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ABSTRACT 

The intent of the current paper is to show how a large problem 

like compiler development can be divided in a way which 

proTides a structure for arguments of correctness. Although 

• echanically checked proofs are not envisaged, the use of 

formal notation is recommended so that the basis for 

correctness arguments exists. 

The paper reviews three topics: the first two are relevant 

particularly to the development of compilers: the third is more 

general. The subject of the first section is the style of 

language definition to he used as a basis for development. 

Beginning with a small language, possible ways of describing 

added features are discussed. 

The selection criterion for definitio, techniques is their 

usability in developing a specification of the compiling 

process: it is this development which is the subject of the 

second section. 

The third section briefly reviews the process of "~ormal 

Development" which has been described more fully elsewhere. 

Q IBH ~sterreich 1974 
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This paper provides an overview of a number of pieces of work 

related to ~rogram correctness. Since the possibility of having 

completely mecha,ically checked proofs for large programs 

appears to be some way off, the approach taken is one of 

documenting a "justification" for human readers. The paper will 

a%tempt to show how a large problem can be decomposed into 

small enough steps that such justifications ca~ be convincing. 

The particular problem to be considered is that of developing a 

compiler, of course, a compiler is a very special program, hut 

to oversimplify for a moment one can consider that it is 

specia] only in requiring ~wo extra stages of development to 

precede that which is a~plicable to any program. 

Three major parts of %he compiler development problem are 

discussed i~ sections I tc 3 of this paper. The first section 

discusses the definition of the language to be compiled. This 

definition of the semantics of the source language provides the 

overall correctness criteria for the compiler: whatever results 

can he deduced about a ~rogram iritten in the source language 

must also be true when ru~ning the object code produced by 

compiling that program. The discussion identifies important 

properties of a language definition to be used in the next 

stage. 

Given a particula~ object machine, the next step is to develop 

a mappi,g from the source to the object language. How this is 

done is the subject of the second section of the paper. 

Examples are given of mapping the abstract state objects of the 

definition onto the store of a target machine (cf. rots. [9, 

15]). 

Any top-down development process must begin with a, overall 

correctness criterion: that is, a specification of an 

input/output relation~ The purpose of section 2 was to show how 

exactly this can be Frovided for the compiling problem. The 

process of developing such a specification by a step-wise 
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process to a running program is discussed in section 3. It is 

argued that the use of data abstraction and appropriate choices 

of implicitly defined functions can provide the structure for 

justifications of large programs. 

Since no specific le,gth limit was given to the author, it must 

be co~fessed that his lack of time is the reason that all three 

sections are not written up fully. The ideas behind section 3 

are well enough dccumented in ether papers that an overview 

should suffice. A!thcugh the general direction to be followed 

in the work covered by section 2 is clear~ the example provided 

is very small. This runs into the usual problem that in such 

cases it is easy to "see" the correctness, whereas if is 

precisely the inability of our "small head" to contain a large 

proble~ that gives rise to the need for a justification. Only 

section I a~Froaches the level cf completeness the author would 

have liked te attain. 

The process of "Formal Development" outlined in section 3 is 

applicable to any programming ~rcblem. As was observed above, 

it is an oversimplification to think that it is therefore 

sufficient to show how to tackle any other computing task. In 

precise!y the way that for a compiler it was a significant 

problem, generating the input/output relation for other tasks 

will he difficult. It is abnormal for initial specifications to 

be couched in terms of such relations, and, other than arguing 

that its production should be the first step, the current paper 

offers nc help as to how it ca, be obtained. 

The emphasis throughout is on the method of decomposing a large 

problem into small enough steps te provide a Justification. 

Certain common requirements result from this, one of which is 

the necessity to use a formal notation: only then will it be 

possible to document justifications. It is not, however, the 

i,tenticn tc argue for one particular ~tation. 

A further technique, which becomes almost a necessity if proofs 

are to be of an acceptable length, is the use of abstraction. 

Dijkstra has used the terms "Cperational Abstraction" to cower 

implicitly defined operations and "Bepresentational 
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Abstractie," to refer to the postponement of unnecessary data 

properties. Beth of these technigues will be used, but again no 

particular notation is recommended. 

Tt is the intention in the current paper to concentrate on 

techniques rather than deep results. Transcending the choice of 

a particular mathematical discipline to underly the work are 

%he practical steps which must appear in any justification: the 

attempt is t o  throw some light on these. 

I. LANGUAG~ DEFINITION STYLE 

This part of the pape~ suggests certain properties of a 

language definition which will facilitate its subsequent use in 

development of a translator design. Notice that a definition 

constructea along the proposed lines will not necessarily suit 

other purposes like proving programs correct in the defined 

language~ 

Although easy to express (see summary) it is not always easy, 

given a language feature wanting definition, to find a 

formulation with the required properties. For this reason the 

plan adopted below is %c consider separate language features 

and possible formulations for their definitions. ~n attempt has 

been made tc deliberately separate the language concepts. In 

this way it is hoped that the reader can see the requirement 

for the different formulations in isolation, whereas in a 

complete definition of a language it is often difficult to see 

the source of the complexity. If the current approach were 

executed on all of the features cf the respectiwe languages one 

would then be able to explain ref. [I] and ref. [4] as the 

"cross products" of their respective formulations. For, 

although the notation of the latter is a step forward, both 

definitions possess the properties discQssed. 

Rather than discussing notation, the emphasis below is on 

finding the appropriate model for a language feature. The 
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distinction between and similarities of the so-callsd 

"operational" and "mathematical" approaches are considered bat 

it is argued that there are criteria for choosing ~he model 

which transcend the distinction. 

Most of the so!uticns discussed are behind a number of current 

language definitions. Only the solution of the S2~ problem is 

novel. 

Tn order to provide an overall context for the decisions made 

below it is worth pointing out the origin of the difficulties 

which led to a reconsideration of some aspects of the "VDL" 

(Vienna Definitio~ Language) notation. During !969/70 the 

author had the pleasure cf co-operating with P. Lucas and his 

co~leagues o, attempts to document correctness arguments for 

compiling algorithms based on the then current formal 

definition of PL/I (ref. [24]). ~Ithough the feasibility was 

shown in rots. [14, 7, 9], a number of difficulties were 

encountered. With the exception of the use of the control 

mechanis~ (see 1.q belo,) these were certainly not caused by 

any shortcomings in the formal notation itself. The common 

origin of most problems was, in fact, the tendency to be "over 

specific" in its use. By this is meant that the abstract 

interpreter used to define the language sometimes indicated 

results ,e% require~ by the language. Although it was 

certainly possible to deduce that such results had no effect on 

the final outcome, this proof fzequently went far beyond the 

part of the language under consideration. 

A simple example was the use in some VDL models of a never 

recurring "unique name generator" to obtain new locations when 

required. This certainly gave a sufficient model which gave the 

required outcome. However, if one wanted to prove correct a 

stack ilplementation, in which the locations of previously 

closed blocks could be re-used, one was more interested in the 

peces_s_a_r x conditions of uniqueness. Now it was, of course, 

possible to prove that, since mew locations were initialised to 

an undefined state, it is permissible to re-use discarded 

~ccations. ~owever, one was paying with a very expensive proof 

the sawing of relatively few lines of definition. 
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The basic maxim to be followed then will be to avoid giving 

properties to the definitio~ which are not required by the 

language. 

Before coming to the language features proper, a brief section 

on notation is offered. 

1.1 Notation 

The formulae which follow should offer no difficulty as regards 

their use cf notation for set and logical operations. Use is 

also made of simple programming constructs like "iZ ~h~ ~!~" 

and conditional statements. This section confines itself to 

sketchi,g ~eanings for the non-standard items. ~or a more 

complete discussion see ~art 1 of ref. [~]. 

The concept of Abstract Syntaz, introduced in ref. [ 17], was 

used to advantage in the VDL definitions. Not only is its use 

still considered mandatory to divorce a semantic definition of 

a language from the richness of its syntactic alternatives; but 

a!so the subsequent parts of this paper will show its 

importance i n  translator deve!epment. 

The abstract syntax notatio~ now used has been changed somewhat 

from ref. [24] in crdeI tc shorten and clarify descriptions. 

Given a grammar it can be read as set equations as follows - 

Elementary Objects as names of unit sets - 

~_~_c_ - {LBc} 

Non-terminals as names of the sets defined in the respective 

rule. 

Rules for defining alternatives of non-terminals - 

W = XIZ ~ ~= X u 2 
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~ules for introducing constructors - 

X :: YZ - X = {mk-X(y,z) [ y~Y ^ z~Z} 

Furthermore, selectors can be introduced - 

X :: s-nl:Y s-n2:Z s-nl (mk-X (y,z)) = y 

s-n2(mk-X(y,z)) = z 

The use of a nonterwinal name which ends in "*" ("-set") 

denotes a list (set) of objects of the class defined by the 

name without its suffix. 

