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In.[4] Levitina introduces & new resiriction in the use of the
context-free (CF) rules, namely the global rules, & production rule is
said to be global if in every derivation it is used to rewrite all cc-
currences of its left side in a sentential form, 4 gremmar which has
CF and also global rules is said a globgl grammar, We shall consider
the grammars which have only global rules; we shall call them strict
global (SG) grammars, We shall study their generative capacity by means
of the parameter Rep, a parameter closely connected to the notion of
index (see [1],[5]). 4lso, we shell analise the parameter Rep &s & me-
asure of the syntactic complexity (see['f}).

Let G = (V?, Vyr S P) be a Chomsky CF grammar and V = T vV, .
For x and y in V* {(the free monoid generated by V). We put x :E; y iff

X=X A Xy §= % L Xy, where xl,xeeV* and A —> Z 1is a rule in P,
The language generated by G is the set L(G) = {x ev;; s = x}, where
G
:*:> is the reflexive and transitive closure of —» .,
G G
The index of a derivation D : 8 = x, = x1:_‘:> IR e X, 18
° g g G

n
Ind(D, G} = ozigx Zm & {XJ}’
<igk 1=0

where VN ={S = ‘B‘o’é‘l""’an} and Ai(x.) is the number of the occur -
rences of the nonterminal &, in X5 For w in L(G) we put

Ind{w, G) = min Ind(D, @),
D

where D : S ‘:_E;w. The index of G is
a

Ind(@y = sup Ind(w, &)
weL(G)
and the index of L is
Ind(L) = min {Ind(('}); L= L(G)}.
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A global rule 1s a rule which is used in the following way: x=py
by a rule 4 —> Z if and only if x = X1AX2AX3...XH_1AXH, y= xlzXZZXS...

xn_len, ny2 and ﬁ(xi) = O for 1£ign. & gremmar having only global
rules is called a SG grammar,

If R is a restriction in the use of the rules of G, then we de-
note by G Gp the grammar ¢ with the restriction R, If Y is a class of
grammars we put Ly, {L ; there exists G in Y such that L = L(G)}.
say that the restriction R modifies in the weak sense the  generative
capacity of the gremmars of the class ™V if there exists G in Y such
that L(Gp) # L(G); we write R{Y). We say that R modifies in the strong
sense the generative capacity of the grammars of ¥ if there exists G
in¥ such that L(GR) is not in L? ; we write R{Y) . Obviously,if R[Y),
then R(Y).

Let us denote by Sg the strict global restriction,

Proposition 1, If Lin is the set of the linear grammars, then we
don't have Sg(Lin}.

Proposition 2, We have Sg(C) and Sg[p] where C is the class of
the CF grammars,

Proof, Let us consider the grammar with the rules S —> Ab 4D 4,
A —> a4, & —> 2, L(ng) ={anbanban; n>/l} is not a CF language.

Proposition 3. The class of the 3G languages and the class of the
matrix languages are uncomparable.

Proof. The set I, = {anbncn, n>»1} is a matrix language but it
is not a global language (see [4] Y. Thus it is not a SG language. The
set L2 {a H n>-0} is SG language (it mey be generated by the SG grsm-
mar with the rules § —> 835, S —> a) but it is not a matrix language.

According to the notations used in the above definition of the
index we define the parameter Rep in the following way:

Rep(D, G) = mnax Ai(x-),
ogjsk J
ogigk

Rep(w, G) =

min Rep(D,G),
D

Rep(G) = sup Rep(w,d),
wel(G)

