
~ormal Definition in Program Development

C. B. Jones, IB8 Laboratory Vienna.

ABSTRACT

The intent of the current paper is to show how a large problem

like compiler development can be divided in a way which

proTides a structure for arguments of correctness. Although

• echanically checked proofs are not envisaged, the use of

formal notation is recommended so that the basis for

correctness arguments exists.

The paper reviews three topics: the first two are relevant

particularly to the development of compilers: the third is more

general. The subject of the first section is the style of

language definition to he used as a basis for development.

Beginning with a small language, possible ways of describing

added features are discussed.

The selection criterion for definitio, techniques is their

usability in developing a specification of the compiling

process: it is this development which is the subject of the

second section.

The third section briefly reviews the process of "~ormal

Development" which has been described more fully elsewhere.

Q IBH ~sterreich 1974

O. IN~ODUCT!ON

388

This paper provides an overview of a number of pieces of work

related to ~rogram correctness. Since the possibility of having

completely mecha,ically checked proofs for large programs

appears to be some way off, the approach taken is one of

documenting a "justification" for human readers. The paper will

a%tempt to show how a large problem can be decomposed into

small enough steps that such justifications ca~ be convincing.

The particular problem to be considered is that of developing a

compiler, of course, a compiler is a very special program, hut

to oversimplify for a moment one can consider that it is

specia] only in requiring ~wo extra stages of development to

precede that which is a~plicable to any program.

Three major parts of %he compiler development problem are

discussed i~ sections I tc 3 of this paper. The first section

discusses the definition of the language to be compiled. This

definition of the semantics of the source language provides the

overall correctness criteria for the compiler: whatever results

can he deduced about a ~rogram iritten in the source language

must also be true when ru~ning the object code produced by

compiling that program. The discussion identifies important

properties of a language definition to be used in the next

stage.

Given a particula~ object machine, the next step is to develop

a mappi,g from the source to the object language. How this is

done is the subject of the second section of the paper.

Examples are given of mapping the abstract state objects of the

definition onto the store of a target machine (cf. rots. [9,

15]).

Any top-down development process must begin with a, overall

correctness criterion: that is, a specification of an

input/output relation~ The purpose of section 2 was to show how

exactly this can be Frovided for the compiling problem. The

process of developing such a specification by a step-wise

389

process to a running program is discussed in section 3. It is

argued that the use of data abstraction and appropriate choices

of implicitly defined functions can provide the structure for

justifications of large programs.

Since no specific le,gth limit was given to the author, it must

be co~fessed that his lack of time is the reason that all three

sections are not written up fully. The ideas behind section 3

are well enough dccumented in ether papers that an overview

should suffice. A!thcugh the general direction to be followed

in the work covered by section 2 is clear~ the example provided

is very small. This runs into the usual problem that in such

cases it is easy to "see" the correctness, whereas if is

precisely the inability of our "small head" to contain a large

proble~ that gives rise to the need for a justification. Only

section I a~Froaches the level cf completeness the author would

have liked te attain.

The process of "Formal Development" outlined in section 3 is

applicable to any programming ~rcblem. As was observed above,

it is an oversimplification to think that it is therefore

sufficient to show how to tackle any other computing task. In

precise!y the way that for a compiler it was a significant

problem, generating the input/output relation for other tasks

will he difficult. It is abnormal for initial specifications to

be couched in terms of such relations, and, other than arguing

that its production should be the first step, the current paper

offers nc help as to how it ca, be obtained.

The emphasis throughout is on the method of decomposing a large

problem into small enough steps te provide a Justification.

Certain common requirements result from this, one of which is

the necessity to use a formal notation: only then will it be

possible to document justifications. It is not, however, the

i,tenticn tc argue for one particular ~tation.

A further technique, which becomes almost a necessity if proofs

are to be of an acceptable length, is the use of abstraction.

Dijkstra has used the terms "Cperational Abstraction" to cower

implicitly defined operations and "Bepresentational

3go

Abstractie," to refer to the postponement of unnecessary data

properties. Beth of these technigues will be used, but again no

particular notation is recommended.

Tt is the intention in the current paper to concentrate on

techniques rather than deep results. Transcending the choice of

a particular mathematical discipline to underly the work are

%he practical steps which must appear in any justification: the

attempt is t o throw some light on these.

I. LANGUAG~ DEFINITION STYLE

This part of the pape~ suggests certain properties of a

language definition which will facilitate its subsequent use in

development of a translator design. Notice that a definition

constructea along the proposed lines will not necessarily suit

other purposes like proving programs correct in the defined

language~

Although easy to express (see summary) it is not always easy,

given a language feature wanting definition, to find a

formulation with the required properties. For this reason the

plan adopted below is %c consider separate language features

and possible formulations for their definitions. ~n attempt has

been made tc deliberately separate the language concepts. In

this way it is hoped that the reader can see the requirement

for the different formulations in isolation, whereas in a

complete definition of a language it is often difficult to see

the source of the complexity. If the current approach were

executed on all of the features cf the respectiwe languages one

would then be able to explain ref. [I] and ref. [4] as the

"cross products" of their respective formulations. For,

although the notation of the latter is a step forward, both

definitions possess the properties discQssed.

Rather than discussing notation, the emphasis below is on

finding the appropriate model for a language feature. The

391

distinction between and similarities of the so-callsd

"operational" and "mathematical" approaches are considered bat

it is argued that there are criteria for choosing ~he model

which transcend the distinction.

Most of the so!uticns discussed are behind a number of current

language definitions. Only the solution of the S2~ problem is

novel.

Tn order to provide an overall context for the decisions made

below it is worth pointing out the origin of the difficulties

which led to a reconsideration of some aspects of the "VDL"

(Vienna Definitio~ Language) notation. During !969/70 the

author had the pleasure cf co-operating with P. Lucas and his

co~leagues o, attempts to document correctness arguments for

compiling algorithms based on the then current formal

definition of PL/I (ref. [24]). ~Ithough the feasibility was

shown in rots. [14, 7, 9], a number of difficulties were

encountered. With the exception of the use of the control

mechanis~ (see 1.q belo,) these were certainly not caused by

any shortcomings in the formal notation itself. The common

origin of most problems was, in fact, the tendency to be "over

specific" in its use. By this is meant that the abstract

interpreter used to define the language sometimes indicated

results ,e% require~ by the language. Although it was

certainly possible to deduce that such results had no effect on

the final outcome, this proof fzequently went far beyond the

part of the language under consideration.

