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1. INTRODUCTIONAND MOTIVATION 

As decision theorists have succeeded in extending their analyses into new 

domains, and have aspired to new levels of both realism and rigor, they have 

attempted to apply the rationality postulate to more and more complicated 

decision problems. In particular, decision theorists have become more concerned 

with the complexities associated with time~ uncertainty, and interpersonal con- 

flict and cooperation~ and advances in mathematical theories of optimization, 

statistical decision-making, and games have provided new concepts and tools for 

the study of rational behavior in the face of such complexities. 

Nevertheless, the very success and expansion of these theories have brought 

into sharper focus a deep problem for the widespread application of the rational- 

ity postulate in decision theory. It is no~ clear that specialists are far from 

finding "optimal solutions" to such restricted problems as (1) the management of 

a network of warehouses under general conditions of uncertain d~mand, (2) winning 

a game of chess, or (3) administering a department of mathematics. It is 

probably not good positive theory to take very seriously an assumption that 

anyone behaves according to a sequential strategy that maximizes an expected 

lifetime (or infinite horizon) utility, nor is it good advice to a manager to 

recommend adoption of the solution of an optimization problem that there is no 

prospect of solving in the next hundred years. 

In other words, decision theory is facing more and more clearly the problem 

1This paper is based on research supported by the National Science Foundation, 
USA. 
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of the limits of rationality. I am not speaking here simply of what is often 

descrfbed as the cost of information, but rather of the limited capacities of 

humans (and machines) for ~magination an~ computation. These limits create theo- 

retical problems on at least two levels. First, there is the profound logical or 

philosophical problem of defining what one means by "rationality" in the presence 

2 
of such limits; I shall not discuss this problem here. Second, there is the 

problem of describing, in terms amenable to theoretical analysis, the different 

ways humans do behave in complex decision-making situations, and of deducing the 

consequences of different modes of behavior. 

If we are not to discard entirely the rationality postulate in economic 

theory, then we must elaborate more sophisticated and empirically relevant con- 

cepts of rational behavior, which nevertheless retain the important insights 

provided bythe notion of "economic man." Simon has used the term bounded 

rationality to describe such behavior. 3 I shall not attempt here to give a 

precise definition of bounded rationality. However, tkree aspects of bounded 

rationality do seem important for decision theory: (1) existence of goals, 

(2) search for improvement, and (3) long-run success. 

It is no doubt useful to explain much of economic behavior in terms of 

"goals ~' or "motives," and normative economics would appear to be meaningless 

without reference to goals. On the other hand, an individual economic agent may 

have "conflicting" goals, and it may be bad psychology in many instances to 

assume that these conflicts are resolved in terms of a single transitive pref- 

erence ordering. Such conflicts may be "resolved" in a dynamic way by various 

mechanisms for switching attention and effort, with results that do not appear to 

be transitive. (There are, perhaps, useful analogies between individuals with 

conflicting goals and groups of individuals with conflicting interests.) Also, 

2See, for example, Savage, 1954, pp. 8-17, 59, 83, and Marschak and Radner, 
1972, pp. 314-317. 

3Simon's description is somewhat more general. "Theories that incorporate 
constraints on the information-processing capacities of the actor may be called 
theories of bounded ratipnality." (See H. A. Simon, Ch. 8 of McGuire and Radner, 
1972; see, also, Simon, 1959.) 
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the set of goals may be endogenous, so that, through time, some goals may be 

dropped and others added to the list. 

Even if the theorist draws back from assuming that economic agents behave 

according to optimal lifetime strategies, it is no doubt useful to postulate that 

they search for improvements, at least from time to time, and that they take 

advantage of perceived improvements. How, and under what circumstances, agents 

search for improvements, and how these improvements are perceived, is, of course, 

an important subject of study. If repeated improvements can be made in the solu- 

tion of the same problem, then we have a situation of "expanding rationality." 

On the other hand, an environment that changes at unpredictable times and in 

unpredictable directions may make past improvements obsolete, so that the indi- 

vidual is engaged in a race between improvement and obsolescence. 

A strategy of search may itself be the object of an improvement effort (as 

in the planning of research and development), but this leads to a "regression" in 

the model of decision-making; one eventually reaches a level of behavior at which 

it is no longer fruitful to assume that the search for improvement is itself 

being conducted "optimally." 