To test for membership of a set - 

is-W (o) o~ is-X(o) 

Other than deccmpositio~ by selection it is possible to 

decompose by using the constructor on the left of a definition- 

le_f mk-X(y,z) = x -_le__f y = s-n1(x) 

let z = s-n2(x) 

Use is also made of this binding of names in a cases construct- 

cases w: 

mk-X(y,z) -> f(y,z) - 

mk... 

is-X{w) -> (!e_~t mk-X(y,z) = w: 

f (y,z)) 

is... 

At the points where it is necessary to discuss more carefully 

the manipulation of functions, use is made of the Lamhda 

notation- 

f(x) = ...x... - f = Xx .... x... 

~owever, these uses will often be "sugared" in Landin's style 

(see ref. [13]) 

let x = e: ) 

) 

g(x) ) 

- ( x x .  g ( x ) )  (e) 
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Raps are used where %he graph of a function can be explicitly 

co,structed - 

[dl -> r~ J 

[d-> r ] p(d,r)] 

+ 

explicit definition 

implicit definition 

joining 

are the co~nterrarts of the set concepts. 

To come now to the problem of Semantic le_~n_it_~o_~n ° The 

definitions given beloN will be written in terms of functions 

from stated domains to ranges. In using the term f_u_n_ct_~onal 

se@~ntics it is intended to emphasise the distinction from the 

VDL style models, ref. [16], in which an ezplicit control 

component exists in the interpreting machine (this point is 

discussed more full~ below in connection with the set_e 

construct). The re la ticn between functional semantics and 

mathematical sema,tics ref. [22] is of more interest and will 

be reviewed in ccDnection with several of the language features 

considered. To begin with i% is worth showing the definition of 

a language which is itself functional and thus affords an easy 

path tc functional semantics. 

1.2 

Consider the language given by the following abstract syntax 

rules - 

BI expr = inf-expr I var-ref ~ const 

B2 inf-expr :: ex~r o F expr 

B3 var-ref :: id 

B~ const =: I~TG 
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The class op is not further specified other than by the 

existence of a functiom - 

B5 apply-op : INTG op INTG -> INTG 

Now, for a given set of denotations (the term "environment" is 

avoided because it will be used below) for the free 

identifiers- 

B6 DEN : id-> INIG 

the denotation of an expression, which is also an integer, is 

given hy - 

B7 eval-expr(e, den) = 

cases e: 

mk-inf-expr (el,op,e2) -> 

(l_et v1=eval-expr(el,den) ; 

l_e_% v2=eval-expr (e2,den) ; 

r~su_!it_ is {apply-op(~1,op,v2))) 

mk-var-ref(id) -> den(id) 

mk-co~st(n) -> n 

type: expr DEN -> INTG 

This definition has the property that the denotation of a 

composite expression depends only on (and can therefore be 

constructed from) the denotations of its component expressions. 

The introduction of the concept of a dynamic assignment to a 

variable is perhaps the most distinctive feature of a 

programming ].anguage. The fact that, in contrast to 

mathematics, are is forced to consider the value of a variable 

at a given point in time Foses problems for the definition of 

semantics. 
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&~ais~a!_~a~£~ 

Consider the language whose programs consist of a sequence of 

assignment statements (as-st) which can be described - 

CI as-st* 

C2 as-st :: s-lhs:id s-~hs:expr 

The effect of such a sequence of statements will be to 

transfer~ so~e initial set of denotations for the variables, 

step by step, into their final denotations. Thus it is no 

longer sufficient to consider the DEN as an argument to the 

interpretation: the DEN reguired as the argument to the second 

(and subsequent) calls of the interpretation may have been 

changed by the interpretation of the first assignment. The 

function given below appears to ignore this proh!em by simply 

omitting a]l mention of the DEN. This is done because the 

intention is to offer a number of different explanations. It 

should be possible to see the intent of what is~ written if one 

accepts that ~ssign -changes" the DEN for the given id, and 

assumes eval-expr uses the current DEN - 

C3 int-st-l(st-!,!) 

if i ~ lst-I 

!_he_n 

(let mk-as-st(lhs,rhs) = st-l[i ]; 

let v:eval-expr (rhs) : 

assign(lhs,w) : 

int-st-I (st-l,i# I)) 

i 

type: as-st ~- IN~g => 

It is possible to consider three ways of reading such 

formulae. The first possibility is to read them as programs. 
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As such, each functicn would ccrrespond to a subrouti,e which 

refers to one non-local variable (i.e. the DEN). It is, of 

course, the same non-local variable referenced by the modified 

eval-expr and all calls of int-st-l. The sub-program assign is 

trivially defined tc modify this variable. The separator "~" 

has its usual ordering implications. Subroutine type clauses 

are written with "=>", and their calls are marked with a ":", 

in both cases to distinguish them from pure functions. 

c~iven this view and using the notation of ref. [ 12], the types 

could be given in full by - 

int-st-I :: DEN:as-st~ INTG -> 

eval-expr :: DEN:expr -> INTG 

assign :: DEN:id INTG -> 

With this simple, constructive, view it is already possible to 

discuss one of the desirable properties of a language 

definition. McCarthy has used the term "Small State" to 

describe a defi,itie, in which only those things which change 

very dynamica~!y are put into the state used by the defining 

functions. This is in contrast to a "Grand State" style in 

which all variables, with the possible exception of program 

te~t, are put into the state. Although in %his trivial language 

there is no incentive to do so, it would have been possible to 

make the statement counter part of the state and show 

sequencing by a side effect on this new non-local variable. The 

disadvantage of taking this approach is that it would not be 

clear, without further inspection, that the statement counter 

could net be affected h~, for erample, eval-expr. 

Returning now t c the discussion of alternative views of the 

function int-st-l. The second possible interpretation is to 

regard all functions as taking an extra argument and yielding 

an extra result: in each case a DEN. This, which is the view of 

ref. [I ], would give- 

int-st-l: as-st • INTG DEN -> DEN 

eval-expr: expr DEN -> INTG DEN 

assign: id INTG DEN -> DEN 
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(I, fact it is often possible to simplify; in the above 

examplet since it can cause nc changes, eval-expr need not 

return a DEN.) 

But it is ne longer possible to rely on %he programming view of 

":". It is necessary to describe it as a combinator betwee, 

functions. The task of doing this is complicated by the various 

alternative contexts and it is easier to show the result which 

w o u l d  come fros using the combinator - 

int-st-I (st- l,itden) = 

if i -< !st-I 

the__n 

(l_e~ mk-as-st(lhs,rhs) = st-l[i ]; 

let (v,denl) = eval-expr(rhs,den); 

!_et den2 = assign(lhs,v,denl) ; 

result is (int-st-l(st-l,i+1,den2))) 

_e!s~e 

den 

type: as-st* IN~G DEN -> DEN 

Since the "lets" are now on pure functions, they are simply a 

sugared fors cf lambda expressions. 

The third view one could take of the function int-st-i is that 

of ref. [22 ]. The comment was made on the definition of the 

functiona~ language, that the de,oration of its sub-components 

was al! that was necessary to determine the denotation of a 

unit. By regarding the denotation of an assignment statement as 

a function it is again ~ossible to enjoy this property. (That 

this is sc is mcre clearly shown if the abstract syntax of a 

cosposite statement is given recursively.) The resulting types 

would be- 

int-st-l: as-st ~ INTG -> (DEN ~> DE~) 

eval-expr: expr -> (DEN -> INTG BEN) 

assign: id-> (IN~G-> (DEN-> DEN}) 



399 

Again in this view it is necessary to define ";" as a 

combinator. But now the fact that the units to be combined 

(after applying the functions to the static components) are 

basically functions of the type ~EN -> ~E~ means that the very 

pleasing model of functional cemposition is adequate. 

The Oxford group (refs. [22, 23, 19]) have gone rather far in 

designing ccmbinafors which weuld permit formulations like - 

int-st-! (st- l,i) = 

X~en.(!f i <~ !st-I 

_t_he__n 

(lee mk-as-st(!hs,rhs) = st-l[i]; 

int-st-I (st-l,i+ I) o 

CONB (eval-expr (rhs) , 

assign (lhs)) ) 

e_!_se 

I) 

type: as-st ~ INTG -> (DEN -> DEN) 

w here - 

CO~B(vf,uf) = 

kden.(kv,denl.(uf(v) (den1)) (vf(den))) 

(It should be made clear that if this had been written by a 

genuine devotee of mathematical semantics, it would have looked 

very different. It is the current author's view that excessive 

zeal in shortening definitions makes them less rather than more 

readable, of. ref. [19], ref. [1]). 

Since this is a function one can look at its result for a test 

program! Consider - 

p = (X := I; 

y := x * 2) 



400 

Then after reduction- 

i~t-st-I (ptl) = 

(kden.den + [y -> den(x)+2]) o (Xden.den + [x -> I]) 

which is the result expected. (This exercise is somewhat more 

illuminatiDg on larger examples.) 