A simple example was the use in some VDL models of a never

recurring "unique name generator" to obtain new locations when

required. This certainly gave a sufficient model which gave the

required outcome. However, if one wanted to prove correct a

stack ilplementation, in which the locations of previously

closed blocks could be re-used, one was more interested in the

peces_s_a_r x conditions of uniqueness. Now it was, of course,

possible to prove that, since mew locations were initialised to

an undefined state, it is permissible to re-use discarded

~ccations. ~owever, one was paying with a very expensive proof

the sawing of relatively few lines of definition.

392

The basic maxim to be followed then will be to avoid giving

properties to the definitio~ which are not required by the

language.

Before coming to the language features proper, a brief section

on notation is offered.

1.1 Notation

The formulae which follow should offer no difficulty as regards

their use cf notation for set and logical operations. Use is

also made of simple programming constructs like "iZ ~h~ ~!~"

and conditional statements. This section confines itself to

sketchi,g ~eanings for the non-standard items. ~or a more

complete discussion see ~art 1 of ref. [~].

The concept of Abstract Syntaz, introduced in ref. [17], was

used to advantage in the VDL definitions. Not only is its use

still considered mandatory to divorce a semantic definition of

a language from the richness of its syntactic alternatives; but

a!so the subsequent parts of this paper will show its

importance i n translator deve!epment.

The abstract syntax notatio~ now used has been changed somewhat

from ref. [24] in crdeI tc shorten and clarify descriptions.

Given a grammar it can be read as set equations as follows -

Elementary Objects as names of unit sets -

~_~_c_ - {LBc}

Non-terminals as names of the sets defined in the respective

rule.

Rules for defining alternatives of non-terminals -

W = XIZ ~ ~= X u 2

393

~ules for introducing constructors -

X :: YZ - X = {mk-X(y,z) [y~Y ^ z~Z}

Furthermore, selectors can be introduced -

X :: s-nl:Y s-n2:Z s-nl (mk-X (y,z)) = y

s-n2(mk-X(y,z)) = z

The use of a nonterwinal name which ends in "*" ("-set")

denotes a list (set) of objects of the class defined by the

name without its suffix.

To test for membership of a set -

is-W (o) o~ is-X(o)

Other than deccmpositio~ by selection it is possible to

decompose by using the constructor on the left of a definition-

le_f mk-X(y,z) = x -_le__f y = s-n1(x)

let z = s-n2(x)

Use is also made of this binding of names in a cases construct-

cases w:

mk-X(y,z) -> f(y,z) -

mk...

is-X{w) -> (!e_~t mk-X(y,z) = w:

f (y,z))

is...

At the points where it is necessary to discuss more carefully

the manipulation of functions, use is made of the Lamhda

notation-

f(x) = ...x... - f = Xx x...

~owever, these uses will often be "sugared" in Landin's style

(see ref. [13])

let x = e:)

)

g(x))

- (x x . g (x)) (e)

394

Raps are used where %he graph of a function can be explicitly

co,structed -

[dl -> r~ J

[d-> r] p(d,r)]

+

explicit definition

implicit definition

joining

are the co~nterrarts of the set concepts.

To come now to the problem of Semantic le_~n_it_~o_~n ° The

definitions given beloN will be written in terms of functions

from stated domains to ranges. In using the term f_u_n_ct_~onal

se@~ntics it is intended to emphasise the distinction from the

VDL style models, ref. [16], in which an ezplicit control

component exists in the interpreting machine (this point is

discussed more full~ below in connection with the set_e

construct). The re la ticn between functional semantics and

mathematical sema,tics ref. [22] is of more interest and will

be reviewed in ccDnection with several of the language features

considered. To begin with i% is worth showing the definition of

a language which is itself functional and thus affords an easy

path tc functional semantics.

1.2

Consider the language given by the following abstract syntax

rules -

BI expr = inf-expr I var-ref ~ const

B2 inf-expr :: ex~r o F expr

B3 var-ref :: id

B~ const =: I~TG

395

The class op is not further specified other than by the

existence of a functiom -

B5 apply-op : INTG op INTG -> INTG

Now, for a given set of denotations (the term "environment" is

avoided because it will be used below) for the free

identifiers-

B6 DEN : id-> INIG

the denotation of an expression, which is also an integer, is

given hy -

B7 eval-expr(e, den) =

cases e:

mk-inf-expr (el,op,e2) ->

(l_et v1=eval-expr(el,den) ;

l_e_% v2=eval-expr (e2,den) ;

r~su_!it_ is {apply-op(~1,op,v2)))

mk-var-ref(id) -> den(id)

mk-co~st(n) -> n

type: expr DEN -> INTG

This definition has the property that the denotation of a

composite expression depends only on (and can therefore be

constructed from) the denotations of its component expressions.

The introduction of the concept of a dynamic assignment to a

variable is perhaps the most distinctive feature of a

programming].anguage. The fact that, in contrast to

mathematics, are is forced to consider the value of a variable

at a given point in time Foses problems for the definition of

semantics.

t . 3

396

&~ais~a!_~a~£~

Consider the language whose programs consist of a sequence of

assignment statements (as-st) which can be described -

CI as-st*

C2 as-st :: s-lhs:id s-~hs:expr

The effect of such a sequence of statements will be to

transfer~ so~e initial set of denotations for the variables,

step by step, into their final denotations. Thus it is no

longer sufficient to consider the DEN as an argument to the

interpretation: the DEN reguired as the argument to the second

(and subsequent) calls of the interpretation may have been

changed by the interpretation of the first assignment. The

function given below appears to ignore this proh!em by simply

omitting a]l mention of the DEN. This is done because the

intention is to offer a number of different explanations. It

should be possible to see the intent of what is~ written if one

accepts that ~ssign -changes" the DEN for the given id, and

assumes eval-expr uses the current DEN -

C3 int-st-l(st-!,!)

if i ~ lst-I

!_he_n

(let mk-as-st(lhs,rhs) = st-l[i];

let v:eval-expr (rhs) :

assign(lhs,w) :

int-st-I (st-l,i# I))

i

type: as-st ~- IN~g =>

It is possible to consider three ways of reading such

formulae. The first possibility is to read them as programs.

