti Secția de studiul sistemelor Str.Mihai Moxa 3-5 București, s 8 Romania

In [4] Levitina introduces a new restriction in the use of the context-free (CF) rules, namely the global rules. A production rule is said to be global if in every derivation it is used to rewrite all occurrences of its left side in a sentential form. A grammar which has CF and also global rules is said a global grammar. We shall consider the grammars which have only global rules; we shall call them strict global (SG) grammars. We shall study their generative capacity by means of the parameter Rep, a parameter closely connected to the notion of index (see [1],[5]). Also, we shall analise the parameter Rep as a measure of the syntactic complexity (see [3]).

Let $G = (V_T, V_N, S, P)$ be a Chomsky CF grammar and $V = V_T \cup V_N$. For x and y in V^* (the free monoid generated by V). We put $x \xrightarrow{G} y$ iff $x = x_1 A x_2$, $y = x_1 Z x_2$, where $x_1, x_2 \in V^*$ and $A \longrightarrow Z$ is a rule in P. The language generated by G is the set $L(G) = \left\{x \in V_T^*; S \xrightarrow{*} x\right\}$, where \xrightarrow{G} is the reflexive and transitive closure of \xrightarrow{G} . The index of a derivation $D: S = x_0 \xrightarrow{G} x_1 \xrightarrow{G} \cdots \xrightarrow{G} x_k$ is

Ind(D, G) =
$$\max_{0 \le j \le k} \sum_{i=0}^{n} A_i (x_j)$$
,

where $V_N = \{S = A_0, A_1, \dots, A_n\}$ and $A_i(x_j)$ is the number of the occurrences of the nonterminal A_i in x_j . For w in L(G) we put

Ind(w, G) =
$$\min_{D}$$
 Ind(D, G),

where D: $S \stackrel{*}{\Longrightarrow} w$. The index of G is

$$Ind(G) = \sup_{w \in L(G)} Ind(w, G)$$

and the index of L is

Ind(L) = min
$$\{ Ind(G); L = L(G) \}$$
.

A global rule is a rule which is used in the following way: $x \Rightarrow y$ by a rule A \longrightarrow Z if and only if $x = x_1 A x_2 A x_3 ... x_{n-1} A x_n$, $y = x_1 Z x_2 Z x_3 ... x_{n-1} Z x_n$, $n \geqslant 2$ and $A(x_i) = 0$ for $1 \leqslant i \leqslant n$. A grammar having only global rules is called a SG grammar.

If R is a restriction in the use of the rules of G, then we denote by G_R the grammar G with the restriction R. If Υ is a class of grammars we put $L_{\Upsilon} = \{L : \text{there exists G in }\Upsilon \text{ such that } L = L(G)\}$. We say that the restriction R modifies in the weak sense the generative capacity of the grammars of the class Υ if there exists G in Υ such that $L(G_R) \neq L(G)$; we write $R(\Upsilon)$. We say that R modifies in the strong sense the generative capacity of the grammars of Υ if there exists G in Υ such that $L(G_R)$ is not in L_{Υ} ; we write $R[\Upsilon]$. Obviously, if $R[\Upsilon]$, then $R(\Upsilon)$.

Let us denote by Sg the strict global restriction.

<u>Proposition 1</u>. If Lin is the set of the linear grammars, then we don't have Sg(Lin).

<u>Proposition 2.</u> We have Sg(C) and Sg[C] where C is the class of the CF grammars.

<u>Proof.</u> Let us consider the grammar with the rules $S \longrightarrow Ab$ Ab Ab A, $A \longrightarrow aA$, $A \longrightarrow a$. $L(G_{Sg}) = \{a^nba^nba^n; n \geqslant 1\}$ is not a CF language.

<u>Proposition 3.</u> The class of the SG languages and the class of the matrix languages are uncomparable.

<u>Proof.</u> The set $L_1 = \{a^nb^nc^n; n > 1\}$ is a matrix language but it is not a global language (see [4]). Thus it is not a SG language. The set $L_2 = \{a^{2^n}; n > 0\}$ is SG language (it may be generated by the SG grammar with the rules $S \longrightarrow SS$, $S \longrightarrow a$) but it is not a matrix language.

According to the notations used in the above definition of the index we define the parameter Rep in the following way:

$$\begin{aligned} & \operatorname{Rep}(\mathbb{D}, \, \mathbb{G}) = \max_{\substack{0 \leq j \leq k \\ 0 \leq i \leq k}} A_{\mathbf{i}}(\mathbf{x}_{\mathbf{j}}), \\ & \underset{0 \leq i \leq k}{\circ e_{\mathbf{i}} \leq k} \end{aligned}$$

$$\operatorname{Rep}(\mathbf{w}, \, \mathbb{G}) = \min_{\substack{0 \\ \mathbb{R}}} \operatorname{Rep}(\mathbb{D}, \mathbb{G}), \\ & \underset{\mathbf{w} \in L(\mathbb{G})}{\mathbb{E}} \operatorname{Rep}(\mathbf{w}, \mathbb{G}), \\ & \underset{\mathbf{w} \in L(\mathbb{G})}{\operatorname{Rep}(\mathbb{L})} = \min_{\substack{0 \leq j \leq k \\ \mathbb{R}}} \operatorname{Rep}(\mathbb{G}); \, L = L(\mathbb{G}) \end{aligned}$$

Obviously, Rep(L) = 1 for any linear language and $Rep(L) \leq Ind(L)$ for any CF language.

<u>Proposition 4.</u> For any CF language L, Rep(L) is finite if and only if Ind(L) is finite.

Proposition 5. For any CF grammar G with Rep(G) = n < ∞ there e-

xists a grammar G' such that L(G) = L(G') and Rep(G') = 1.