(Reverting for a moment to the earlier discussion of grand 

versus small state approaches, it is worth noting that it would 

have been possible tc make the (undesirable) step of putting 

the statemept counter in the state and still give a definition 

in terms cf a function to functions from states to states. ~t 

would ~ot, howe~er, have been possible to provide such simple 

combinators. In particular, the static role of the statement 

counter is required to provide the required decomposition of 

the semantics.) 

If the appropriate combinator definitions were written, we have 

bow provided three ways of reading the formula int-st-l. The 

questio~ of which should be used must now be discussed. 

The positicD advanced in the next part of this paper is that 

the interpretive view is useful during the development of the 

translator mapping and it is cn!y then that one need take the 

view of mapping source ~rograms to functions. Observe, however, 

%hat thinkiDg in terms of cembinators ~e~_~d that certain 

problems be resolved moze carefully: this leads to retention of 

also this view of the formulae. Thus the notation will develop 

the style above~ definitions written in this style will be 

~a~ipulated as if they were oFerational; the mathematical view 

say he a~pealed to when decisions are otherwise unclear. 

With the a~ount of notation introduced so far it would be easy 

to define ~'if then else" or any variant of the "fRr". In doing 

this for any reasonably complex language the question arises as 

to how m~ch notation is it reasonable to add to the 

meta-~anguage. Would it, for instance, be acceptable to have a 

while construct? lhe answer must always be sought in the ease 

of reasoning about a construct. Thus in ref. [~] both while 
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and ~9~ constructs have been included, but they are of a much 

more restricted kind than the FOR of PL/I which was being 

defined. 

This topic brings us to the challenge of giving a semantic 

definition of ~o~o. 

1 . q  G o t o  Lan~ua~ 

The long debate on the morality of the Horn construct has not 

yet resulted in its banishment from descriptions of languages 

by standards committees. To be serious, it appears to he 

valuable to have some mechanism for abnormal sequencing 

situations and an ability to provide formal definitions for 

them may be one of the tools for comparison. 

The problem with defining ~9 is that, other than the local 

hop, its ability tc leave or enter phrase structures upsets the 

attempt to state the semantics of a unit solely in terms of the 

semantics of its sub-units. In this section the compound 

statement is chosen as the phrase structure whose semantics 

should be pEovided. Although this is simpler than block exits, 

it has the property that the same phrase structure can be 

terminated and initiated abnormally so that with a shorter 

definition both problems can be discussed. The subject of 

block terminations is discussed in the ne,t section. 

The technigue for modelling ~oto employed in ref. [ 2,] was to 

introduce a control stack component into the state of the 

abstract ~acbine. [In fact the control was more general, but 

this point is discussed below in connection with arbitrary 

evaluation order.) Instead of describing the recta-language 

~irectly as functions, a VDL definition is itself described by 

an interpreting function (called LAMBDA in ref. [24]). A step 

of the interFreting function removes the top instruction from 

the control stack: if this operation is elementary, it is 

obeyed and the next step of operation is performed; in the case 
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of a "macro" operation~ the appropriate operations are put on 

the centre] stack so that the next step will encounter them. 

So far this can be thought of as a way of describing functional 

application. The purpose, hoover, of making the control 

component an explicit part of the state was to make possible 

its explicit ~anipulation. Thus one way to model ~ot_o out of a 

phrase stzucture was to define the "obvious" operations 

structured in line with the phrase structure, but to simply 

delete from the control component any operations which 

corresponded to parts of the program being jumped over. 

The effect of this was that, in general, it was not possible to 

present arguments whose inductive structure followed the phrase 

structure of the program. It was of course possible to present 

proofs, but they had to be by ind~tion over the sequence of 

states generated by LAMBDA. One could argue that this is 

precisely the undesirable effect of the ~t__Qo, but in fact the 

definition had gone too far. It was one of the places where 

the generality, in this case to change the control in any 

instruction, forced one to show that, in precisely the places 

one did not require the power, it was not used. 

In fact the deletion of parts of the control was sometimes only 

used for exits from blocks: the reason that it was not used for 

more local phrase structures was the solution adopted for 

handling abnormal entry into such phrase structures. Hasical!y, 

some definitions adopted a "current statement selector" which 

was simply changed to point tc the next statement. This made 

q_oto into and out of phrase structures very easy to describe 

providing there was no special epilogue action to be performed 

on exit from the phrase structure. (This can, in fact he viewed 

as absorbing part cf the iAMBDA function into the definition). 

However, such definitions tended to cloud the normal action by 

the necessity to describe finding the successor to an embedded 

unit by ~anipulating the Fointer (see, for example, the 

treatment of ~ND in ref. [25]). 

The current author became convinced that setting up the normal 

action and letting a ~oto "take the machine by surprise" was 
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the wrong model. The proposal made was that any unit which 

could result in abnormal termination should return an extra 

"abnormal" result, which was some null value in the normal 

case. Any call of a function which could result in an abnormal 

return must test for this possibility and perform appropriate 

actions. (Together with W. Henhapl, who provided the statement 

selector treatment, this was written up in ref. [6]). 

In order to define Algol 60# in which it is possible to ~Qt__qo 

into both "_if" and compound statements, it was necessary to 

address the other part of the problem. The approach employed in 

ref. [I ] is to provide functions which run through the phrase 

structure without executing but setting up all of the actions 

to fo]]cw. Since these functions prompted the execution as to 

where to begin they became called "cue-functions" (as in acting 

- Dam Stichwort). 

Consider, for example, the following - 

~ot_a l: 

i_f P 

~_h_e_n I: sl 

else s2 : 

s3 

Not oD1y should this, rather odd, transfer of control get to sl 

without evaluating p, it should also set up the events to be 

performed thereafter so thal s2 is skipped and s3 is next 

considered. 

The completely functional definition of Algol given in ref. [ 1] 

became tedious because of the man~ places where the effect of a 

~o~o can cause a cha~ge of events and therefore the abnormal 

return value must be tested. It was, however, clear that the 

most common action was simply to refrain from execQting the 

next operation and pass back the abnormal value to the next 

level. In fact %here are very few places where it is necessary 

to describe any sFecial action. Based on this observation P. 

Lucas proposed that adopting some unit to trap the 
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interpretation where the action was required would leave one 

free %o drop the ,,test and return" case by convention° 

This abbreviation is the one used in ref. [ ~] and below. All 

normal ~eturns are written omitting the (implied) return of a 

• ~! walue for ABN. Non-~i~l values for ABN are returned 

explicitly by the exi~ statement. Normal action on being 

retur,ed a non-hi ! ABN value is to terminate also the calling 

function abnormally with the same value for ABN. An explicit 

action to be performed for a non-hi I ~BN value is defined by 

means of a ~a~ ~i~ unit bracketed together with the statement 

to which it applies. Completion of the trap unit completes the 

containing function. 

The developmert of this idea has been described in terms of an 

i~terpre%er partly because this is how it actually occured and 

partly because it is probably easier to first read the 

following functions in this way. 

(In fact the separation of the. largely similar, functions 

int-ns-I and cue-int-ns-i would probably not be made if one 

were taking the purely interpretive view: it is only for the 

more mathematical view given below that the functions are 

written separately°) 

The language considered is given by the following abstract 

syntax. It is assumed that among the unlisted statement types 

is something like the assignment of the previous section which 

would force retention of the DEN component. 

D1 st = goto-st } cpd-st I --- 

D2 goto-st :: id 

93 cpd-st :: nmd~st • 

D~ hind-st :: s-nm=[id~ s-body:st 

id net further defined 
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The defining functions can now be given (the "b" operator means 

"the unique object satisfying") - 

D5 int-st(st): 

cases st: 

ink-gore-st(lab) -> ~Ii~(lab) 

mk-cpd-st(ns-l) -> int-ns-l(ns-l,1) 

t y p e :  st => 

D6 int-ns-l(ns-l,i) : 

if i _~ !ns-I 

t~_n 
{(trap exii_t (lab) wit_~h 

if is-contained (lab,ns-l) 

then cue-int-ns-l(ns-l,lab) 

else exit (lab) ; 

int-st(s-body(ns-l[i~)) ; 

int- ns-I (ns-l,im I) ) 

_e!s~e 

! 

type: hind-st* INIG => 
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D7 cue-int~ns-l(,s-],lab) : 

!et i = (hi) (is-contained(lab,<ns-l[i]>)) 

if lab = s-nm(ns-l[i]) 

t hhen int-ns-l(ns-l,i) 

e_is_e 

(~ra~ exit(lab) w i t l  

if is-co~tained |lab,ns-l) 

t_he~n cue-int-ns-i (ns-l,lab) 

else exit (lab) ; 

cue-int- ns-I (s-body (ns-l[i ]) ,lab) ) 

int- ns-I (ns-l,i+ I) ) 

type: hind-st* id => 

D8 is-contained(]ab,ns-l) = 

(3i) (s-nm(ns-l[i]) = lab) v 

(39) (is-cpd-st (s-body(ns-l[j ]) ) ^ 

ix-contained (lab,x-body(ns-l[j 9)) 

type: id nmd-st~-> {_t_rue,fa_!_se) 

[% was observed above that a deeper understanding is often 

obtained by viewing a morn-language construct in mathematical 

sesantics terms. This view is now attempted of the above 

constructs. ~irst it is necessary to uncover what has been 

hidden in the "=>" of the type clauses - 

int-st: st -> (DEN -> DEN ~%BN) 

int-rs-l: n~d-st~ INTG -) (DEN -> EEN IBN) 

cue-int-ns-l: hind-st* id (DEN -> DEN A~N) 

Tt is easy to define the denotation of two meta-language 

statements separated by ";" in terms of their individual 

denot atic,s. 

stl;st2 - kden. (le_t (denl,abnl) = st1{den) ; 

if abnl = _nil 

then st2(denl) 

else {denl,abn I) 
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This gives us the way of creating a function whose type is {~ 

-> ~ ABN} from two functions of similar type: the fact that the 

test is dynamic is unavoidable because the occurence of the 

~qt_o will, in general, depend on the state. 