397

As such, each functicn would ccrrespond to a subrouti,e which

refers to one non-local variable (i.e. the DEN). It is, of

course, the same non-local variable referenced by the modified

eval-expr and all calls of int-st-l. The sub-program assign is

trivially defined tc modify this variable. The separator "~"

has its usual ordering implications. Subroutine type clauses

are written with "=>", and their calls are marked with a ":",

in both cases to distinguish them from pure functions.

c~iven this view and using the notation of ref. [12], the types

could be given in full by -

int-st-I :: DEN:as-st~ INTG ->

eval-expr :: DEN:expr -> INTG

assign :: DEN:id INTG ->

With this simple, constructive, view it is already possible to

discuss one of the desirable properties of a language

definition. McCarthy has used the term "Small State" to

describe a defi,itie, in which only those things which change

very dynamica~!y are put into the state used by the defining

functions. This is in contrast to a "Grand State" style in

which all variables, with the possible exception of program

te~t, are put into the state. Although in %his trivial language

there is no incentive to do so, it would have been possible to

make the statement counter part of the state and show

sequencing by a side effect on this new non-local variable. The

disadvantage of taking this approach is that it would not be

clear, without further inspection, that the statement counter

could net be affected h~, for erample, eval-expr.

Returning now t c the discussion of alternative views of the

function int-st-l. The second possible interpretation is to

regard all functions as taking an extra argument and yielding

an extra result: in each case a DEN. This, which is the view of

ref. [I], would give-

int-st-l: as-st • INTG DEN -> DEN

eval-expr: expr DEN -> INTG DEN

assign: id INTG DEN -> DEN

398

(I, fact it is often possible to simplify; in the above

examplet since it can cause nc changes, eval-expr need not

return a DEN.)

But it is ne longer possible to rely on %he programming view of

":". It is necessary to describe it as a combinator betwee,

functions. The task of doing this is complicated by the various

alternative contexts and it is easier to show the result which

w o u l d come fros using the combinator -

int-st-I (st- l,itden) =

if i -< !st-I

the__n

(l_e~ mk-as-st(lhs,rhs) = st-l[i];

let (v,denl) = eval-expr(rhs,den);

!_et den2 = assign(lhs,v,denl) ;

result is (int-st-l(st-l,i+1,den2)))

_e!s~e

den

type: as-st* IN~G DEN -> DEN

Since the "lets" are now on pure functions, they are simply a

sugared fors cf lambda expressions.

The third view one could take of the function int-st-i is that

of ref. [22]. The comment was made on the definition of the

functiona~ language, that the de,oration of its sub-components

was al! that was necessary to determine the denotation of a

unit. By regarding the denotation of an assignment statement as

a function it is again ~ossible to enjoy this property. (That

this is sc is mcre clearly shown if the abstract syntax of a

cosposite statement is given recursively.) The resulting types

would be-

int-st-l: as-st ~ INTG -> (DEN ~> DE~)

eval-expr: expr -> (DEN -> INTG BEN)

assign: id-> (IN~G-> (DEN-> DEN})

399

Again in this view it is necessary to define ";" as a

combinator. But now the fact that the units to be combined

(after applying the functions to the static components) are

basically functions of the type ~EN -> ~E~ means that the very

pleasing model of functional cemposition is adequate.

The Oxford group (refs. [22, 23, 19]) have gone rather far in

designing ccmbinafors which weuld permit formulations like -

int-st-! (st- l,i) =

X~en.(!f i <~ !st-I

_t_he__n

(lee mk-as-st(!hs,rhs) = st-l[i];

int-st-I (st-l,i+ I) o

CONB (eval-expr (rhs) ,

assign (lhs)))

e_!_se

I)

type: as-st ~ INTG -> (DEN -> DEN)

w here -

CO~B(vf,uf) =

kden.(kv,denl.(uf(v) (den1)) (vf(den)))

(It should be made clear that if this had been written by a

genuine devotee of mathematical semantics, it would have looked

very different. It is the current author's view that excessive

zeal in shortening definitions makes them less rather than more

readable, of. ref. [19], ref. [1]).

Since this is a function one can look at its result for a test

program! Consider -

p = (X := I;

y := x * 2)

400

Then after reduction-

i~t-st-I (ptl) =

(kden.den + [y -> den(x)+2]) o (Xden.den + [x -> I])

which is the result expected. (This exercise is somewhat more

illuminatiDg on larger examples.)

(Reverting for a moment to the earlier discussion of grand

versus small state approaches, it is worth noting that it would

have been possible tc make the (undesirable) step of putting

the statemept counter in the state and still give a definition

in terms cf a function to functions from states to states. ~t

would ~ot, howe~er, have been possible to provide such simple

combinators. In particular, the static role of the statement

counter is required to provide the required decomposition of

the semantics.)

If the appropriate combinator definitions were written, we have

bow provided three ways of reading the formula int-st-l. The

questio~ of which should be used must now be discussed.

The positicD advanced in the next part of this paper is that

the interpretive view is useful during the development of the

translator mapping and it is cn!y then that one need take the

view of mapping source ~rograms to functions. Observe, however,

%hat thinkiDg in terms of cembinators ~e~_~d that certain

problems be resolved moze carefully: this leads to retention of

also this view of the formulae. Thus the notation will develop

the style above~ definitions written in this style will be

~a~ipulated as if they were oFerational; the mathematical view

say he a~pealed to when decisions are otherwise unclear.

With the a~ount of notation introduced so far it would be easy

to define ~'if then else" or any variant of the "fRr". In doing

this for any reasonably complex language the question arises as

to how m~ch notation is it reasonable to add to the

meta-~anguage. Would it, for instance, be acceptable to have a

while construct? lhe answer must always be sought in the ease

of reasoning about a construct. Thus in ref. [~] both while

401

and ~9~ constructs have been included, but they are of a much

more restricted kind than the FOR of PL/I which was being

defined.

This topic brings us to the challenge of giving a semantic

definition of ~o~o.

1 . q G o t o Lan~ua~

The long debate on the morality of the Horn construct has not

yet resulted in its banishment from descriptions of languages

by standards committees. To be serious, it appears to he

valuable to have some mechanism for abnormal sequencing

situations and an ability to provide formal definitions for

them may be one of the tools for comparison.

The problem with defining ~9 is that, other than the local

hop, its ability tc leave or enter phrase structures upsets the

attempt to state the semantics of a unit solely in terms of the

semantics of its sub-units. In this section the compound

statement is chosen as the phrase structure whose semantics

should be pEovided. Although this is simpler than block exits,

it has the property that the same phrase structure can be

terminated and initiated abnormally so that with a shorter

definition both problems can be discussed. The subject of

block terminations is discussed in the ne,t section.

