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In[4] Levitina introduces a new restriction in the use of the 

context-free (CF) rules, namely the global rules. A production rule is 

said to be global if in every derivation it is used to rewrite all oc- 

currences of its left side in a sentential form. A grammar which has 

CF and also global rules is said a global grammar. We shall consider 

the grammars which have only global rules; we shall call them strict 

global (SG) grammars. We shall study their generative capacity by means 

of the parameter Rep, a parameter closely connected to the notion of 

(see [i],[5]). Also, we shall analise the parameter Rep as a me- index 

asure of the syntactic complexity (see [3~). 

Let Q : (v T, v~, s, P~ be a C~oms~ CF ~r~ar and V = V T u V~ . 

For x and y in V ~ (the free monoid generated by V). We put x y iff 
G 

x = x I A x2, y = x I Z x 2, where Xl,X 2~V* and A ) Z is a rule in P. 
The language generated Dy G is the set L(G) = ~x 6 S ~ , where 

w 
is the reflexive and transltive closure of----~ . 

G 
The index of a derivation D : S = Xo~ Xl--~G "'" ~ xk is 

n 

Ind(D, G) = max l~oAi (xj), 
o~j~k = 

where V N =~S~ = Ao,A1,...,An)~ and Ai(x i)~ is the number of the occur - 

fences of the nonterminal A i in xj. For w in L(G) we put 

Ind(w, G) = min Ind(D, G), 
D 

where D : S~w. The index of G is 
G 

ind(G) = sup Ind(w, G) 
w ~L(G) 

and the index of L is 

Ind(L) = min [Ind(G); L = L(G)}. 
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A global rule Is a rule w~ich is used in the following way: x~y 

by a rule A ....... > Z if and only if x = Xl&X2AX3...Xn_lAXn, y= XlZX2ZX3... 

Xn_lZXn, n>~2 and A(x i) = 0 for l~<iSn. A grammar having only global 

rules is called a SG grammar. 

If R is a restriction in the use of the rules of G, then we de- 

note by G R the grammar G with the restriction R. If ~ is a class of 

grarmnars we put L~ {L ; there exists G in ~ such that L L(G)]. = = We 

say that the restriction R modifies in the weak sense the generative 

capacity of the grammars of the class ~ if there exists G in ~ such 

that L(G R) # L(G); we write R(~). We say that R modifies in the strong 

sense the generative capacity of the grammars of ~ if there exists G 

in~ such that L(G R) is not in L~ ; we write RIll. Obviously,if RIll, 

then R~). 

Let us denote by Sg the strict global restriction. 

proposition 1. If Lin is the set of the linear grammars, then we 

don't have Sg(Lin). 

Proposition 2. We have Sg(C) and Sg[C] where C is the class of 

the CF grammars. 

Proof. Let us consider the grammar with the rules S > Ab Ab A, 

A > aA, A ~ a. L(Gsg) ={anbanban; n>/1] is not a CF language. 

Proposition 3. The class of the SG languages and the class aft the 

matrix languages are uncomparable. 

Proof. The set L 1 = {anbncn; n~/l~ is a matrix language but it 

is not a global language (see [4] ). Thus it is not a SG language. The 

set L 2 = - ~a2n; n>10 ~ is SG language (it may be generated by the SG gram- 

mar with the rules S ) SS, S > a) but it is not a matrix language. 

According to the notations used in the above definition of the 

index we define the parameter Rep in the following way: 

Rep(D, G) = max Ai(xj) , 
o<.j~k 
o~i~k 

Rap(w, G) = min Rep(D,G), 
D 

Rep(G) = sup Rep(w,G), 
w~L(G) 

Rep(L) = min {Rep(G); L = L(G)}. 

Obviously, Rep(L) = i for any linear language and Rep(L).<Ind(L) 

for any CF language. 

Proposition 4. For any CF language L, Rep(L) is finite if and 

only if Ind(L) is finite. 

Proposition 5. For any CF grammar G with Rep(G) = n<eO there e- 
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xists a grammar G' such that L(G) = L(G') and Rep(G') = i. 

