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1. The proposed method is a result of the combination of the dual 

approach and the method of feasible directions. Three types of prob- 

lems that can be solved by this method are listed below. 

1 ° . Determination of feasible control in the system 

dx(t) = A(t) x(t) + B(t)u(t) +C(t) , (I) 
dt 

u(t) >_ 0, M(t)u(t) _< N(t) x(t) + p(t) , 

x(o) = Xo, 0x(~) >-~ . 

Matrices A, B, ~, ~T, Q, vectors C, P,Xo, ~ , and terminal time T 

are given here, with A,B, C, M, N, p being piece-wise continuous 

functions of t ; it is required to find a feasible control u(t) be- 

longing to the class of piece-wise continuous functions of t. 

2 ° . Type (1) problem with delays in differential and finite relations 

of the system (delays may belong both to phase coordinates and to con- 

trol). 

3 ° . Finite-dimensional linear programming problem. 

2. Let L~ be the space of piece-wise continuous functions of t from 

L 2 , defined on [0, T] and valued in Rn,xnm= Ln2 × Rm _ prehilbertian 

space of pai~s a=(Wa,Va} (WaET, n,VaERm , a ~ ~nm ) with a scalar pro- 

duct (a,b)= fo (Wa'Wb)dt+(Va'Vb)(a'b~ ~nm)~r°blems 1°-3° can be consi- 

dered as a particular case of functional linear programming problem 

Lu _< h , (2) 

in which UEYu, h E Yh' where Xu= ynm,xh=Xkr , n,m, k, r are given 

constants, L is a bounded linear operator transforming Xuinto X h . 
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The reduction of considered control problems to type (2) problem is a 

wellknown mode used by various authors, including [I-#] • 

3. In application to the problem (2) the numerical method is const 

ructed in the following way 

Let us consider the auxiliary problem 

max8 : Lug h(1+8), 8 g 0 
u,8 (~) 

with a scalar parameter 8 and apply the method of feasible directions 

[ 5,6 ] to it starting from the feasible solution u = 0 , 8= -1 of (3). 

It is not difficult to see that two cases are possible: 1) max8 = 0 ; 

then the first ~teration of the method of feasible directions gives 

the feasible solution of (2) by the formula 

u =a_ , (4) 

g8 
where the pair{g, g8 } defines a feasible direction in the problem 

(3) for u=O, 8= -I (g, ~) are defined by relations Lg ~h~,g 8 > 0); 

2) sup 8<0 or sup~ = O ,but the value 8 = 0 in (3) is not attained; 

in this case there is no feasible direction {~'g8 )and the problem 

(2) has no solutions. To determine g, ~ in formula (4) we shall for- 

mulate a "best" direction problem [5 ](for case I): 

max ~ : Lg < a g'g~ _ hgs, g~+ (g,g) = 1. 
(5) 

The numerical method for the solution of the problem (2) is based on 

the application of dual approach [ 4 ] to the problem (5) with subsequent 

utilization of formula (4). In the end this method is reduced to 

the solution of the problem 

min • : • = (I+ (h,~))2+ IIL*k II 2 
~>-o ' (6) 

where kE Yh' llall = "k/-( 'a-~'L* is the operator conjugate with L . 

Solutions of problems (2) and (6) are related in the following way: 

I) let ~ ~ Yh be a solution of (6) and min $ > O; then 

U = - 

1+ <~,~ > (7) 

(the denominator in (7) is not equal to zero, because we can show that 

rain $ = I + (h, ~ )); 
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2) let inf • = 0 

3) let inf • > 0 be 

minimizing sequence 

ned by substituting 

fulfilled: 

; then the problem (2) is unsolvable; 

unattainable in Yh ; then we can construct a 

kn E Yh' such that for u = Un, where UniS defi- 

= kn into (7), the following condition is 

! i m  I I ( I ,u n - h)  + 11= O, 
n ~ ~ ( 8 )  

in other words, for u n positive lacks in (2) tend on the average to 

zero. 

It is not difficult to see that case 2 corresponds to unsolvable con- 

ditions in Far,as' lemma. 