!t is also possible to write a very straightforward combinator 

for the t r!2 e_/xi~ but, if this results in an equally dynamic 

action, the fact that the t_ra_~ exit body again uses defining 

functions applied to the whole text (of the current unit) would 

make it impossible to ascribe a semantics of the required type 

to a unit. The key observation is that although the labels 

which will come to the trap are unknown (in the sense they may 

he either contained or free within the unit), the set of labels 

for which one can do something is known: it is precisely the 

set of contained labels. 

This point can be illustrated by the following example - 

S = ~ f  p ~he._,.nn ~ 1 

I:$2 /*no contained labels * /  

T h e n  - 

int- ns-l(S,1 ) = 

!_e_% (den1 ,abnl) = int-st(if p _th_e.~n g_o_to 1 e_!Is_~e ~Lqto =); 

(abnl = all -> int-st(s2) 

abnl = 1 -> cue-int-ns-l(S,l) 

T -> exit (abnl)) 

Wow since- 

cue-int-ns-l{S,l) = int-st(S2) 

it can be seen how tc construct the denotation of S. This was, 

of course, a trivial case. But eve~ where the graph of ~o 

statements introduces looping, an equation will be given whose 

fixed point can be sought. 
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It should be conceded at this point that it is also possible to 

~rife "defiNitions" using exits which do not permit static 

combination° This is a cause for further consideration. 

The above mechanis~ is not the one usually employed in giving 

mathematical semantics: the mechanism which appears to have 

been accepted {cf. ref. [23]) is that of "Continuations". 

Basically, the denotation of a label is the function (say ~ -> 

~) which represents starting at that label and running to the 

end of the program! This is certainly a more powerful concept: 

that it can define more general languages, the current author 

found out to his cost when he tried to show that it was 

possible to eliminate continuations in ref. [21]. ~owever, the 

maxim is to be sparing c~ power in the meta-language and using 

continuations to model Algol 60 labels {ref. [19~ may be too 

general. It seems unfortunate, for instance, that in - 

while p do 

!_f q !_b_e_~ so__t_o I: 

I: $2 

ea_d 

the label I cannot be "treated locally". 

The actual choice between continuations and the model offered 

here must be made in the context of the use of %.he language 

definition. Since the Oxford group has an interest in proving 

compilers correct it will await a larger example before this 

can be decided. The experience with basing correctness 

arguments on e~i~t is, sc far, encouraging. 
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1 . 5  B_!_o_cL_s!~9~!uj~ L__aa n_.q~a_q~ 

Both blocks and rrocedures permit their user to introduce a 

local level of ~aling. Since the names defined within different 

(even nested) blocks do not have to be distinct, the simple DEN 

of 1.3 will not suffice as a state. Consider the case of a 

language in which no recursion is allowed. It is necessary to 

"remember" the value of a variable, say x, over the lifetime of 

a nested block in which another variable x is declared, one way 

to overcome this problem would be to make all identifiers 

statically distinct by, for example, qualifying them with a 

unique b l o c k  number. 

The static renaming scheme would not, however, be adequate if 

recursion were also allowed. It would then be necessary to keep 

distinct, multiple instances of a variable which is declared in 

a recursive block. 

Before considering the passing of procedures as parameters, it 

is appropriate to discuss call-by-refere,ce since its solution 

i,troduces a tool which makes the remaining problems both 

easier te state and solve. 

Consider the following - 

b__eain 

~oc p(x): ia~ x; x := a; 

p(a) 

If the variable a is passed by reference, the parameter x will 

refer to a. In an implementation the non-local reference a and 

the parameter x would result in a reference to the same 

location. The description of Algol 60 in the Algol Report, was 

i~ this part very operational. The model given was to copy in 

the argument in all places where the formal parameter was 

referenced. In this way the body of the above procedure would 

become - 
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a := a. 

Some care was necessary in describing the "copy rule" partly 

because concrete strings were being discussed (of. the 

discussion of when parentheses should be inserted). Eut even 

using abstract programs, it becomes somewhat tedious to 

describe this copying (of. ref. [I]). At least for 

call-by-reference (see below for call-by-name} there is a 

simpler~ equivalent, mechanism. The idea is to show the sharing 

by having some auxiliary class of objects and associate both 

identifiers with the same member of the class. This association 

is maintained by an environment which maps identifiers into 

LOCs (chosen i, the example below to be suggestive of machine 

!ocations)~ The storage component will no longer associate 

values directly with identifiers but instead with locations. 

What has really bee~ done is to decompose - 

DE~ 

id-- ..... > VAL 

into- 

ENV STG 

id ....... > LOC ....... > VAt 

hut in doing so, the possibility is introduced to have 

idl .... 

id2 .... 

I---> n---> v 

so that any change via one of the identifiers is reflected to 

references via the other. (The use of £0C is, in this model, no 

more thaw the expression of an eguivalence relation over 

identifiers). 

Tt is now necessary to consider how a model which has 

environments handles the block and recursive block problems 

mentioned above~ ~he locations will be generated so as to be 

dynamica!ly distinct, so the problem of entering a block and 
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destroying a denctafion which will later be required has 

certainly been overcome. All that happens is that a new local 

environment is generated mapping the identifier to a new 

location (notice such a copying of DEN would be incorrect). In 

the case of a block which can be known by and called from 

~eeper blocks (i.e. a procedure), it is necessary to show how 

the base environment, to which it will insert its local 

bindings, is to be found. 

The most economical m c d e l  would  be to assume again that all 

identifiers are distinct in which case it is possible to show 

that any valid calling environment contains the required base 

environment as a sub-part. TB this case, then, only the "most 

recent" existence of any variable can be referred to. This 

solution does nct cover the case where procedures can be passed 

as parameters! This is precisely because other than "most 

recent" references are possible. (For a fuller discussion see 

ref. [7]). The general solution, then, will be to "remember" 

for any procedure what its base environment should be. In an 

operational model one would make a procedure denotation contain 

the pair of procedure text and environment. In a mathematical 

semantics style definition one wo~Id use these two entities to 

create a function. 

The language to be considered is - 

El proc :: s-nm:id s-parms:id~ proc-set s-dcls:id-set st 

E2 s t  = c a l l - s t  ~ a s - s t  I - - .  

E3 call-st :: s-pn:id s-args:id~ 

~4 as-st :: s-lhs:id s-rhs:expr 

Identifiers then correspond either to variables (only one type 

is considered) or procedures: in the former case a LOC is 

required, in the latter a procedure denotation, as the 

associated object. 

E5 ENV : id -> (LOC | PROC-DE~) 
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A not yet initialised value for a variable is allowed, so - 

~6 S : LOC ~> VAL 

E7 LOC = sere infinite set 

E8 VAL = INTG ~ 

A functio~a] type for ~rocedure denotations is given - 

Eg PROC-D~N : (LOC ~ PROC-DEN)~ -> {S -> S) 

(Notice that qo_tc is net is the current language, so ~BN is not 

required) o 

In order tc cover recursive procedures it is necessary that the 

denotation of a procedure is available wherever it might (even 

indirectly) call itself. In an interpretive definition the 

denotation would have been a pair of the text and the declaring 

environment. Since denotations here are functional objects, 

the definition of env' is "recQrsive". (The validit7 of s~ch 

definitions is discussed in ref. [22].) 

2:10 eval-~roc-dcl (proc,env) = 

1~et <id,parm-l,Frocs,dcls,st> = proc; 

let f(den-l) = 

(let env' = env + 

([parm-l[i] - den°lit] ~ 1-<i-<Iparm-l] u 

[id - eval-dcl(id) Iid, dcls] , 

[s-nm(proc) - eval-proc-dcl(proc, env') 

proc, procs ]) : 

in%-st (st,env') 

for all id • dcls d__q 

release (env' (id)) ) 

result is (f) 

type: proc ENV -> YROC-D~N 
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Eli eva!- dcl (id) : 

let l:alloc () ; 

assigm (I,?) ; 
result is (I) 

type: id => LOC 

E12 int-st(st,env|: 

cases st: 

mk-call-st (pn,arg-l) -> 

(let f = env(pn); 

let den-i = <env(arg-l[i]) ~ 1-<i<larg-l>: 

f (dem-l)) 

mk-as- st (lhs,rhs) -> 

(let T:eval-expr(rhs,env) ; 

assign |enw (lhs) ,v) ) 

mk... 

type: s% ENV => 

The functions - 

~13 allot : :> r OC 

El@ release : LOC => 

extend and restrict, respectively, the domain of storage. 