The notion of "adjustment," as it has commonly been used in economic theory, 

is in the spirit of bounded rationality in the following sense. At a given date 

the economic agent adopts a particular action (or strategy) that is optimal with 

respect to the agent's formulation of the decision problem and the agent's 

"expectations°" At the next date, the agent receives new information, which 

causes him to revise his expectations in a ray that was not anticipated at the 

previous date, or even causes him to revise his formulation of the decision 

problem. This revision of expectations or of problem formulation is to be dis- 

tinguished from the behavior of a Bayesian statistician with an optimal sequen- 

tial decision rule, who periodically revises his a posteriori probability 

distribution on the states of the environment in response to new information, 

according to a well-defined and completely anticipated (optimal) transformation. 

In a similar spirit, a realistic treatment of the search for improvement in 
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a theory of bounded rationality would not follow the present lines of development 

of the theory of optimal search. 4 Optimal search theory began with a few inter- 

esting theorems sho~ingthat for some simple search problems the optimal policies 

could be described in terms of "aspiration levels" and "satisficing." To take a 

well-kno~m example, suppose that one is searching for larger values in a sequence 

of independent and identically distributed random variables (with known probabil- 

ity distribution), but there is a constant cost per observation. If one's 

objective is to maximize the expected value of the difference between the largest 

value observed and the total cost of observation, then the optimal sequential 

stopping rule is characterized by an "aspiration level," i.e., there exists a 

number, the aspiration level, such that one stops searching as soon as one 

observes a value that is greater than or equal to the aspiration level. However, 

there are fairly simple (and plausible) examples of search problems in which the 

optimal policy cannot be characterized by au aspiration level, or even by a rule 

that determines the aspiration level at each date as a function of the past 

history of observations. Rather than attempt to characterize optimal search in a 

greater variety of more and more complicated problems, the theorist following the 

approach of bounded rationality would observe that aspiration-level and satisfic- 

ing behavior is common, even in complicated problems, and would endeavor to 

understand the implications of such behavior in a variety of situations. 

In this lecture I shall explore the consequences of satisficing in the con- 

text of a simple model of the allocation of an agent's effort to the search for 

improvement in one or more activities. For any fixed allocation of effort, the 

performance of each activity is assumed to be a random walk, or more generally, a 

semimartingale. The expected rate of change per unit time for each activity 

depends on the effort allocated to it. This expected rate of change is positive 

if all of the agent's effort is allocated to the activity, and negative if none 

is. A "behavior is a rule that determines, at each date, the current allocation 

of effort among the activities as a function of the past history of performance 

4See, for example, MacQueen, IR64, and Rothschild, IR73. 
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up to that date. 

In such a model, performance of the several activities will typically not 

approach a steady state, even in a stochastic sense, except for very special 

values of the parameters. In these notes, I examine "long-run success" (i.e., 

asymptotic performance) with respect to two criteria: (1) the probability of 

survival, ~.e., the probability that performance on one or more activities never 

falls below certain prescribed levels, and (2) the long-run average rate of 

growth per unit time. 

2. SINGLE OBJECTIVE 

2.1. General Formulation of a Sat isficing Process 

I start with a general formulation of a process of intermittent search for 

improvement with respect to a single objective. Consider a basic probability 

space, (X, F, P), where F is a sigma-field of subsets of X, and P is a probabil- 

ity measure on F. Let (Ft), t = 0,1,2,..., be an increasing sequence of sub- 

fields of F; F t is to be interpreted as the set of observable events through date 

t. Let {U(t)} be a corresponding sequence of integer-valued random variables on 

X, such that U(t) is Ft-measurable; U(t) will be called the performance at t, 

relative to a given single objective. Finally, let (Tn) , n = 0,1,2,..., be a 

nondecreasing sequence of random times, possibly taking on the value plus infin- 

< if T is finite; for n odd, T is to be interpreted as a ity, such that T n Tn+ 1 n n 

date at which a period of search for improvement begins, and Tn+ 1 as the date at 

which that period ends. (A random time T is an integer-valued random variable, 

possibly equal to plus infinity, such that the event (T = t) is Ft-measurable.) 

Take T o = O. 

An interval (T n g t < Tn+ l) will be called a search period if n is odd and a 

rest period if n is even. To capture the idea of intermittent search for im- 

provement I assume: for T n ~ t < Tn+ 1 , 

E[U(t+l) I Ft] h U(t), if n is odd, 

(2.1) 
E[U(t+l) I F t] S U(t), if n is even. 
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In other words, U(t) is a submartingale during the search periods, and a super- 

martingale during the rest periods. 

