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1. The propoged method is a result of the combination of the dusl
appreach and the method of feasible directions. Three types of prob-
lems that can be solved by this method are listed below.

1°. Determination of feasible control in the system

2O - 4ty x5 + BOUD) 40(8) )

u(t) =2 0, M(Bult) < N(L) x(t) + o(t) ,

x(0) = x,, ox(T) 2% .

Matrices A, B, M, W, Q, vectors ¢, % ¥ , and terminal time T
are given here, with A,B, C, M, N, p Dbeing piece-wise continuocus
functions of t 3 it is required to find a feasible control u(t) be-
longing to the class of piece-wise continuous functions of t.

2°, Type (1) problem with delays in differential and finite relations
of the system (delays may belong both to phase coordinates and to con-
trol).

%3¢, Finite~dimengsional lipear programming problem.

2 Let Lg be the space of piece-wise continuous functions of + from
L , defined on |0, T] and valued in R®,x™- 12 . R™ - prehilbertian
space of pairs az{wa,va} (WaeL;,vaeRm, P 3 with a scalar pro-
duct {(a,b)= % (Wa,vb)dt+Cva,vb){a,be‘xnm)fdﬂblems 1°~3° can be consi-
dered as a particular case of functional linear programming problem
Iu< h , (2)
. R _ hm k1 .
in which ue¥,, h € X, where X = ¥, Xp=X"", n,m, k, r are given
constants, I, is & bounded linear operator transforming Xuinto Xy .
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The reduction of considered control problems to type (2) problem is =2
wellknown mode used by various authors, including [1—4} .
2. In application to the problem (2) the numerical method is const
ructed in the following way .
Let us consider the auxiliary problem

max B 3 Im < h(148), B =0

u’B (5)
with a scalar parameter B and apply the method of feasible directions
[5,6]to it starting from the feasible solution u = 0 , B= -1 of (3).
It is not difficult to see that two cases are possible: 1) maxB = 0 ;
then the first iteration of the method of feasible girections gives
the feasible solution of (2) by the formula

u= 8 (4)
P

where the pair{g, 58 } defines a feasible direction in the problem
(3) for u=0, B= -1 (g, g%) are defined by relabvions Lg <h 189 > 0)
2) sup B<C orsupl = 0 ,bubt the value B = 0 in (3) is not attained:
in this case there is no feasible direction {gz,g, }and the problem
(2) has no solutions., To determine g, in formula (4) we shall for-
mulate a "best" direction problem [ 5 J{for case 1):

max gg: Tg < hgg, gg+ (3,8) = 1. (5
gs%&

The numerical method for the solution of the problem (2) is based on
the application of dual approach [ 4] to the problem (5) with subsequent
utilization of formula (4). In the end this method is reduced to
the solution of the problem
min @ + & = (1+ ()2 A .
30 1+ < s >} + Rl U s (&)
where A€ Yy, flafl = /&5 ,1* is the operator conjugate with T .
Solutions of problems (2) and (6) are related in the following way:
1) let A ¢ oA be a solution of (&) and min ® > 0; then

= - —EA
T n

(the denominator in (7) is not equal to zero, because we can show that
min @ = 1 4+ {(h, A));
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2) iet inf ® = 0 ; then the problem (2) is unsolvable;

3) let inf @ > O be unattainable in Yh 5 then we can construct a
minimizing sequence An € Xy» such that for u = u,, where u,is defi-
ned by substituting A = An into (7), the following condition is
fulfilled:

lim (Tm, - mt =0,
n - 0 (8)

in other words, for u,  positive lacks in (2) tend on the average to
Zero.

It is not difficult to see that case 2 corresponds to unsolvable con-
ditions in Farkas' lemma.