While- 

E15 assign : LOC VAL => 

E16 contents : LOC => INTG 

modify and read, respectively, values of storage. 

Based on the environment it is possible to clarify two 

important points. First, it is interesting to note that this 

is precisely the response of both constructive and mathematical 
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definitions to the problem of defining a block structure 

]a,guageo This leads to the second point: in what respects is 

the above manipulation cf the environment better than, say 

~ref. [2~3"? The VDL models used the grand state approach and 

the environment, as well as all "stacked" versions, were 

co,tailed in the state. This ~eans that, potentially, they can 

he modified by any function. It was then necessary to show that 

the interpretation of two successive statements in a statement 

list was under the same environment. Moreover, such proofs were 

non-trivial because if the first statement was, for example, a 

call, the environment was indeed dumped then changed: the proof 

had to show that by termination of the interpretation of the 

call, the dumped environment had been restored. The passing of 

environments as arguments, on the other hand, shows guite 

explicitly that two successive calls of int-st are passed 

exactly the sa~e argument. (This was the subject of the, 

somewhat tedious, ~roefs of the first two lemmas in ref. [g].) 

The language now available is rich enough to discuss the topic 

of ~£n~ ~£~i~i~. In the definition given, it is assumed 

%hat certain conditions hold for abstract programs which are 

not expressed by the syntax rules. For example, the definition 

would simply be undefined for a program which attempted to call 

a simple variable or which called a defined procedure but with 

less arguments than parameters. (The attempt to include such 

type rules in the abstract syntax of ref. [ I] was an 

unnecessary encumberance.) It would, of course, he possible to 

write appropriate checks i~tc the defining functions. This, 

however, would net show that the checks, in this language, are 

of a static nature. That is, it is possible to define a 

predicate - 

is-well-formed : ~roc -> {tr_ue,_fa_!se} 

which only yields tzue in the case that all such static context 

conditions are fulfilled. This is not intended to take a 

position on to what extent type questions in a language should 

be statically checkable° It is only to argue that it is a 

useful ~roperty of a definition to explicitly show what is 

static and what can only be checked dynamically. (Rn 
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associated ~oint is that it permits freedom to an 

implementation for programs which contain statically checkable 

errors i~ an unexecnted part). 

It would be possible t o  define both blocks and function 

procedures in the style of this section. 

1.6 F ux!her ToEiN~ 

This section will consider how some other, familiar, language 

ccnstrucis could be tackled in the same spirit as above. 

With regard to fl£~£, it is straightforward to extend the last 

definition to cover S£~2 out of procedure calls. This, along 

with the merging of the other features already defined, is done 

in the Appen@ix. ~he problem is simple because only known, and 

therefore most recently activated, instances of labels can be 

referenced. [f the language allows the passing of labels as 

parameters this property no longer holds. It is now necessary 

to make each instance cf a label dynamically distinct and to do 

this requires some mechanism like the activation identifiers of 

ref. [~]. 

The i,troduction of label variables (or, in fact, entry 

variables) into a language brings with it the additional 

consideration of referencing a label instance which Do longer 

exists. Algol 68 avoids this by constraining the lifetime of 

any target variable to be not-greater than the lifetime of the 

label being assigned. PL/q d~s not make this restriction and 

so the definition is forced to add a validity check via 

something like a set of currently active activations. 

The definition of call-by-value is simple to include by the 

creation of a special location which will be the only one 

affected by any changes via the parameter. This is a close 

model of the A ]gol 60 description of assignment to new 

variables in aD imaginary block. The fact that Pi/I makes the 
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choice between call-by-value and call-by-reference o n  the 

calling side is shown in ref. [4]. The pmore powerful 

ca~!-~y-~a~a of Algo~ 60 is handled via the mechanism for 

passing procedures. 

it is frequently desirable in a !a,guage definition to leave 

the i~Dlementer some freedo~ of order of evaluation. This is a 

wider freedom than optimisations which guarantee an equivalent 

result. ~cr instance, it may be reasonable to permit the 

access cf referenced variables in an expression to be made in 

any order even if the expression contains function references 

which could cause side-effects. In allowing such orders in a 

definition the language designer is warning the user not to 

write programs which rely on any particular order. The question 

of how tc formally define such freedom is an open problem! 

First note that in - 

(a + (b + c)) 

the definition may wish to allow not only - 

a h c, a c b, b c au c b a 

but also - 

c a h etc. 

It is net, therefores adequate to choose one path or the other 

at each branch: it is necessary to inherit the arbitrariness. 

The response of VDL to this problem was to sake the control 

component of the ~achine into a tree. The operations to be 

performed were But on parallel branches if they were to be 

executed in any crder and the IAMBDA function randomly chose 

any available leaf of the ccnt£cl for execution. 

The definiticn in ref. [I] was in fact very similar and only 

achieved its functional nature by building this relevant 

Droperty of LAMBDA into the definition. Since the only place 

such arbitrary order cculd occur was in expression evaluation 

this was in fact a reasonably small impact. 
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The definition in ref. [4] shifts the problem to the 

meta-language by introducing the "," separator. The problem is 

not solved because the definition of a combinator which 

provides for the inheritance of sequencing freedom is not 

provided. 

9. Beki%, among others, has pointed out that to combine two 

pieces of "interfering" program it is necessary to know more 

than their (extensional) functional meaning. His approach to 

this problem is discussed in ref. [3]. While this approach may 

be generally required, the current author would prefer to 

pursue the definition more axiomatically: in the first place by 

defining conditions of good cooperation that guarantee 

~on-interference. 

One final area, that of Storage Models, brings in the role of 

axiomatic parts of a definition. In some languages there is 

great freedom left to the implementor as to what storage 

mappings of the data structures are required. In PL/I, for 

efficiency reasons, the programmer can take alternative views 

of an aggregate and thus the language does somewhat constrain 

the mappings. Even in ref. [q], however, it was found 

worthwhi3e to state the basic storage model abstractly (for 

example, viewing an array value as a mapping from a (hyper- 

)rectangle of integers to values, rather than as a linearised 

list thereof) and to express the additional constraints 

separately. For a fuller discussion see ref. [ 2]. 

I. 7 S_~u_m_ma__r Z 

The difficulty of defining a programming language as distinct 

from a purely functional language is that changes to a state 

occur. A functional definition in which functions are read 

extensionally (of. section I. 2) is not immediatel~ applicable. 

Three alternative solutions were di~ussed; to consider the 

definition as an interpreting program (ref. [2~D ; to consider 

all interpreting functions as ha~ing an additional argument and 
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result which is the state (ref. [I]): %o consider the defining 

fu,ctions as producing a functions from states to states (ref. 

[!9]}. I% is possible, by adopting carefully chosen notation, 

to write in a style which can be read in more than one way. 

Except for the problem cf arbitrary order, combinators can be 

provided which permit ref. [4] to be read in all three ways. 

The advantages of the different ways of viewing a definition 

are returned to in the next part of the paper. 

Whatever one's chosen viey of a semantic definition, there are 

more important considerations which influence what is written. 

The central guide-line proposed is that the definition should 

not possess properties ~hich are no% inherent in the language 

being defined. This is ,or to say that such definitions are 

wrong in the overall effect they describe for a program, but 

rather that a proof is often required that certain details of 

the model haYe no effect on the final outcome. If the model can 

eliminate such details it will facilitate the use envisaged 

below. 

~xa~ples of where definitions can be over-specific range from 

the use ef the grand state approach to trivial items like the 

use of lists vhere sets conld suffice for components of the 

state in ref~ [25]. 

Before proceeding %e the discussion of proving a compiler 

correct with respect to a language definition, a few moments 

should be spePt on the question of the correctness of the 

language definition. Rs far as -proving" that the definition 

corresponds to a normal verbal definition, there is little 

hope. Most such standards descriptions are a mixture of 

properties (axioms) and partial models for the language. Even 

if it were possible, which it is not, for the natural language 

to he read precisely, such definitions would be shown to be at 

best i0cemplete, at worst inconsistent. 

The direction followed by ref. [25] is, of course, very 

encouraging in that it is a huge step towards standardising via 

a document which could be considered to be formal. 
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In spite of the difficulties in establishing correctness, it is 

possible to consider some property like consistency, it the 

most trivial level a definition of the size required by current 

languages should be checked to be free of clerical errors like 

passing the wrong number of arguments %o a function. Much more 

subtle are the guesticns of termination and existence of 

implicitly defined objects. In ref. [4] an attempt has been 

made tc insert pre, ~cst and assertion comments as an aid to 

seeing why the authors believe the definition to be 

"consistent". The guestion of what a proof would entail is 

currently under consideration. 