To capture the idea of "satisficing," let {S(t)} be a sequence of random 

variables such that S(t) is Ft-measurable; S(t) is to be interpreted as the 

"satisfactory level of performance" at date t. The random times T are deter- 
n 

mined by: for n even, 

Tn+ 1 is the first t > T n such that U(t) < S(t), 

( 2 , 2 )  
Tn+ 2 is the first t > Tn+ I such that U(t) >- S(t); 

this is qualified by the convention that, for any n, if T is infinite, then so 
n 

is T for every m > n. 
m 

In the next sections, more specific assumptions will be made about the 

processes U(t) and S(t). 

2.2. A Favorable S atisficin~..Process 

Let Z(t) be the successive increments of the process U(t); thus Z(t+l) = 

<t < Let ~, ~, and B be given positive numbers. For T n - Tn+ 1 , 

(i) for n even (rest), 

E[Z(t+l) I F t] ~ -~ , 

s(t)  = u(m n ) -  B + I ~  
(2.3) 

(ii) for n odd (search), 

E[Z(t+l) [ F t ]  ~ ~ , 

S ( t )  = U(Tn_ l )  . 

Thus, if a search period ends with U(Tn) = u, then the next search period begins 

as soon as U(t) reaches or falls below (u - B), and ends thereafter as soon as 

U(t) reaches or exceeds u again. During such a search period, u may be called 

the "aspiration level." For technical reasons, assume further that there is a 

number b such that 

(2.3; iii) I Z ( t )  I ~ b, f o r  a l l  t .  

u(t+m) - o ( t ) .  

a s  s 'dme : 
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Using an inequality of Freedman, 1973, one can prove: 

Proposition I. The random times T n have finite expectations; indeed, there are 

numbers gO and BI such that, for all n, 

(2.4) E[Tn+ 1 - T n I FTn] 

~0 ' if n is even, 

~i ' if n is odd. 

For any nonnegative integer k, let V k = U(T2k). The V k are the performance 

levels at which successive search periods end, and each V k is the aspiration 

level for the next succeeding search period. It is clear that the V k form a non- 

decreasing sequence. If, during search, performance can (with positive probabil- 

ity) increase by more than one unit at a time, then V k will actually increase 

from time to time. I shall say that the process is strictly favorable if there 

is a (strictly) positive number o such that, for every k, 

(2.5) E[Vk+ 1 F2k] -> V k+~ • 

Again using Freedman, 1973, one can prove: 

Proposition 2. If the process is strictly favorable, then 

V k 
lim inf ~-- > O , almost surely. 

k-,oo 

2.3. Random-Walk Search and Rest 

In the model of Section 2.2, assume further that, during rest the increments 

Z(t+l) are independent and identically distributed, with mean -~ , and during 

search they are also independent and identically distributed, with mean n • In 

other words, during rest the performance process is a random walk with negative 

drift, and during search it is a random walk with positive drift. To minimize 

technical complications, assume further that these random walks are integer- 

valued and aperiodic. 

Let a(t) = i during search, and 0 during rest. The process 



259 

{a(t-1), U(t), S(t)} is a Markov chain with countably many states and a single 

class. Let D(t) = U(t) - S(t). The process (a(t-1), D(t)} is also Markovian, 

with a single class. 

Proposition ~. The process {a(t-1), D(t)} is positive recurrent. Let ~ denote 

the long-run frequency with which a(t) = l; and let ~ = aO - (1-a)~ ; then, 

almost surely, 

(2.6) lira u(t) = ~ . 
t 

t-~ 

If ~ > 0, then the process is strictly favorable, in the sense of Proposi- 

tion 2. In the present case, the sequence (Vk) is a random walk. However, th___~e 

sequence U(t) is not a random walk~ nor even a submartingale. Nevertheless, one 

can prove for {U(t)} the following result. 

Proposition 4. If the process is strictly favorable (~ > 0), then there exist 

positive numbers H and K such that, if U(0) ~ u > B + b, then 

Prob (U(t) ~ 0 for some tIF O} ~ He -Ku . 

If ~ = 0, then the above probability is i. 

Let us say that the process survives if the performance U(t) remains posi- 

tive for all t. Taken together, Propositions 3 and 4 assert that, for a strictly 

favorable process, with random-walk rest and search, in the long-run performance 

increases at a positive average rate per unit time, and the probability of 

survival approaches unity exponentially as a function of the initial performance 

level, U(0). This implies further that, if the process has "survived" for a long 

time, then the performance level is probably very high, and therefore the condi- 

tional probability of subsequent survival is close to unity. If the process is 

not strictly favorable, then the probability of survival is zero. 