The technigue for modelling ~oto employed in ref. [2,] was to

introduce a control stack component into the state of the

abstract ~acbine. [In fact the control was more general, but

this point is discussed below in connection with arbitrary

evaluation order.) Instead of describing the recta-language

~irectly as functions, a VDL definition is itself described by

an interpreting function (called LAMBDA in ref. [24]). A step

of the interFreting function removes the top instruction from

the control stack: if this operation is elementary, it is

obeyed and the next step of operation is performed; in the case

402

of a "macro" operation~ the appropriate operations are put on

the centre] stack so that the next step will encounter them.

So far this can be thought of as a way of describing functional

application. The purpose, hoover, of making the control

component an explicit part of the state was to make possible

its explicit ~anipulation. Thus one way to model ~ot_o out of a

phrase stzucture was to define the "obvious" operations

structured in line with the phrase structure, but to simply

delete from the control component any operations which

corresponded to parts of the program being jumped over.

The effect of this was that, in general, it was not possible to

present arguments whose inductive structure followed the phrase

structure of the program. It was of course possible to present

proofs, but they had to be by ind~tion over the sequence of

states generated by LAMBDA. One could argue that this is

precisely the undesirable effect of the ~t__Qo, but in fact the

definition had gone too far. It was one of the places where

the generality, in this case to change the control in any

instruction, forced one to show that, in precisely the places

one did not require the power, it was not used.

In fact the deletion of parts of the control was sometimes only

used for exits from blocks: the reason that it was not used for

more local phrase structures was the solution adopted for

handling abnormal entry into such phrase structures. Hasical!y,

some definitions adopted a "current statement selector" which

was simply changed to point tc the next statement. This made

q_oto into and out of phrase structures very easy to describe

providing there was no special epilogue action to be performed

on exit from the phrase structure. (This can, in fact he viewed

as absorbing part cf the iAMBDA function into the definition).

However, such definitions tended to cloud the normal action by

the necessity to describe finding the successor to an embedded

unit by ~anipulating the Fointer (see, for example, the

treatment of ~ND in ref. [25]).

The current author became convinced that setting up the normal

action and letting a ~oto "take the machine by surprise" was

403

the wrong model. The proposal made was that any unit which

could result in abnormal termination should return an extra

"abnormal" result, which was some null value in the normal

case. Any call of a function which could result in an abnormal

return must test for this possibility and perform appropriate

actions. (Together with W. Henhapl, who provided the statement

selector treatment, this was written up in ref. [6]).

In order to define Algol 60# in which it is possible to ~Qt__qo

into both "_if" and compound statements, it was necessary to

address the other part of the problem. The approach employed in

ref. [I] is to provide functions which run through the phrase

structure without executing but setting up all of the actions

to fo]]cw. Since these functions prompted the execution as to

where to begin they became called "cue-functions" (as in acting

- Dam Stichwort).

Consider, for example, the following -

~ot_a l:

i_f P

~_h_e_n I: sl

else s2 :

s3

Not oD1y should this, rather odd, transfer of control get to sl

without evaluating p, it should also set up the events to be

performed thereafter so thal s2 is skipped and s3 is next

considered.

The completely functional definition of Algol given in ref. [1]

became tedious because of the man~ places where the effect of a

~o~o can cause a cha~ge of events and therefore the abnormal

return value must be tested. It was, however, clear that the

most common action was simply to refrain from execQting the

next operation and pass back the abnormal value to the next

level. In fact %here are very few places where it is necessary

to describe any sFecial action. Based on this observation P.

Lucas proposed that adopting some unit to trap the

404

interpretation where the action was required would leave one

free %o drop the ,,test and return" case by convention°

This abbreviation is the one used in ref. [~] and below. All

normal ~eturns are written omitting the (implied) return of a

• ~! walue for ABN. Non-~i~l values for ABN are returned

explicitly by the exi~ statement. Normal action on being

retur,ed a non-hi ! ABN value is to terminate also the calling

function abnormally with the same value for ABN. An explicit

action to be performed for a non-hi I ~BN value is defined by

means of a ~a~ ~i~ unit bracketed together with the statement

to which it applies. Completion of the trap unit completes the

containing function.

The developmert of this idea has been described in terms of an

i~terpre%er partly because this is how it actually occured and

partly because it is probably easier to first read the

following functions in this way.

(In fact the separation of the. largely similar, functions

int-ns-I and cue-int-ns-i would probably not be made if one

were taking the purely interpretive view: it is only for the

more mathematical view given below that the functions are

written separately°)

The language considered is given by the following abstract

syntax. It is assumed that among the unlisted statement types

is something like the assignment of the previous section which

would force retention of the DEN component.

D1 st = goto-st } cpd-st I ---

D2 goto-st :: id

93 cpd-st :: nmd~st •

D~ hind-st :: s-nm=[id~ s-body:st

id net further defined

405

The defining functions can now be given (the "b" operator means

"the unique object satisfying") -

D5 int-st(st):

cases st:

ink-gore-st(lab) -> ~Ii~(lab)

mk-cpd-st(ns-l) -> int-ns-l(ns-l,1)

t y p e : st =>

D6 int-ns-l(ns-l,i) :

if i _~ !ns-I

t~_n
{(trap exii_t (lab) wit_~h

if is-contained (lab,ns-l)

then cue-int-ns-l(ns-l,lab)

else exit (lab) ;

int-st(s-body(ns-l[i~)) ;

int- ns-I (ns-l,im I))

_e!s~e

!

type: hind-st* INIG =>

406

D7 cue-int~ns-l(,s-],lab) :

!et i = (hi) (is-contained(lab,<ns-l[i]>))

if lab = s-nm(ns-l[i])

t hhen int-ns-l(ns-l,i)

e_is_e

(~ra~ exit(lab) w i t l

if is-co~tained |lab,ns-l)

t_he~n cue-int-ns-i (ns-l,lab)

else exit (lab) ;

cue-int- ns-I (s-body (ns-l[i]) ,lab))

int- ns-I (ns-l,i+ I))

type: hind-st* id =>

D8 is-contained(]ab,ns-l) =

(3i) (s-nm(ns-l[i]) = lab) v

(39) (is-cpd-st (s-body(ns-l[j])) ^

ix-contained (lab,x-body(ns-l[j 9))

type: id nmd-st~-> {_t_rue,fa_!_se)

