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The methods of investigating the optimal stabilization prob-
lems occupied an important place in the optimal control theory. The
fundamentals of the methods for the finite-dimensional systems have
been described by W.N.Krasovsky in the suppiement to the monograph
[1]. Some particular results for the distributed parameter systems
have been obbtained in [2,3]. They can be generalized and concretized
with the help of Bellman& equations with the functional derivatives
and on the basis of the functiomal derivatives the second Ljapunovs
method can be employed.

In this article the method is used for controlling heabt process,
Other problems of controlling distributed parameter systems can be
considered in the sanme way.

1. THE PROBLEM STATEMENT. Let the controlled process be des-—
cribed by the boundary-value problem
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where a{f , f , C , Y and ¥ are the given functions,
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Q)  is a limited area in F-  with partly-smooth boundary S  , /7
is an external normal to S , and Y is a conormal. and,ﬂ

are the scalar control parameters, which can take any real values.
The functions & ((,%) and (% ®) will be considered as admissible
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controls measured and bounded in respect to f if they satisfy the
conditions
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where 7 and § are given functions, such that T, () ana L&) are
locally integrable in respect to{ for the adm:LSSJ.ble controls.

According to[ﬁ} the only function L/(z‘x)éW(G)) ® = SIx[, 'T']corres-
ponds to every pair of the admissible controls L and /5 with
some restrictions for the data of the problem. This function /#X) is
called a generalized solution and it meets béth the integral identi-
ty
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for almost all t  and ZZ from [£, T] , and t:he condition
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Here Q ﬂx 2‘ ] and S is the boundary of this cylinder; D is
any function from Wz ( l{)) H is an arbitary number,but always
fixed /¢, T/ .

Let the state of the object be measurable at any point

pP€ € . The control functionse/{rlL(A XU ET) ana B (4x) < Bltx ux)

are formed on the basis of #&he information obtained, It is priori
clear that for ensuring the optimal controls it is necessary %o take
& and B as the functionals determined on the//€ Ziy . In this
case the arguments # and X 1in the functions o and A are
put into the square brackets.

Then let the functions /Vl(fx),mzj (£,%) sna N(¢%) be such that
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on the solubion of the problems (1)-(3), corresponding to any pair
of the admissible controls, and the function J be locally inbeg-
rable.

It is necessary to find such values  </4%]eandpfix], that the

functional ®o
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t,
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have the least possible value.
2. BELIMAN& EQUATION. The designation

S[Eult,x) = T;ﬁ Ytu(t )]

is introduced in accordance with the general Bellmané method. Letd
suppose that the function $(#,U) is differentiable with respect to %
and as a functional of {{ it is differentiable by Freshe on/,({2) .
Then

S[t+atu(t+atz)] = S[H (€ ax)]+ 255[5&145 +DP(t au)+0(at all), (6)

where Ct’ is the linear functional with respect to 44/ in Z:a ’
calculated at the point ({u) , 0(4¢4U) is small by a and
#aUll is a magnitude of the order which is higher than the first one.
In the case whandlﬂfbg(lz) almost to all 7 there is the function
bt x)e éz(-Q)and

t+nt
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S0 according to the Bellman$ optimal principle we have
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we suppose that U(%, x)ﬁ\"f(ﬁ), and the integral in (8) can be sub-
stituted by its  value from the formula (4) wheret %, andf:é+g?

From (8) at 4%t—>0 we obtain the Bellmand equation in the func-
tional derivatives
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This equabtion makes it possible to show the different procedure
of the approximate solution of the problem. The solution of the prob-
len for the linear objects with guadrabtic criterion of the optima-
1ity has been done by the author together with G.Bachoi and M.Rakhi-
mov. The authors have received boundary value problems, which are
the analoguesof the Rikkartid equation. The methods of the approxi-
mate solution are given too.
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3. TEE APPLICATION OF THE SECOND LIAPUNOVE METHOD. Letf((x0.o)0
‘P(f,&'lo,o) 20 and, hence, /=0 be the solution of the boundary-value
problem {(1)-(3) for &4 :*p: 0 . This so:&ution will be called stable
according to Ljapunov in the metric W, (@) for fixed admissible cont-
rols el (£ x) andﬁ(x‘,x) , if there is such 6>0 for any smallg o0 ,
that from the inequality /4 (%,, 1')//&245\ for ¢ »%, will follow, that
WU (X, <E fort 7¢, ,where(%X) is the solution of the problem
(1)~(3), defined from the integral identity (4) and condition (5).
The solution is called asymptotically stable,if, besides,//l[(f,-z)//%’“’a
for ¢ =0 . Therefore in accordance with the theory of stability the
considered problem should be formulated as follows:

Both the admissible controls « 7% ¥]end fl£2] and the solution
U(X) of the problem (1)-(3), corresponding to them, must be de-
termined in such a way, that the trivial solution &:0 would be
asymptotically stable for oL=«L° and p=p° 4 and the functional
would have the least possible value.

The functional V(?,‘,x), determined on the elementsilel,(()), in
which t is a numerical parameter, will be called the Ljapunovd
functional (4), if it is differentiable in + and if we can show
such a value C >0 , that/U{ull<C; for all ¢z ¢, andflll;, £ C, .

Then leté determine the concept of full derivative with respect
to t , made according to the boundary-value problem (1)-(3) by the
rule

AV, NLE+stu(t+at,x]-NIt,ult.x)]
- = /77
dt st>0 a4t

where L (£,X) meets the identity (4) and condition (5).
Taking into congideration the properties of V we have:
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where P is uniquely determined by the formula (7). As {{ meets
the identity (4), then, according bHo the identity (4) and (9), we Ob-
tain
”
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2 71 A teot

Q; 4 4 +j('l)‘)t U('t**&‘t,x}dﬂ_

Taking into account, thab £
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Qta 2
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and proceeding from the last three formulas we obtain the formula of
the full derivative
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Then we de*cermlne the Bellman$ functional
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where J is the functional introduced into the determination of the
criterion of optimality, and ¥V < sz (Q).

We shall mark & ({,:x) as the solution of the boundary-value prob-
lems (1)-(3}, according to Krasovsky/[ 1]. This solubion corresponds
to the controlsfZa] , g[f x] .

THEOREM. Leb the Positive definite Ljapunové functional V/°
for the boundary-value problems (1)-(2) be found in such a Danner
that the function V(l(lf) uniquely determined by its Freshed differen—
tial, refers to W, (C?.r) Qr =SUx[t, T] ,where |  is a positive
arbitrary number, which is greater, than t .

Let such functionals o(D[{,I,ujélé(gland/s'[szgd]flz/(%)be for any
UeW (@), that

’i)f)(V u;’[{xu]}jﬂ[{xu]) 4 1orU€W and almost for allfelt ’7']

Bt uUnx), )20  for any L)€l (f) p(XVel, (S),
thend[Lxu]  and pT4x U] solve the problem of the optimum stability.
In this case

f{fy(oi[z‘x])*y(ﬂ[fx])*y(a[z"x])}df mz‘n}?%@[le‘})*%(ﬁ[@x]}i-
+ iygu[fx])}o/% Vot Ut ).

The proof of this theorem can easily be obtained by the method,
accounsed in [1], p. D. 486-487, based on the properties of the func-
tional V° and the theorem of the asymptotic stability [ 4].

REFERENCE. The formula (11) of the full derivative of the func—
tional V gives concrete recommendation for investigating the prob=-
lems of the stability of distributed parameter systeme with the help
of the second Ljapunové method. From that, in particylar , sufficient
conditions can be easily obtained for the stability of the first ap-
proximation systems.
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