Rep(L) = min {Bep(&); L= L(G)}.
Obviously, Rep(L) = 1 for any linear language and Rep(L) < Ind(L)
for any CP language.
Proposition 4, For any CF language L, Rep(L) is finite if and
only if Ind(L) is finite,
Proposition 5. For any CF grammar G with Rep(3) = n< e9 there e-
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¥ists & grammar G' such that L{(3) = L(3') and Rep(G') = 1.
Proof, For n = 1 the assertion is true. Let us consider a grammar
3= (V,, VT’ S, P) such that Rep(3) = n + 1, Let Uy be the set of the

symbols of VN which establish the value of Rep(G), If UN={§1,A2,...,A£}

let us consider EN = {KI’EE""’Kki where A; are not in V,Let Q be the
set of the rules of P in which occurs at least a symbol of UN. Let Q
be the set of the rules obtained from the rules of Q by the substitu-
tion of at least an occurrence of each non-terminal of UN which occurs
in the rule by_the corresponé@ng symbol of UN‘ Let us consider the gram-
mar G" = (VNL/U » Vs Sy PUQ). Obvicusly L(G") = L(G). 1t may be pro-
ved that Rep(3")< n., By the induction hypothesis there exists G' such
that L(G") = L(G') and Rep(G') = 1,

Proposition 6. If Y = &G; Rep(G) = lf}then we don't have Sg(VY).

Theorem 1, Any CF language of finite index is a 8G language.

The theorem results from the propositions 4, 5 and 6.

Corollary. For eny lenguage of finite index, L, and for any n;l,
the language L, = {w“; weL} is 5G.

Theorem 2. There is a CF language of infinite index which is not
a 5G language,

Proof, Let us consider the language L generated by the  grammar
with the rules S —> S8, S —> aSb, § —> ¢S, S —> c. Let us consider
the homomorphism defined by h(a) = a, h(b} = b, h(c) =& . Obviously
h(L) is the Dick language on the vocabuleary {a,b}. Since the class of
the languages of Finite index is full AFL [3], it follows that Ind(L)=
=00 , In what follows, by the assertion ncK is subword in w" we under-
stand that W:chk Wo and Wy # wl' Cy Wy £ c wé. We suppose that there is
a grammar 3 = (VN, Vps S, P) such that L(ng) = L. For A in V_ we have

three cases:

i) L, = {wev* ; A-;t:> w} is a finite language,

ng

ii) Ly =1y L, L3 where L2CL{C}* and Lp,L, are finite languages,

iii) Ly is a finite union of languages of the form I,LL, where
Ll,L2 are finite languages.

Let L' be the set of w in L such that any derivation of w is of
the form S =%, 7 —25 y, with 4(2)»2 for A with the property iii).

Ggg Ggg '

Let be also L" = {wrelg if X and ¢* are subwords in w, then k # i},
Obviously L'NL" # £. On the other hand, we have (L'r\L(ng))f\L" = @,
Contradiction.
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Open problem, Does there exist a CF language of infinite index
which is a SG language 7

Following Gruska [5] a measure K of syntactic complexity is said
to be nontrivial if for any n>1 there exists a languasge 1 such that
K(L)>n, K is saild to be bounded if for any n>1l there exists a langua-
ge L such that XK(L) = n.

Because there are languages L for which Rep(L) =00, Rep is a non-
triviel measure, 4s a consequence of the proposition 5 it results that

Rep is not a bounded measure, For any language L we have either Rep(L)=
=00 , or Rep(L) = 1. Obviously, for any n»1 there exists a grammar G
such that Rep(G) = n, Moreover, we have:

Proposition 7., For any CF language L with Rep(L) = 1, and for any
n>1l there exists a grammar G, such that Rep(Gn) = n,

Following Gruska [ 3], for K we put kL) = {G; L = L(G), K(G) =
= K(L)}, Then, two measures Ki and K, are said to be compatible if for
any CF language L we have Kil(L)f\KEl(L) 3.

Proposition 8. Rep and Ind are compatible, but Rep and Ke{Var s
Prod, Symb} (see [3]) are uncompatible,

Proof, The first assertion follows from the proposition 5 and 4.
To prove the second assertion it is sufficient to find a language L such
that Rep(L) = 1 and every grammar G for L with K(G) = K(L) has Rep(3)3 2.
This languages is

L = {a® 5% a® b m, m;o'} .
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