[% was observed above that a deeper understanding is often

obtained by viewing a morn-language construct in mathematical

sesantics terms. This view is now attempted of the above

constructs. ~irst it is necessary to uncover what has been

hidden in the "=>" of the type clauses -

int-st: st -> (DEN -> DEN ~%BN)

int-rs-l: n~d-st~ INTG -) (DEN -> EEN IBN)

cue-int-ns-l: hind-st* id (DEN -> DEN A~N)

Tt is easy to define the denotation of two meta-language

statements separated by ";" in terms of their individual

denot atic,s.

stl;st2 - kden. (le_t (denl,abnl) = st1{den) ;

if abnl = _nil

then st2(denl)

else {denl,abn I)

407

This gives us the way of creating a function whose type is {~

-> ~ ABN} from two functions of similar type: the fact that the

test is dynamic is unavoidable because the occurence of the

~qt_o will, in general, depend on the state.

!t is also possible to write a very straightforward combinator

for the t r!2 e_/xi~ but, if this results in an equally dynamic

action, the fact that the t_ra_~ exit body again uses defining

functions applied to the whole text (of the current unit) would

make it impossible to ascribe a semantics of the required type

to a unit. The key observation is that although the labels

which will come to the trap are unknown (in the sense they may

he either contained or free within the unit), the set of labels

for which one can do something is known: it is precisely the

set of contained labels.

This point can be illustrated by the following example -

S = ~ f p ~he._,.nn ~ 1

I:$2 /*no contained labels * /

T h e n -

int- ns-l(S,1) =

!_e_% (den1 ,abnl) = int-st(if p _th_e.~n g_o_to 1 e_!Is_~e ~Lqto =);

(abnl = all -> int-st(s2)

abnl = 1 -> cue-int-ns-l(S,l)

T -> exit (abnl))

Wow since-

cue-int-ns-l{S,l) = int-st(S2)

it can be seen how tc construct the denotation of S. This was,

of course, a trivial case. But eve~ where the graph of ~o

statements introduces looping, an equation will be given whose

fixed point can be sought.

408

It should be conceded at this point that it is also possible to

~rife "defiNitions" using exits which do not permit static

combination° This is a cause for further consideration.

The above mechanis~ is not the one usually employed in giving

mathematical semantics: the mechanism which appears to have

been accepted {cf. ref. [23]) is that of "Continuations".

Basically, the denotation of a label is the function (say ~ ->

~) which represents starting at that label and running to the

end of the program! This is certainly a more powerful concept:

that it can define more general languages, the current author

found out to his cost when he tried to show that it was

possible to eliminate continuations in ref. [21]. ~owever, the

maxim is to be sparing c~ power in the meta-language and using

continuations to model Algol 60 labels {ref. [19~ may be too

general. It seems unfortunate, for instance, that in -

while p do

!_f q !_b_e_~ so__t_o I:

I: $2

ea_d

the label I cannot be "treated locally".

The actual choice between continuations and the model offered

here must be made in the context of the use of %.he language

definition. Since the Oxford group has an interest in proving

compilers correct it will await a larger example before this

can be decided. The experience with basing correctness

arguments on e~i~t is, sc far, encouraging.

409

1 . 5 B_!_o_cL_s!~9~!uj~ L__aa n_.q~a_q~

Both blocks and rrocedures permit their user to introduce a

local level of ~aling. Since the names defined within different

(even nested) blocks do not have to be distinct, the simple DEN

of 1.3 will not suffice as a state. Consider the case of a

language in which no recursion is allowed. It is necessary to

"remember" the value of a variable, say x, over the lifetime of

a nested block in which another variable x is declared, one way

to overcome this problem would be to make all identifiers

statically distinct by, for example, qualifying them with a

unique b l o c k number.

The static renaming scheme would not, however, be adequate if

recursion were also allowed. It would then be necessary to keep

distinct, multiple instances of a variable which is declared in

a recursive block.

Before considering the passing of procedures as parameters, it

is appropriate to discuss call-by-refere,ce since its solution

i,troduces a tool which makes the remaining problems both

easier te state and solve.

Consider the following -

b__eain

~oc p(x): ia~ x; x := a;

p(a)

If the variable a is passed by reference, the parameter x will

refer to a. In an implementation the non-local reference a and

the parameter x would result in a reference to the same

location. The description of Algol 60 in the Algol Report, was

i~ this part very operational. The model given was to copy in

the argument in all places where the formal parameter was

referenced. In this way the body of the above procedure would

become -

410

a := a.

Some care was necessary in describing the "copy rule" partly

because concrete strings were being discussed (of. the

discussion of when parentheses should be inserted). Eut even

using abstract programs, it becomes somewhat tedious to

describe this copying (of. ref. [I]). At least for

call-by-reference (see below for call-by-name} there is a

simpler~ equivalent, mechanism. The idea is to show the sharing

by having some auxiliary class of objects and associate both

identifiers with the same member of the class. This association

is maintained by an environment which maps identifiers into

LOCs (chosen i, the example below to be suggestive of machine

!ocations)~ The storage component will no longer associate

values directly with identifiers but instead with locations.

What has really bee~ done is to decompose -

DE~

id-- > VAL

into-

ENV STG

id > LOC > VAt

hut in doing so, the possibility is introduced to have

idl

id2

I---> n---> v

so that any change via one of the identifiers is reflected to

references via the other. (The use of £0C is, in this model, no

more thaw the expression of an eguivalence relation over

identifiers).

Tt is now necessary to consider how a model which has

environments handles the block and recursive block problems

mentioned above~ ~he locations will be generated so as to be

dynamica!ly distinct, so the problem of entering a block and

411

destroying a denctafion which will later be required has

certainly been overcome. All that happens is that a new local

environment is generated mapping the identifier to a new

location (notice such a copying of DEN would be incorrect). In

the case of a block which can be known by and called from

~eeper blocks (i.e. a procedure), it is necessary to show how

the base environment, to which it will insert its local

bindings, is to be found.