Proof. For n = 1 the assertion is true. Let us consider a grammar 

G = (VN, VT, S, P) such that Rep(G) = n + 1. Let U N be the~_set of the 

symbols of V N which establish the value of Rep(G). If UN={#~l,A2,...,Ak~ 

let us conei or whero are not in V. et 

set of the rules of P ~ ~ i n  which occurs at least a symbol of U N. Let 

be the set of the rules obtained from the rules of Q by the substitu- 

tion of at least an occurrence of each non-terminal of U N which occurs 

in the rule by the corresponding symbol of U N. Let us consider the gram- 

mar G '° = (VNUUN, V T, S, P~Q). Obviously L(G") : L(G). It may be pro- 

ved that Rep(G")~ n. By the induction hypothesis there exists G' such 

that L(G") = L(G °) and Rep(G') = I. 

6. If~= ~G; Rep(G) = l~then we don't have Sg(~). Proposition 

Theore m 1. Any CF language of finite index is a SG lar~uage. 

~le theorem results from the propositions 4, 5 and 6. 

Corollary. For any language of finite index, L, and for any n~l, 

the language L n :[wn; w~L} is SG. 

Theorem 2. There is a CF language of infinite index which is not 

a SG language. 

Proof. Let 

with the rules S 

the homomorphism 

h(L) is the Dick 

us consider the language L generated by the grammar 

~SS, S > aSb, S---> cS, S ~ c. Let us consider 

defined by h(a) = a, h(b) = b, h(c) = S . Obviously 

language on the vocabulary [a,b}. Since the class of 

the languages of finite index is full AFL [3], it follows that ind(L)= 

=oo. In what follows, by the assertion "c k is subword in w" we under- 
' ' We suppose that there is stand that w=~l~w 2 and w 1 ~ w~ c, w 2 / c w 2. 

a grammar G = (V N, V T, S, P) such that L(Gsg) = L. For A in V n we have 

three cases: 
[ * . } i) L A = weV T ; A----~. w is a finite language, 

GSg 

ii) L A = h L2 L3 where L2C~c)* and LI,L 2 are finite languages, 

iii) L A is a finite union of languages of the form LILL 2 where 

LI,L 2 are finite languages. 
Let L' be the set of w in L such that any derivation of w is of 

the form S__--~ Z ~ w ,  with A(Z) ~ 2 for A with the property iii). 
GSg GSg 

Let be also L" = [weL; if C k and c i are subwords in w, then k ~ i]. 

Obviously L'~ L" # ¢. On the other hand, we have (L'~L(Gsg)) ~L" = ¢. 

Contradiction. 
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0pen problem. Does there exist a CF language of infinite index 

which is a SGlanguage ? 

Following Gruska [3] a measure K of syntactic complexity is said 

to be nontrivial if for any n~l there exists a language L such that 

K(L) >n. K is said to be bounded if for any n~l there exists a langua- 

ge L such that K(L) = n. 

Because there are languages L for which Rep(L) =oo, Rep is a non- 

trivial measure. As a consequence of the proposition 5 it results that 

Rep is not a bounded measure. For any language L we have either Rep(L)= 

=oo , or Rep(L) = i. Obviously, for any n~l there exists a grammar O 

such that Rep(G) = n. Moreover, we have: 

Pr0P0sition 7- For any CF language L with Rep(L) = i, and for any 

n~l there exists a grammar ~n such that Rep(G n) = n. 

Following Gruska [3], for K we put K-l(L) = [G; L = L(G), K(G) = 

= K(L)~.~ Then, two measures K1 and K 2 are said to be compatible if for 

CF language L we have K~II(L) a K~i(L) # any @ 

Proposition 8. Rep and Ind are compatible, hut Rep and K E~Var 

Prod, Sym~ 3 (see [ 3]) are uncompatible. 

Proof. The first assertion follows from the proposition 5 and 4. 

To prove the second assertion it is sufficient to find a l~guage L such 

that Rep(L) = 1 and every grammar G for L with K(G) = K(L) has Rep(G)~ 2. 

This languages is 
L = [a n b n a m bm; n, m~O}. 
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