2. DEVELOPMENT OF i TRANSL~TOB SPECIFICATICN 

The overall task under consideration is the creation of a 

program to translate texts of a source language into texts of a 

machine language. Based cn a definition of the source 

language, this section discusses how to obtain a specification 

for a mapping from the source to the object language. It is 

obvious that before this process can begin, an understanding of 

the object machine is required. The question of whether this 

understanding must be "formally" doCume, ted is returned to 

below. The step by step development process to be discussed is 

very similar to that in ref. [15] (and even ref. [9]). 

The first question to be resolved is which of the reading 

styles of the source definition are to be adopted. This 

question must to some extent remain open until more examples 

have bee~ fully ucrked out. There seem, to the current author, 

to be two arguments for taking the interpretive view of the 

definition as the basic one. Firstly, it is very unlikely that 

the case distinctions, which have been shown in the source 

definition, are exactly those required in the choice of code to 

be produced. Secondly, a mapping of source programs to 

functions from states to states has more to be developed than 

these generated functions: manipulations of, for example, the 

environment will also require modelling in the object state. 
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The abstract state of the source definition was chosen to 

permit a large range of implementations. The time has now come, 

with a particular machine in view, to be more specific. The 

designer ~ s task is to find concrete realisations, on his 

particular object machine, for the abstract state. This 

development might be a multi-stage process in the case of 

developing something like an ~NV to a display model like those 

of ref. [7]. Each stage of development proTides a new, more 

concrete, version of an object. This model will have 

properties not possessed by the more abstract object. For 

example a list has an ordering property not present in a set. 

For this reason, the appropriate style to document the relation 

believed to express the correctness is from (more) concrete to 

abstract~ Thus, if Z is a set and modelled by a list L, the set 

is retrieved by - 

retr-$ {L) = 

{L[i] ) !-<i-<!L} 

type: LIST -> SET 

One would then prove that the new function models the old in 

the same style as discussed in section 3 (this notion is like 

Milner's "Simulation" in ref. [18 D . 

Another example of the decisions made during the development of 

the interpreter, is the removal of arbitrary ordering. The 

flexibility was permitted by %he language to provide freedom 

for the implementer. Other than those aspects which result in 

real use of parallel hardware, the randomness is removed in 

favour of the choice that best fits the compiler design. 

The ratio~a!e is to attempt always to find a model and express 

its correctness by sho,ing how, among other irrelevant details, 

it computes the result of the previous stage. In this way it is 

possible tc avoid large equivalence proofs whose structure is 

hard to see. In fact, for many stages, documenting the retr 

functions may itself be an adequate Justification. The 

definition is thus providing, not only the correctness criteria 

b~t a]se a basis for the correctness argument. 
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~t the termination of the work detailed above, which may be 

multi-stage, there exists an interpreter which functions on a 

state representable on the object machine. The state 

transitions, however, are still written in a meta-language. It 

is now possible to record the machine operations which are 

believed to produce exactlT the same state transformation. In a 

sense, this can be considered as documenting assumptions about 

the object machine which may be a more attainable goal than 

seeking its full formal definition. 

Tt should now be possible to read the interpreter as a mapping 

by expanding all of the case distinctions which are static in 

the sense that they depend on the text alone. If the machine 

operations are inserted, this is now a function from (abstract) 

source language to the object language. 

Such a function will serve as the specification for the 

~evelopment to be described in section 3. It is important to 

note that the subsequent development requires no understanding 

of the source language! The meaning of the language was used to 

justify this mapping. The mapping itself is a specification 

purely in terms of strings. 

Tt is nov appropriate to consider an example. Tt might have 

been useful for this section tc consider some model of the 

block concept (of. ref. [7]), but it will provide a better link 

to the next section to use the example of compiling 

expressions. 

Consider the language of section 1.3, States are - 

I DEN:id -> INTG 

Given, is - 

2 apply-op : I~TG op INTG -> IRTG 



422  

Then the definition could be written - 

_c_a_s e_s e: 

mk-inf-ezpr (el ,op,e2) -> 

tlet v1:eval-expr(el) : 

!et v2: eval-expr (e2) ; 

result iS (apply-op(vl,op,v2))) 

sk-war-ref(id) -> contents(id) 

sk-const(n) -> n 

type: expr => IN~G 

int-st-I (st- I,i) : 

if i -< !st-I 

t~ 

(_let mk-as-st(lhs,zhs) = st-l[i]: 

l_~et v:eval-expr(rhs) ; 

~ssign (lhs,v) : 

int-st-I (st-l,i+ !)) 

else 

! 

type: as-st~ INTG => 

Now, considering an actual machine, the first problem to note 

is the way individual values are retained by the "l.~e% vi" even 

though the eval~ation of the ether sub-expression may itself 

give rise %o man~ such ~ses. On most Rachines this would give 

rise to some ~se of temporaries, so consider storage extended 

s o  t h a t  - 

5 DENt : (id I T)-> INTG 

where - 

6 id ~ T = {} 
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A simple algorithm can nov be given which will a c t  as an 

interpreter on the new class of states. ~he author is aware 

that superfluous assignments are made - but their removal 

lengthens the example without adding any new concepts). 

trans-expr (e, J) : 

_cases e: 

mk-inf-expr(e1,cp#e2) -> 

(trans-expr (eq,j) ; 

trans-expr (e2, J÷1) ; 

assign (t[ j ],appl~-op {contents (t[j ~ ,op, 

c o n t e n t s  ( t [ J +  1 9 ) ) 

ink- va r - r e f  ( id}  - >  

assign (t[ J ],contents (id) } 

ik- const (n) -> 

assign (t[ J ],n) 

tTpe: expr !~TG => 

t tans- st- 1 (st- l,i) : 

!! i <_ !st-I 

t_hhen 

(let mk-as-st(lhs,rhs) = st-l[i]; 

trans-ezpr (rhs, I} ; 

assign (lhs,contents (t[ I ]} } ; 

trans-st-l(st-l,i+ I) } 

e..! s_~e 
! 

type: as-st* INTG => 

To show that the trans-expr interpreter models eval-expr, it is 

necessar 7 to prove - 

contents (t[ j ]) after trans-expr(e,j) -- eval-expr{e) 

If one appends the statement that for i < j, trans-expr (e, j) 

leaves contents (t[ J ]) unchanged, it is easy to prove the 
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combined p~operty b T str,ctnra! induction on the class of 

expressions. The further extension to as-st lists is trivial. 

As suggested above the new interpreter has been shown to model 

%he original defining interpreter by showing how to retriexe 

the results of the latter from the former. 

The type of the function 

assign (t[ j],ap~!y-op (.. o)) 

is DENt -> DENt 

Suppose the object machine is of 3 address type (of. I~M Iq01) 

then, an appropriate instruction uight be - 

op = A_D_DD - ~DD (t[ J ],t[ j ],t[ j+ 1 3) 

Inserting such operations, it is now possible to use the 

function %ransaexpr as a mapping from source to object 

languages. It is important to remember that this has been 

derived step by step from the definition. 

(At the risk of labonring the point, it could be remarked that 

had the statemeDt counter been made part of a grand state, it 

would ,ow pose problems because there is no model for it in the 

object state). 

It should be clear from the methods used so far that not only 

in the source definition, but also in the subsequent 

development it is likely to lead to more work if unnecessary 

properties are introduced. This, however, touches on one of 

the ~rob!ems which has not really been solved. In a large 

problem the mapping is likely to be such that it cannot be 

expressed conveniently in a "single pass". If a multi-pass 

mappimg is described and its structure differs from that of the 

eventual translator, the proof is likely to be much more 

difficult. Sore work is needed in this area. 
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Before concluding this section it is worth considering what 

happens if a defining model is chosen, or given, which is in 

some areas of the language too concrete. That is, there are 

some details present which do ~o_tt appear in the planned model. 

Not only should one refrain from throwing the definition away: 

one should also ~o~ embark on a complete equivalence proof. It 

has been shown in ref. [10] how one can, as a development 

stage, introduce a more abstract notion than that of the source 

definition for one area of the language. One can then prove 

that satisfying the new abstract notion ensures overall 

equivalence. The subseguent development can now be made from 

the mere abstract definition. In this respect it would be 

interesting to prove that the storage model of ref. [25] was a 

model of that in ref. [~]. 

3. FORMIL DEVELOPMEN~ 

Faced with a program specification and a code listing it is 

difficult to ascertain whether the latter satisfies the former. 

The basic intention of Formal Development is to provide a 

framework in which the design can be recorded step b~ step. 

Thus, the idea of top-down documentation of a development is 

subscribed to. In addition it is argued that each level of 

development can be documented precisely enough that its 

correctness can be the subject of a proof. 

It is important to distinguish the current proposal from the 

idea of writing a program then constructing a proof that it 

fulfills its specification. The possibility to use abstraction 

during a development makes the construction of a step-wise 

proof far more tractable. Furthermore, the amount of work to be 

redone, when an attempt to construct a proof uncovers an error, 

is reduced. 