The most economical m c d e l would be to assume again that all

identifiers are distinct in which case it is possible to show

that any valid calling environment contains the required base

environment as a sub-part. TB this case, then, only the "most

recent" existence of any variable can be referred to. This

solution does nct cover the case where procedures can be passed

as parameters! This is precisely because other than "most

recent" references are possible. (For a fuller discussion see

ref. [7]). The general solution, then, will be to "remember"

for any procedure what its base environment should be. In an

operational model one would make a procedure denotation contain

the pair of procedure text and environment. In a mathematical

semantics style definition one wo~Id use these two entities to

create a function.

The language to be considered is -

El proc :: s-nm:id s-parms:id~ proc-set s-dcls:id-set st

E2 s t = c a l l - s t ~ a s - s t I - - .

E3 call-st :: s-pn:id s-args:id~

~4 as-st :: s-lhs:id s-rhs:expr

Identifiers then correspond either to variables (only one type

is considered) or procedures: in the former case a LOC is

required, in the latter a procedure denotation, as the

associated object.

E5 ENV : id -> (LOC | PROC-DE~)

412

A not yet initialised value for a variable is allowed, so -

~6 S : LOC ~> VAL

E7 LOC = sere infinite set

E8 VAL = INTG ~

A functio~a] type for ~rocedure denotations is given -

Eg PROC-D~N : (LOC ~ PROC-DEN)~ -> {S -> S)

(Notice that qo_tc is net is the current language, so ~BN is not

required) o

In order tc cover recursive procedures it is necessary that the

denotation of a procedure is available wherever it might (even

indirectly) call itself. In an interpretive definition the

denotation would have been a pair of the text and the declaring

environment. Since denotations here are functional objects,

the definition of env' is "recQrsive". (The validit7 of s~ch

definitions is discussed in ref. [22].)

2:10 eval-~roc-dcl (proc,env) =

1~et <id,parm-l,Frocs,dcls,st> = proc;

let f(den-l) =

(let env' = env +

([parm-l[i] - den°lit] ~ 1-<i-<Iparm-l] u

[id - eval-dcl(id) Iid, dcls] ,

[s-nm(proc) - eval-proc-dcl(proc, env')

proc, procs]) :

in%-st (st,env')

for all id • dcls d__q

release (env' (id)))

result is (f)

type: proc ENV -> YROC-D~N

413

Eli eva!- dcl (id) :

let l:alloc () ;

assigm (I,?) ;
result is (I)

type: id => LOC

E12 int-st(st,env|:

cases st:

mk-call-st (pn,arg-l) ->

(let f = env(pn);

let den-i = <env(arg-l[i]) ~ 1-<i<larg-l>:

f (dem-l))

mk-as- st (lhs,rhs) ->

(let T:eval-expr(rhs,env) ;

assign |enw (lhs) ,v))

mk...

type: s% ENV =>

The functions -

~13 allot : :> r OC

El@ release : LOC =>

extend and restrict, respectively, the domain of storage.

While-

E15 assign : LOC VAL =>

E16 contents : LOC => INTG

modify and read, respectively, values of storage.

Based on the environment it is possible to clarify two

important points. First, it is interesting to note that this

is precisely the response of both constructive and mathematical

414

definitions to the problem of defining a block structure

]a,guageo This leads to the second point: in what respects is

the above manipulation cf the environment better than, say

~ref. [2~3"? The VDL models used the grand state approach and

the environment, as well as all "stacked" versions, were

co,tailed in the state. This ~eans that, potentially, they can

he modified by any function. It was then necessary to show that

the interpretation of two successive statements in a statement

list was under the same environment. Moreover, such proofs were

non-trivial because if the first statement was, for example, a

call, the environment was indeed dumped then changed: the proof

had to show that by termination of the interpretation of the

call, the dumped environment had been restored. The passing of

environments as arguments, on the other hand, shows guite

explicitly that two successive calls of int-st are passed

exactly the sa~e argument. (This was the subject of the,

somewhat tedious, ~roefs of the first two lemmas in ref. [g].)

The language now available is rich enough to discuss the topic

of ~£n~ ~£~i~i~. In the definition given, it is assumed

%hat certain conditions hold for abstract programs which are

not expressed by the syntax rules. For example, the definition

would simply be undefined for a program which attempted to call

a simple variable or which called a defined procedure but with

less arguments than parameters. (The attempt to include such

type rules in the abstract syntax of ref. [I] was an

unnecessary encumberance.) It would, of course, he possible to

write appropriate checks i~tc the defining functions. This,

however, would net show that the checks, in this language, are

of a static nature. That is, it is possible to define a

predicate -

is-well-formed : ~roc -> {tr_ue,_fa_!se}

which only yields tzue in the case that all such static context

conditions are fulfilled. This is not intended to take a

position on to what extent type questions in a language should

be statically checkable° It is only to argue that it is a

useful ~roperty of a definition to explicitly show what is

static and what can only be checked dynamically. (Rn

415

associated ~oint is that it permits freedom to an

implementation for programs which contain statically checkable

errors i~ an unexecnted part).

It would be possible t o define both blocks and function

procedures in the style of this section.

1.6 F ux!her ToEiN~

This section will consider how some other, familiar, language

ccnstrucis could be tackled in the same spirit as above.

With regard to fl£~£, it is straightforward to extend the last

definition to cover S£~2 out of procedure calls. This, along

with the merging of the other features already defined, is done

in the Appen@ix. ~he problem is simple because only known, and

therefore most recently activated, instances of labels can be

referenced. [f the language allows the passing of labels as

parameters this property no longer holds. It is now necessary

to make each instance cf a label dynamically distinct and to do

this requires some mechanism like the activation identifiers of

ref. [~].

The i,troduction of label variables (or, in fact, entry

variables) into a language brings with it the additional

consideration of referencing a label instance which Do longer

exists. Algol 68 avoids this by constraining the lifetime of

any target variable to be not-greater than the lifetime of the

label being assigned. PL/q d~s not make this restriction and

so the definition is forced to add a validity check via

something like a set of currently active activations.

The definition of call-by-value is simple to include by the

creation of a special location which will be the only one

affected by any changes via the parameter. This is a close

model of the A]gol 60 description of assignment to new

variables in aD imaginary block. The fact that Pi/I makes the

416

choice between call-by-value and call-by-reference o n the

calling side is shown in ref. [4]. The pmore powerful

ca~!-~y-~a~a of Algo~ 60 is handled via the mechanism for

passing procedures.

it is frequently desirable in a !a,guage definition to leave

the i~Dlementer some freedo~ of order of evaluation. This is a

wider freedom than optimisations which guarantee an equivalent

result. ~cr instance, it may be reasonable to permit the

access cf referenced variables in an expression to be made in

any order even if the expression contains function references

which could cause side-effects. In allowing such orders in a

definition the language designer is warning the user not to

write programs which rely on any particular order. The question

of how tc formally define such freedom is an open problem!