4. The formulation of problem (6) for problem (1) follows: 
T 

min • : ~ = f (~, g) dt + 
¢~o,  o ~ ( 9 )  
~O, T 
~ o  ~ : BTp - ~#~ +¢, ~ :1 + ( ~ , ~ ) -  f ( ¢ , ~ ) d t ,  

0 

dt 

Here @= N(t)x°(t)+ p(t), @T = Qx°(T)- ~ ,where x°(t)is the solution 

of the Cauchy problem: 

dx°(t) = A(t)x°(t) + C(t), x°(O) = x o . 
dt 

5. The following simple algorithm can be used to solve the problem 

(6). Let Xn be n-th approximation to the problem (6) solution. Let us 

determine ~ by solving the problem 
n 

min@( k n + ~( - .grad @(kn)) + ) 

(Xn = Xn+~( - grad 

Then let us find kn+ I by the formula 

solution of the problem 

rain ¢(~kn ) " 

(kn))+ • 

(1o) 

, where v is the 

The process termination can be controlled by the substitution of 

into (7) and by determination of the system lacks. 

Finite formulae can be applied to the one- dimensional problems (10) 

and (11). The algorithm is proved in [ 4] . To accelerate its conver- 

(11 )  

X=Xn 
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gence a combined algorithm can be used, in which formulae (10), (11) 

are used with formulae of the conjugate gradients method. 

6. The numerical method permits the following modification. 

The problem 

Lu = h, u ~ 0 

(12) 

(the canonical form of the linear programming problem) is considered 

instead of (2) and the problem 

min @: • = (1 + (h,~))~+ ~ ~ - T~*~ II 2 
~ Yh ' (13) 
~E7 u,k~O 

is solved instead of (6). The relation of (13) with (12) is analoguos 

to that of (6) with (2); now instead of (7) the formula 

U - -  

- L*~ 

1 +< h,~) (14) 

is used. 

The algorithm of consecutive minimization over ~ and ~ can be used for 

the solution of problem (13). Besides it is essential that there are 

no restrictions on m in (13), and the minimization over ~ is pos- 

sible by finite formulae. 

7. The numerical method has been used for the solution of a minimum 

time problem formulated for the Leontieff type dynamic input-output 

model (type (1) problem). The relations of this problem [4 ] are shown 

below: 

~V(t) = u(t) , 

dt (15) 
u(~) ~ o, M(t)u(t) ~ v(t) - v°(t), 

v(o) =v o ,  v(~) ~ v , 

where matrix: M and vectors V °, V o, ~ are given. A series of problems 

of feasible control search wfth the fixed value of T was solved with 

different values of T for a minimum time problem (min u T) . The combi- 

ned algorithm based on formulae (10),(11) and formulae of the conjugate 

gradients method was used there. The type (15) problem for a twenty- 

-nine industry model (vector V has 29 components) was solved in less 

than ten minutes on a third-generation computer (the program was 

written in ALGOL). 



288 

8. As follows from Section 3 the proposed method can be interpreted 

as a feasible directions method in whichthe direction is determined 

only once. On the other hand, this method in a way similar to methods 

of penalty functions is reduced to the problem of minimization of a 

quadratic functional. The basic difference of these methods is in the 

dependence of min • on system parameters: in the proposed method 

min ~ has a jump on the boundary of the region of parameters in which 

the system has solutions, provided ~lu II doesn't grow to infinity 

in this region; in analogous case for methods with quadratic function 

of penalty the corresponding functional is continuous on the same boun- 

dary . This jump can be used effectively for solving minimum time prob- 

lem: in this case min T must be treated as a limit point of set of 

values of T , for w~ich the system has a feasible solution. 

References 

I N.N.Krasovskii. The control theory of motion (Russian).Izd. 
"Nauka", 1968. 

2 M.V.Meerov, B.L.Litvak. Optimization of multi-connected control 
systems (Russian). Izd. "Nauk~', 1972. 

3 N.V.Gabashvili, N.N.Lominadz~, L.L.Chkhaidz~. An approximate 
solution of certain optimal control and discrete programming 
problems (Russian):Tekhnicheskaya Kibernetika, N6, 1972 • 

4 V.I.Charny, ~.A.Boikov. Numerical solution of linear dynamic 
problems in economic planning (Russian).Preprint, Izd.iAT, 1973. 

5 G.Hadley. Nonlinear and Dynamic Programming. Addison-Wesley 
Pub. Co. Inc., Reading, Massachusetts, 1964. 

6 A.V.Fiacco, G.P.Mc Cormick. Nonlinear Progra=m~ng: Sequential 
Unconstrained Minimization Techniques. New York-London, 1968. 