4, The formulation of problem (6) for problem (1) follows:

T
min@:@zf?;,?;)dt+g§,
[e]

$20,
o A . 9
u=0 g=3BD~Muw b, %B =1 + (u;@m}- I (b,9)dt,
O
2o - wle, pm) = a7 .
at

Here o= N(t)xo(t)+ p(t), Prp= QXOCT)— X ,where xo(t)is the solution
of the Cauchy problem:
o
%ﬁl = A(8)x%(H) + 6(8), x°(0) = x, .
5. The following simple algorithm can be used to solve the problem

(6). Let An be n-th approximation to the problem (6) solution. Let us
determine AE by solving the problem

min &( A + @( - grad a( An)}"" h] 10
o

*__ - A
(An_ Anfa( grad @ (Kn)) .

: ] - .
Then let us find An+1 by the formula An+1= vkn y where vy is the

gsolution of the problem

min &(vra* ) .
v n (1)

The process termination can be controlled by the substitution of A:An
into (7) and by determination of the system lacks.

Finite formulas can be applied to the one- dimensional problems (10)

and (11). The algorithm is proved in{ 4] . To accelerate its conver-
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gence a combined algorithm can be used, in which formulae (10), (11)
are used with formulae of the conjugate gradients method.
G The numerical method permits the following wmodification.
The problem
Iu=h, uz2o0
(12)
(the canonical form of the linear programming problem) is considered
instegd of (2) and the problem
min ®: @ = (1 + G,))+ || A = T*0 ||
we Xy (13)
A€X, ,A20

is solved instead of (6). The relation of (13) with (12) is analoguos
to that of (6) with (2); now instead of (7) the formula

}\-IJ*(A)
u =

;”:]f;;zb (14)
is used.
The algorithm of consecutive minimizationover w and A can be uged for
the solution of problem (13). Besides it is essential that there are
no restrictions on @ in (13), and the minimization over A is pos-
sible by finite formulae.
7 The numerical method has been used for the solution of & minimum
time problem formulated for the Leontieff type dynamic imput-output
model (type (1) problem). The relations of this problem {4 ] are shown
below:

av sy = ult)

dt (15)

u(t) 2 0, MHult) < 7) - vO(1),

V(o) =V vmzv o,

i

O,

where matrix M and vectors VO, VO, v are given. A series of problems
of feasible control search with the fixed value of T was solved with
different values of T for a minimum time problem(minu T) . The combi-
ned algorithm based on formulae (10),(11) and formulae of the conjugate
gradients method was used there. The type (15) problem for a twenty-
-nine industry model (vectorV has 29 components) was solved in less
than ten minutes on a third-generation computer (the program was
written in ALGOL).
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8. As follows from Section 3 the proposed method can be interpreted
as a feasible directions method in which the direction is determined
only once. On the other hand, this method in a way similar to methods
of penalty functions is reduced to the problem of minimization of a
guadratic functional. The basic difference of these methods is in the
dependence of min ® on system parameters: in the proposed method

min ¥ has a jump on the boundary of the region of parameters in which
the system has solutions, provided Hul doesn't grow to infinity
in this region; in analogous case for methods with quadratic function
of penalty the corresponding functional is continuous on the same boun-
dary . This jump can be used effectively for solving minimum time prob-
lem: in this case min T mnust be treated as a limit point of set of
values of T , for wﬁich the system has a feasible solution.

References

-

N.N,Erasovskii. The control theory of motion. (Russian).lzd.

"Nauka', 1968.

2 M.V.Meerov, B.L.Litvak., Optimization of multi-connected control
systems (Kussian). Izd. "Nauka", 1972.

3 N.V.Gabashvili, N.N.Lominadzé, L L.Chkhaidzé. An approximate
solution of certain optimal control and discrete programming
problems (Russian), ;Tekhnicheskaya Kibernetika, N6, 1972 .

4 V.I.Charny, V.A. Bolkov. Numerical solution of linear dynamic
problems in economic¢ planning (Russian).Preprint, Izd.IAT, 1975.

5 G.Hadley. Nonlinear and Dypnamic Programming. Addlson-Webley

Pub. Co. Inc., Reading, Massachusetts, 1964.

4,V,Fiacco, G.P.Mc Cormick. Nonlinear Programming: Segquential

Uncongtrained Minimization Techniques. New York-~London, 1968.