3. "PUTTING OUT FIRES" 

A manager usually supervises more than one activity. For any given level of 

search effort per unit time, the opportunity cost of searching for improvement in 

one activity is the neglect of others. Consider a stochastic process {U(t),Ft} , 
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as in the first paragraph of Section 2.1, but let U(t) be a vector with coordin- 

ates Ui(t) , i = l, .... I, where Ui(t) is a measure of performance of activity i at 

date t. An allocation behavior is a sequence, ~a(t)), where a(t) is an 

Ft-measurable random vector with coordinates a.(t),l i = 1,...,I, such that, for 

any date t, exactly one coordinate of a(t) is l, and the other coordinates are 0. 

If ai(t) = l, this is interpreted as a search for improvement in activity i at 

date t. 

Concerning the process U(t), I shall make assumptions analogous to those of 

Section 2.3. As before, let 

(3.1) Z(t + i) = U(t + i) - U(t). 

For the conditional distribution of Z(t + 1), given Ft, assume: 

(B.2a) The distribution of Z(t + l) depends only on a(t). 

(3.2b) EZi(t + !) = ai(t)n i - I1 - ai(t)]~ i , where ~i and H i are 

given positive parameters. 

(3.2c) Var Zi(t + l) = si(ai[t]),~here si(0) and si(1) are 

given positive parameters. 

(3.2d) The coordinates of Z(t + l) are mutually independent. 

To minimize technical complications, I also assume: 

(3.2e) The coordinates of Z(t + l) are integer-valued, uniformly 

bounded by b, and aperiodic. 5 

A common managerial behavior is to pay attention only to those activities 

that are giving the most trouble; this is colloquially called "putting out 

fires." Formally, let 

(3.3) M(t) = min U.(t) , 
i i 

and define putting out fires by 

5A random variable is aperiodic if 1 is the greatest common divisor of its 
support. 
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(a) if Ui(t) > M(t), then ai(t) = O; 

(b) if Ui(t) = M(t) and ai(t - l) = l, then ai(t) = l; 
(3.~) 

(c) if neither (a) nor (b) holds, then ai(t) = i for 

i = the smallest j such that U.(t) = M(t). 
J 

To compare putting out fires with the satisficing model of Section 2, 

roughly speaking, the satisfactory level of performance of any activity is here 

defined to be equal to M(t) + 1. 

To describe the properties of the performance process under putting out 

fires, I first define 

(3.~) : I 1 -  . 

(3.6) [i = n i + ~i i = 1 ..... I. 

If the limit, as t increases, of Ui(t)/t exists, I shall call this limit the rate 

of ~rowth of activity i. If M(t) > 0 for all t, ! shall say that the performance 

process survives. Define W(t). = U(t) - M(t). 

Proposition 3.__1. Under putting-out-fires behavior, if ~ > O, then the Markov 

chain {a(t - i), W(t)} is ergodic, and for each activity i, 

(a) the long-run frequency with which ai(t) = I is almost surely 

equal to - • 
a i , 

(b) the rate of growth of Ui(t) is almost surely ~ (the same for all 

activities); 

furthermore, if M(O) > O; and if, for every i, Prob{Zi(t + i) ~ 01ai(t) = 0} > o, 

then 

(c) the probability of survival is positive. 

In the context of the model defined by (3.2a)-(3.2e) one could explore other 

allocation behaviors, but the limitation of space does not permit that here. I 

mention, however, that a necessary and sufficient condition that there exist any 
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allocation behavior with positive probability of survival is ~ > 0. In other 

words, survival is possible with positive prqbability if and only if it iS 

possible with putting out fires. 

In the special case of two activities (I = 2) the conclusions (a) and (b) of 

Proposition 3.1 are true also if ~ ~ 0. 

For proofs of the facts mentioned in this section and for an analysis of 

other allocation behaviors see Radner and Rothschild (1974). 

4. BIBLIOGRAPHIC NOTE 

The material of this lecture is adapted from Radner, 1973 and 1974, and 

Radner and Rothschild, 1974. Satisficing plays an important role in the models 

of stochastic equilibrium and evolution in Winter, 1971, Nelson and Winter, 1972, 

and Nelson, Winter and Sehuette, 1973. Stochastic search for improvement is a 

key element of a decentralized resource allocation process that convergesto 

Pareto optimal allocations in the presence of nonconvexities, as described in 

Hurwicz, Radner, and Reiter, 1973. Related stochastic adjustment processes for 

reaching the core of a game are described in Green, 1970, and in Neuefeind, 1971. 
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