<u>Proof.</u> For n = 1 the assertion is true. Let us consider a grammar $G = (V_N, V_T, S, P)$ such that $\operatorname{Rep}(G) = n + 1$. Let U_N be the set of the symbols of V_N which establish the value of $\operatorname{Rep}(G)$. If $U_N = \{A_1, A_2, \ldots, A_k\}$ let us consider $\overline{U}_N = \{\overline{A}_1, \overline{A}_2, \ldots, \overline{A}_k\}$ where A_i are not in V.Let Q be the set of the rules of P in which occurs at least a symbol of U_N . Let \overline{Q} be the set of the rules obtained from the rules of Q by the substitution of at least an occurrence of each non-terminal of U_N which occurs in the rule by the corresponding symbol of \overline{U}_N . Let us consider the grammar $G'' = (V_N \cup \overline{U}_N, V_T, S, P \cup \overline{Q})$. Obviously L(G'') = L(G). It may be proved that $\operatorname{Rep}(G'') \leq n$. By the induction hypothesis there exists G' such that L(G'') = L(G') and $\operatorname{Rep}(G') = 1$.

Proposition 6. If $\Psi = \{G; \text{Rep}(G) = 1\}$ then we don't have $Sg(\Psi)$. Theorem 1. Any CF language of finite index is a SG language. The theorem results from the propositions 4, 5 and 6.

Corollary. For any language of finite index, L, and for any n > 1, the language $L_n = \{ w^n; w \in L \}$ is SG.

Theorem 2. There is a CF language of infinite index which is not a SG language.

<u>Proof.</u> Let us consider the language L generated by the grammar with the rules $S \longrightarrow SS$, $S \longrightarrow aSb$, $S \longrightarrow cS$, $S \longrightarrow c$. Let us consider the homomorphism defined by h(a) = a, h(b) = b, $h(c) = \xi$. Obviously h(L) is the Dick language on the vocabulary $\{a,b\}$. Since the class of the languages of finite index is full AFL [3], it follows that $Ind(L) = \infty$. In what follows, by the assertion "c^k is subword in w" we understand that $w = w_1 c^k w_2$ and $w_1 \ne w_1 c$, $w_2 \ne c w_2$. We suppose that there is a grammar $G = (V_N, V_T, S, P)$ such that $L(G_{Sg}) = L$. For A in V_N we have three cases:

i)
$$L_A = \left\{ w \in V_T^* ; A \xrightarrow{*}_{G_{Se}} w \right\}$$
 is a finite language,

ii) $L_A = L_1 L_2 L_3$ where $L_2 \subset \{c\}^*$ and L_1, L_2 are finite languages,

iii) $\rm L_A$ is a finite union of languages of the form $\rm \,L_1LL_2$ where $\rm L_1,L_2$ are finite languages.

Let L' be the set of w in L such that any derivation of w is of the form $S \xrightarrow{*}_{G} Z \xrightarrow{*}_{G} w$, with $A(Z) \geqslant 2$ for A with the property iii).

Let be also L" = $\{w \in L; \text{ if } c^k \text{ and } c^i \text{ are subwords in } w, \text{ then } k \neq i \}$. Obviously L'\L" \neq \emptyset. On the other hand, we have $(L' \cap L(G_{Sg})) \cap L" = \emptyset$. Contradiction.

Open problem. Does there exist a CF language of infinite index which is a SG language ?

Following Gruska [3] a measure K of syntactic complexity is said to be nontrivial if for any n>1 there exists a language L such that K(L) > n. K is said to be bounded if for any n > 1 there exists a language L such that K(L) = n.

Because there are languages L for which Rep(L) = 00, Rep is a nontrivial measure. As a consequence of the proposition 5 it results that Rep is not a bounded measure. For any language L we have either Rep(L)= =∞, or Rep(L) = 1. Obviously, for any n>1 there exists a grammar G such that Rep(G) = n. Moreover, we have:

Proposition 7. For any CF language L with Rep(L) = 1, and for any $n \geqslant 1$ there exists a grammar G_n such that $Rep(G_n) = n$.

Following Gruska [3], for K we put $K^{-1}(L) = \{G; L = L(G), K(G) = \{G\}\}$ = K(L). Then, two measures K_1 and K_2 are said to be compatible if for any CF language L we have $K_1^{-1}(L) \cap K_2^{-1}(L) \neq \emptyset$.

<u>Proposition 8.</u> Rep and Ind are compatible, but Rep and $K \in \{Var,$ Prod, Symb (see [3]) are uncompatible.

Proof. The first assertion follows from the proposition 5 and 4. To prove the second assertion it is sufficient to find a language L such that Rep(L) = 1 and every grammar G for L with K(G) = K(L) has Rep(G) > 2. This languages is

$$L = \left\{ \mathbf{a}^{n} \ \mathbf{b}^{n} \ \mathbf{a}^{m} \ \mathbf{b}^{m}; \ n, \ m \geqslant 0 \right\}.$$

References

- 1. Brainerd B. An analog of a theorem about context free languages.
- Information and Control 11 (1968), 561-567.

 2. Ginsburg S. The mathematical theory of context free languages. Mc Graw-Hill Book Company New-York (1966).
- Descriptional complexity of context free languages. Proc. of symp. and summ. school.Math. fund of computer 3. Gruska J. sci. High Tatras (1973).
- 4. Levitina M.K. On some grammars with global productions. N.T.1.

 2(1972), 32-36 (in russ.).

 5. Salomaa A. On the index of a context free grammar and language.
- Information and Control, 14 (1968), 474-477.
- 6. Salomaa A. Formal languages. Academic Press New York and London (1973).