It may also avoid misunderstanding if it is stated right away 

that Formal Development is not proposed as a rule to order 

invention. The backtracking and effect of inspiration conveyed 
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by ref. [20] are much more typical of program invention. But, 

Just as one frequently rearranges a proof when writing it up, 

it is worth documenting a design so that a reader can see a 

cohere~% development of ideas. 

Two main sorts of development steps are discussed. The first is 

the one norla!Iy connected mith top-do~ development. Given a 

specification of w_hha~ is required, one writes some sequence of 

operations which show hoXw the task may be achieved. The 

operations may be either statements of some language or assumed 

sub-operations: in either case their specifications are also 

recorded. Since some formal notation is being used it is now 

possible tC write down M~I one believes t h e  combined 

sub-operations perform the give~ task. 

The second sort of development step comes from the wish to use 

abstractions of normal data objects. By using objects which 

only have the properties relevant to an algorithm, it is 

possible to drastically reduce the length of both 

specifications and correctness arguments. At some point in the 

development it becomes necessary to seek an efficient 

representation which can be described in the language being 

used: such steps of development are considered in section 3.2. 

!~!___o_me_r~.~io~a! A__bb_s_t_ra_c/tio~ 

Operations are considered to be transformations on states from 

some class, say Z. For some operation, say CP - 

means that OP will ~rcduce a state ~' when "run in" a state 

(only deterministic operations are considered in the current 

paper). 

The term abstraction is applied because operations, which may 

not De available (other than by a yet to he performed 
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construction) can be discussed. They are in fact discussed via 

an implicit specification. The definition of an operation will 

be given via two predicates one which specifies the domain over 

which it must yield a result - 

pre-OP : Z -> {t_~rue,f~!se} 

pre-oP(q) = (3#') (G [OP] ,') 

and the other cf which specifies the input/output relation 

required for the operation - 

post-OP : Z Z -> {tr_ue,false} 

pre-OP(#) ^ w [OP] #' = post-OP(#,#') 

If both of these conditions hold the fact is recorded by - 

pre-OP <oP> post-OP 

These two predicates, then, record everything necessary about 

the meaning of OP (there is of course nothing about performance 

etc.) .  

Suppose a specification is given in this form, how does one 

proceed? The problem is decomposed to sub-problems by choosing 

a set of (simpler) operations, which, if one had them, could be 

combined in some stated way to fulfil the specification. The 

assumptions on the sub-operations will be recorded in exactly 

the sate style. Eventually all of the sub-operation assumptions 

will be true of statements in the language being used. Until 

that time they provide specifications for further work. 

The most trivial way of combining two operations in most 

languages is to separate them with ":" showing that the 

execution of the first is to be immediately followed by 

execution of the second. The conditions necessary to show that 

such a combination of the two operations - 
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pro-OPt <OPt> post-OPl 

pre-OP2 <OP2> post-OP2 

will satisfy - 

pro <OPI~OP2> post 

are firstly that each operation will only be used over its 

stated domain- 

pro(G1) = pre-OP1 (=1) 

pre(,1) A post-OPt(,1,=2) = pre-OP2(q2) 

and secondly %hat the overall input/output relation can be 

~erived frow the combination - 

pre{#1) ~ post-OPl(~1,e2) ^ post-OP2{,2,~3)= post(,1,,3) 

(The adequacy of these conditions is proved in refo [12])~ For 

such a sisp!e combination, the requirement to prove three 

lemmas appears excessive. In wany sit~atious however, special 

cases can be applied. For instance, with total operations (pre 

= ~X~) the first two lemmas are vacuously true. Furthermore, 

it is certainly not being suggested that every use of ":" in a 

program should be accompanied by formal proofs: but a check 

list has been provided to which an appeal can be made in case 

cf doubt. 

The reader should observe that a specification is passed on to 

the next stage of development which states all of the 

properties relied onQ Thus it is not necessary to later show 

that the development cf that operation does not disturb the 

current proof. There is a complete split of the problem of 

providing J ~stif ications. 

More methods of combining operations are defined in the same 

style by ref. [ 12], section 9 of that paper also considers how 

the set could be further extended. 



429 

3~ many respects this might be the more important of the two 

forms of abstraction being considered: it is certainly the one 

which is under-employed. 

The idea of data abstraction has, in fact, already been used in 

the earlier parts of the paper. The language definitions and 

mappings have both used an abstraction of the program text 

(i.e. that class of objects described by the abstract syntax). 

That this was necessary can be seen by considering the 

alternative of redefining %hose functions in terms of concrete 

strings. 

If then, it is difficult tc even state the specification in 

terms ef detailed data representations, it will become 

impossible tc write arguments for correctness at such a level 

of detail. 

The proposal is that development of an algorithm should only 

bring in those properties of the data structure that have an 

effect on the algorithm. That this permits a reasonable 

percentage cf the development can be seen in the example of 

section 3.~ below. ~hus one is able to postpone fixing the 

represe,tafion of a data object until adequate reason (e.g. the 

performance of a sub-algorithm) can be ascertained. 

The interface between operations might, then, be described in 

terms of sets or maps for example: in the final code linked 

lists or hash tables might be the chosen representations. 

~t is necessary to discuss what goes on in a development step 

which refiDes a data representation. Essentially what one is 

doing is adding properties t o  the data structure (e.g. the list 

has an ordering property not present in the set). It is 

possible to re~iev~e all of the data of the abstract level from 

the more concrete. 
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Suppose an opsratic~ ~n states of class D has been used, such 

that - 

prod <OPd> postd 

and one now wishes to show that - 

pree <OPe> poste 

is an adequate simulation. If is sufficient to find a 

relationship between the two state classes - 

retrd : g -> D 

which shows that OPe works on a wide enough class of states - 

pred(d) ^ retrd(e)=d = pree(e} 

and that the ne~ operation produces states matching (under 

retrd) those produced by the old operation - 

prod(d) ^ retrd(e)=d ^ poste {e ,e ') = postd(d,retrd(e')) 

(This ~ction differs from that in ref. [ 18] in that the 

Operations are Dot, necessarily, functions). 

3j___~le___o_f_~_xa_re_s si o_n_C_o_~ t_ii_on 

The input/output [elation given for trans-expr in section 2 is 

defined %o operate cn objects of type "expr". These were 

conveniently chosen to be tree representations of %he original 

linear form (presumably infix). Without going all of the way to 

consideriDg the parsing and tokenising of an external string, 

consider a reverse-~olish text which might result from such a 

first parse- 
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c-expr ::= c-inf-expr ~ c-Tar-tel ~ c-const 

c-inf-expr ::= c-expr c-expr c-op 

c-var-ref ::= ... 

c-const ::= ... 

The relation of this to the class expr can be specified hy a 

retrieve function which uses a stack - 

retr-expr (tl) = 

!_o_r i = ~ _to ! t l ~o 

(is-c-var-ref (tl[i ]) -> 

~ush (retr-var (tl[i ])) 

is-c-const (tl[i ]) -> 

p.ush (retr-ccnst (tl[i ]) ) 

is-c-op (till ]) -> 

(!_e_t e2: p_q~; 

l~t e1:~o~; 

9.~sh(mk-ex~r (el,retr-op (tl[i ]) ,e2) ) ) ) ; 

result is (~o~) 

type: c-expr -> expr 

Not only does this retrieve function give the correctness 

criterion for the following translate function, the stacking is 

suggestive o f  a way to track the temporaries, 
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Assuming an external variable b - 

trans-c-ezpr (t i) : 

_~_~_r i = I t c _! t l do 

(is-c-var-ref (tl[i ]) -> 

(b:=b+ I; 

assign (rib ],contents (retr-var (tl[i ~ ) ) ) 

is-c-const (tl[i ]) -> 

(b :=b+ t ;  

assign (t[ b 3, retr-const (tl[i ])) ) 

is-c-op(tl[i]) -> 

(assign (t[b-1 ].appl y-op (contents (t[ b- I), 

retr-op (tl[i ~ , 

contents (t[ b]) )) ; 

b := b-l) 

type: c-expr => 

The correctness ca~ now be proved if - 

b := O; trans-c-expr(tl| 

trans-expr (retr-expr (tl) , I) 

This result follews from a Froof, by induction on the length 

{and possible ccnstructions of) tl, of the stronger statement - 

b := k; trans-c~expr(tl) 

leaves b = k + I and creates the same as 

frans-expr (retr-expr (tl) ,k+ I) 

The rather short treatment of Formal Development offered may 

leave the reader unclear as tc he, a bigger example looks. 

Whilst the notation used in ref. [12] is thought to have 

correctly made the step from development via functions to 

development via operations, the example of that report is 
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unconvincing. This is mainly because the algorithm considered 

was so oriented to arrays that the use of an abstract data 

representation is somewhat artificial. 