First note that in -

(a + (b + c))

the definition may wish to allow not only -

a h c, a c b, b c au c b a

but also -

c a h etc.

It is net, therefores adequate to choose one path or the other

at each branch: it is necessary to inherit the arbitrariness.

The response of VDL to this problem was to sake the control

component of the ~achine into a tree. The operations to be

performed were But on parallel branches if they were to be

executed in any crder and the IAMBDA function randomly chose

any available leaf of the ccnt£cl for execution.

The definiticn in ref. [I] was in fact very similar and only

achieved its functional nature by building this relevant

Droperty of LAMBDA into the definition. Since the only place

such arbitrary order cculd occur was in expression evaluation

this was in fact a reasonably small impact.

417

The definition in ref. [4] shifts the problem to the

meta-language by introducing the "," separator. The problem is

not solved because the definition of a combinator which

provides for the inheritance of sequencing freedom is not

provided.

9. Beki%, among others, has pointed out that to combine two

pieces of "interfering" program it is necessary to know more

than their (extensional) functional meaning. His approach to

this problem is discussed in ref. [3]. While this approach may

be generally required, the current author would prefer to

pursue the definition more axiomatically: in the first place by

defining conditions of good cooperation that guarantee

~on-interference.

One final area, that of Storage Models, brings in the role of

axiomatic parts of a definition. In some languages there is

great freedom left to the implementor as to what storage

mappings of the data structures are required. In PL/I, for

efficiency reasons, the programmer can take alternative views

of an aggregate and thus the language does somewhat constrain

the mappings. Even in ref. [q], however, it was found

worthwhi3e to state the basic storage model abstractly (for

example, viewing an array value as a mapping from a (hyper-

)rectangle of integers to values, rather than as a linearised

list thereof) and to express the additional constraints

separately. For a fuller discussion see ref. [2].

I. 7 S_~u_m_ma__r Z

The difficulty of defining a programming language as distinct

from a purely functional language is that changes to a state

occur. A functional definition in which functions are read

extensionally (of. section I. 2) is not immediatel~ applicable.

Three alternative solutions were di~ussed; to consider the

definition as an interpreting program (ref. [2~D ; to consider

all interpreting functions as ha~ing an additional argument and

418

result which is the state (ref. [I]): %o consider the defining

fu,ctions as producing a functions from states to states (ref.

[!9]}. I% is possible, by adopting carefully chosen notation,

to write in a style which can be read in more than one way.

Except for the problem cf arbitrary order, combinators can be

provided which permit ref. [4] to be read in all three ways.

The advantages of the different ways of viewing a definition

are returned to in the next part of the paper.

Whatever one's chosen viey of a semantic definition, there are

more important considerations which influence what is written.

The central guide-line proposed is that the definition should

not possess properties ~hich are no% inherent in the language

being defined. This is ,or to say that such definitions are

wrong in the overall effect they describe for a program, but

rather that a proof is often required that certain details of

the model haYe no effect on the final outcome. If the model can

eliminate such details it will facilitate the use envisaged

below.

~xa~ples of where definitions can be over-specific range from

the use ef the grand state approach to trivial items like the

use of lists vhere sets conld suffice for components of the

state in ref~ [25].

Before proceeding %e the discussion of proving a compiler

correct with respect to a language definition, a few moments

should be spePt on the question of the correctness of the

language definition. Rs far as -proving" that the definition

corresponds to a normal verbal definition, there is little

hope. Most such standards descriptions are a mixture of

properties (axioms) and partial models for the language. Even

if it were possible, which it is not, for the natural language

to he read precisely, such definitions would be shown to be at

best i0cemplete, at worst inconsistent.

The direction followed by ref. [25] is, of course, very

encouraging in that it is a huge step towards standardising via

a document which could be considered to be formal.

419

In spite of the difficulties in establishing correctness, it is

possible to consider some property like consistency, it the

most trivial level a definition of the size required by current

languages should be checked to be free of clerical errors like

passing the wrong number of arguments %o a function. Much more

subtle are the guesticns of termination and existence of

implicitly defined objects. In ref. [4] an attempt has been

made tc insert pre, ~cst and assertion comments as an aid to

seeing why the authors believe the definition to be

"consistent". The guestion of what a proof would entail is

currently under consideration.

2. DEVELOPMENT OF i TRANSL~TOB SPECIFICATICN

The overall task under consideration is the creation of a

program to translate texts of a source language into texts of a

machine language. Based cn a definition of the source

language, this section discusses how to obtain a specification

for a mapping from the source to the object language. It is

obvious that before this process can begin, an understanding of

the object machine is required. The question of whether this

understanding must be "formally" doCume, ted is returned to

below. The step by step development process to be discussed is

very similar to that in ref. [15] (and even ref. [9]).

The first question to be resolved is which of the reading

styles of the source definition are to be adopted. This

question must to some extent remain open until more examples

have bee~ fully ucrked out. There seem, to the current author,

to be two arguments for taking the interpretive view of the

definition as the basic one. Firstly, it is very unlikely that

the case distinctions, which have been shown in the source

definition, are exactly those required in the choice of code to

be produced. Secondly, a mapping of source programs to

functions from states to states has more to be developed than

these generated functions: manipulations of, for example, the

environment will also require modelling in the object state.

420

The abstract state of the source definition was chosen to

permit a large range of implementations. The time has now come,

with a particular machine in view, to be more specific. The

designer ~ s task is to find concrete realisations, on his

particular object machine, for the abstract state. This

development might be a multi-stage process in the case of

developing something like an ~NV to a display model like those

of ref. [7]. Each stage of development proTides a new, more

concrete, version of an object. This model will have

properties not possessed by the more abstract object. For

example a list has an ordering property not present in a set.

For this reason, the appropriate style to document the relation

believed to express the correctness is from (more) concrete to

abstract~ Thus, if Z is a set and modelled by a list L, the set

is retrieved by -

retr-$ {L) =

{L[i]) !-<i-<!L}

type: LIST -> SET

One would then prove that the new function models the old in

the same style as discussed in section 3 (this notion is like

Milner's "Simulation" in ref. [18 D .