The example of ref. [11] is more interesting with respect to 

data abstraction and a short outline of a rewrite of its 

development is now given - 

Specification: 

algorith~ - 

find a (general, table driven recogniser) 

REC : grammar nt s y m b * - >  {_Y_E_S,~O} 

Where the abstract form of a grammar is - 

grammar : nt -> rhs-set 

rhs = el* 

e! = symb I nt 

The pro-condition defines that there are rules for each 

non-terminal and that there is exactly one rule for the 

sentence non-terminal. The post-condition states that R~C 

should yield "YES" if and only if the symbol string can be 

produced from the given gra$mar. ("Produceable" is defined). 

Step I: Splits the problem into an input stage which stores the 

grammar: a main stage which creates "State Sets" which will 

contain information on all possible top-down parses: an output 

stage which yields YES or NO depending on a predicate of the 

state sets. The storage for the grammar is still specified in 

terms of the (abstract) map. This may be a disappointment to 

the programmer assigned the task of constructing the input 

routine since he has little to work on yet. But the cost of 

fixing this interface for his convenience is that the far more 

time consuming parsing operation has not yet been developed far 

enough to get h~s views on an efficient representation. 

The state sets are also described abstractly (as a list of sets 

of tuples) since the purpose of this stage is to show that 

certain upper and lower bounds on the state sets are sufficient 
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to make the final Fredicate correct. Notice this extreme form 

of abstract definition. There is a great deal of freedom in the 

give~ bounds and different algorithms could be constructed to 

use this freedom. (In fact the specification has been of 

considerable use in considering optimisations). 

Step 2: introduces Earley's operations (Prediction, Completion, 

Scanning] which generate nee stales. The state sets are defined 

as the ~inimum sets satisfying a certain equation. Such sets 

are showP to fall within the bounds stated in Step I. Notice 

that not o~ly are these operations defined in terms of abstract 

data objects, they are also implicitly defined. This is in 

distinction to ref. [8 ] in which the algorithms are programmed 

with operations on the abstract data: this form of development 

is employed later. 

Step ~: Begins %c ccnsider representations by mapping state 

sets onto state lists. But notice that, since a list of lists 

is not a convenient data object in a yon NeQmann machine, the 

step to a concrete representation is not yet complete. Using 

the chosen algorithm on lists it is necessary to iDtrodnce a 

restriction (no zero length rhs) to the allowable grammars. ~t 

would, however, have been possible to use a different algorithm 

at _this stage of development and avoid the restriction. 

Step 4: Makes a similar ordering step to the data structure 

representing grammars. 

~t this mcint most of the algorithms as such, is designed and 

it ix clear what the common oFerations on the data structures 

are. Now is the time to give the concrete (~L/I) data objects! 

(In fact those used were quite complicated HASEE variables with 

the REFEP option.) Doing this prompts a macro style of data 

abstraction like refo [5] which is similar to that used in ref. 

[S]. 
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The aim of the paper has been to show how a large problem, in 

this case the development of a compiler, can be decomposed into 

small steps. Providing each step is adequately documented, a 

complete design history is thus obtained. One of the views 

expressed is that each stage of development should be supported 

by a justification. ~his implies that steps of design are 

recorded in a notation cn which it is nossible to base a 

correctness argument. Such correctness arguments are sought 

with a view to human readers rather than mechanical theorem 

checkers. 

The key to making such an approach practical is the use of 

ahstraction. In each of the sections the value of stating the 

minimum properties has been shown. Although it is frequently 

more difficult to find an ~FFropriate abstraction than to 

provide a construction, the advantages of the former make the 

effort worthwhile. 

By emF]cying both data and operational abstraction, a view of 

the development process is obtained where the successive stages 

are rea]isations of the same algorithm at ever greater levels 

of detail. Taking this view, the normal style of correctness 

argument is based on showing how the (more) abstract model can 

he retrieved from the (more) concrete realisation. In this way 

it is possib]e tc avoid general equivalence proofs. 

The requirements of a design language to be able to specify 

operations imp!ici%ly and tc ~se very abstract data objects are 

very different from these of ~rogramming languages. A!tho~gh a 

particular netatiGn (that of ref. [4]) has been employed as the 

design language, it should be emphasised that it is the method 

not a Farticular notation which is being proposed here. 
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A ~ p e n d i x  

This appendix contains a definition of the language obtained bT 

merging the separate features of section I. The definition is 

written in a style (cf. the tlpe clauses) which can he read as 

mathematical sesantics. 

A B___STIR ]%CC~. SYNTAX 

prOC 

St 

as-st 

goto-st 

ca l l -s t  

c p d - s t  

nmd-st 

expr 

:: s-nm:id s-parms:id~ proc-set s-dcls:id-set cpd-st 

= as-st ~ gore-st | call-st ~ cpd-st 

:: s-lhs:id s-rhs:expr 

:: in 

:: s-pn:id s-args:id~ /'args dcl, proc or parma/ 

:: nmd-st* 

:: s-ns:[id S s-body:st 

= inf-expr ~ vat-rot ~ const 

inf-expr :: expr o~ expr 

vat-tel :: id 

const :: INTG 

in } 

op ) 

INTG ) 

not further specified 

DOMAINS 

ENV: i d - >  (LOCI ~ROC-DEN) 

S: LOC-> VAL 

LOC = infinite set 

v~n = I~TG I ! 

PROC-DEN: (LOC I PROC-DEN}~ -> (S -> S ABN) 

AB. = [ id ] 
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FUNCTIONS 

eva!-~roc-dcl (proc) (env) = 

le_t <id,par~-l,~rocs,dclsgmk-cpd-st(ns-l) > = proc; 

!e_t f~den:!)= 

{!_~ ! env' : e~v + 

([ par,-![i ] 

[id 

[ s-nm (proc) 

den-l[i] ~ 1<_i_<iparm-l] 

eval-dcl|id) ~ id~dcls] u 

e val-proc-dcl (proc) (env') 

pro cE procs ] ) ; 

(t~a~ ezit (lab} with 

(free (dcls,env') ; 

e/x!_t (lab) ) ; 

int-ns-l{ns-l,1) (env')) ; 

free{dcls) (envv)) ; 

result is(f) 

type: proc-> (ENV-> PROC-D~N) 

eval-d¢l (id) : 

!e_!t !: alloc () : 

assign(l) (I) ; 

result is(]) 

type: id -> ( s  - >  s LOC) 



free(dcls) (env) : 

for all id(dcls d~o 

release (env (id)) 
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type: id-sef-> {ENV-> (S-) S)) 

i,t-st (st} (env) : 

cases st: 

ink-as- st (lhs.rhs) -> 

(let v: eval-expr(rhs) (env) ; 

assign(e,v(lhs)) (v)) 

mk-goto-st (lab) -> 

ex i t  (lab) 

~k-cal]-st(pn.arg-l) -> 

(l_eet f = env{pn): 

1_~et den-I = <env(arg-][i]) 

f (de,- I) ) 

mk-cpd-st (ns-l) -) 

int-ns-I (ns- I. I) (env) 

I 1-<i-<!arg-I >: 

type: s t - >  (ENV-> (S-> S ~BN)) 
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int- ns-I (ns- !,i) (env} : 

i_f i~!~s- 1 

t_~h_en 

( (t_xa_a _~_xi_t ~lab) _wi_!h_ 

if is-coDtained (lab,ns-l) 

~he@ cue-int-~s-l{ns-l.lab) {env) 

_~!gm _e!i_!t (lab) : 

int-s% (s-body (ns-l[i D ) (env)) : 

int- ns-i (n~-lai÷ I) (env)) 

e_/!_s_e 

! 

type: hind-st* INTG -> (ENV -> (S -> S ABN)) 

cue-int- ~s-! (ns-1, lab) (env) : 

let i = (hi} (is-ccntained(lab~<ns-l[i]>)} ; 

if lab = s-~m(ns-1[i]) 

t hhen int-ns-l(ns-l,i) (env} 

e_!~e ( (_tr_a~ e~l~ (lab) _~it___h 

i f is°co~tai.ed (lab,ns-l) 

then cue-int-ns-l(ss-l.lab) (env) 

else e_zxi_~ (lab) ; 

cse-int-ns-l(s-body(ns-l[i]),!ab) (en¥)}: 

int-ns-I (ns-l.i+ 1) (env)) 

type: nsd-st ~. id-> (ENV-> (S-> S ~B~)) 
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eval-expr (e) (en,) : 

cases e: 

mk-inf-expr (el,op,e2) -> 

(_]_et vq: eval-expr(el) (env) ; 

l__e% v2: eval-expr(e2) (emv) ; 

r e_sul_~t is (a p~ly-op (vl ,op, V2) ) ) 

mk-var-ref(id) -> contents(enw(id)) 

mk-comst(n) -> n 

t~pe: expr-) (ENV-> (S-> S INTG)) 

is-contained: id nmd-st* -> B 

app]y-op: INTG op !R~G -> INTG 

alloc: -> (S -) S LOC) 

release: LOC -> (S -> S) 

assign: LOC -> (VAL -> (S -> S)) 

contents: LOC ->(S -> S INTG) /* _.~ yields e_~ror */ 