Another example of the decisions made during the development of

the interpreter, is the removal of arbitrary ordering. The

flexibility was permitted by %he language to provide freedom

for the implementer. Other than those aspects which result in

real use of parallel hardware, the randomness is removed in

favour of the choice that best fits the compiler design.

The ratio~a!e is to attempt always to find a model and express

its correctness by sho,ing how, among other irrelevant details,

it computes the result of the previous stage. In this way it is

possible tc avoid large equivalence proofs whose structure is

hard to see. In fact, for many stages, documenting the retr

functions may itself be an adequate Justification. The

definition is thus providing, not only the correctness criteria

b~t a]se a basis for the correctness argument.

421

~t the termination of the work detailed above, which may be

multi-stage, there exists an interpreter which functions on a

state representable on the object machine. The state

transitions, however, are still written in a meta-language. It

is now possible to record the machine operations which are

believed to produce exactlT the same state transformation. In a

sense, this can be considered as documenting assumptions about

the object machine which may be a more attainable goal than

seeking its full formal definition.

Tt should now be possible to read the interpreter as a mapping

by expanding all of the case distinctions which are static in

the sense that they depend on the text alone. If the machine

operations are inserted, this is now a function from (abstract)

source language to the object language.

Such a function will serve as the specification for the

~evelopment to be described in section 3. It is important to

note that the subsequent development requires no understanding

of the source language! The meaning of the language was used to

justify this mapping. The mapping itself is a specification

purely in terms of strings.

Tt is nov appropriate to consider an example. Tt might have

been useful for this section tc consider some model of the

block concept (of. ref. [7]), but it will provide a better link

to the next section to use the example of compiling

expressions.

Consider the language of section 1.3, States are -

I DEN:id -> INTG

Given, is -

2 apply-op : I~TG op INTG -> IRTG

422

Then the definition could be written -

_c_a_s e_s e:

mk-inf-ezpr (el ,op,e2) ->

tlet v1:eval-expr(el) :

!et v2: eval-expr (e2) ;

result iS (apply-op(vl,op,v2)))

sk-war-ref(id) -> contents(id)

sk-const(n) -> n

type: expr => IN~G

int-st-I (st- I,i) :

if i -< !st-I

t~

(_let mk-as-st(lhs,zhs) = st-l[i]:

l_~et v:eval-expr(rhs) ;

~ssign (lhs,v) :

int-st-I (st-l,i+ !))

else

!

type: as-st~ INTG =>

Now, considering an actual machine, the first problem to note

is the way individual values are retained by the "l.~e% vi" even

though the eval~ation of the ether sub-expression may itself

give rise %o man~ such ~ses. On most Rachines this would give

rise to some ~se of temporaries, so consider storage extended

s o t h a t -

5 DENt : (id I T)-> INTG

where -

6 id ~ T = {}

423

A simple algorithm can nov be given which will a c t as an

interpreter on the new class of states. ~he author is aware

that superfluous assignments are made - but their removal

lengthens the example without adding any new concepts).

trans-expr (e, J) :

_cases e:

mk-inf-expr(e1,cp#e2) ->

(trans-expr (eq,j) ;

trans-expr (e2, J÷1) ;

assign (t[j],appl~-op {contents (t[j ~ ,op,

c o n t e n t s (t [J + 1 9))

ink- va r - r e f (id} - >

assign (t[J],contents (id) }

ik- const (n) ->

assign (t[J],n)

tTpe: expr !~TG =>

t tans- st- 1 (st- l,i) :

!! i <_ !st-I

t_hhen

(let mk-as-st(lhs,rhs) = st-l[i];

trans-ezpr (rhs, I} ;

assign (lhs,contents (t[I]} } ;

trans-st-l(st-l,i+ I) }

e..! s_~e
!

type: as-st* INTG =>

To show that the trans-expr interpreter models eval-expr, it is

necessar 7 to prove -

contents (t[j]) after trans-expr(e,j) -- eval-expr{e)

If one appends the statement that for i < j, trans-expr (e, j)

leaves contents (t[J]) unchanged, it is easy to prove the

424

combined p~operty b T str,ctnra! induction on the class of

expressions. The further extension to as-st lists is trivial.

As suggested above the new interpreter has been shown to model

%he original defining interpreter by showing how to retriexe

the results of the latter from the former.

The type of the function

assign (t[j],ap~!y-op (.. o))

is DENt -> DENt

Suppose the object machine is of 3 address type (of. I~M Iq01)

then, an appropriate instruction uight be -

op = A_D_DD - ~DD (t[J],t[j],t[j+ 1 3)

Inserting such operations, it is now possible to use the

function %ransaexpr as a mapping from source to object

languages. It is important to remember that this has been

derived step by step from the definition.

(At the risk of labonring the point, it could be remarked that

had the statemeDt counter been made part of a grand state, it

would ,ow pose problems because there is no model for it in the

object state).

It should be clear from the methods used so far that not only

in the source definition, but also in the subsequent

development it is likely to lead to more work if unnecessary

properties are introduced. This, however, touches on one of

the ~rob!ems which has not really been solved. In a large

problem the mapping is likely to be such that it cannot be

expressed conveniently in a "single pass". If a multi-pass

mappimg is described and its structure differs from that of the

eventual translator, the proof is likely to be much more

difficult. Sore work is needed in this area.

425

Before concluding this section it is worth considering what

happens if a defining model is chosen, or given, which is in

some areas of the language too concrete. That is, there are

some details present which do ~o_tt appear in the planned model.

Not only should one refrain from throwing the definition away:

one should also ~o~ embark on a complete equivalence proof. It

has been shown in ref. [10] how one can, as a development

stage, introduce a more abstract notion than that of the source

definition for one area of the language. One can then prove

that satisfying the new abstract notion ensures overall

equivalence. The subseguent development can now be made from

the mere abstract definition. In this respect it would be

interesting to prove that the storage model of ref. [25] was a

model of that in ref. [~].

3. FORMIL DEVELOPMEN~

Faced with a program specification and a code listing it is

difficult to ascertain whether the latter satisfies the former.

The basic intention of Formal Development is to provide a

framework in which the design can be recorded step b~ step.

Thus, the idea of top-down documentation of a development is

subscribed to. In addition it is argued that each level of

development can be documented precisely enough that its

correctness can be the subject of a proof.

It is important to distinguish the current proposal from the

idea of writing a program then constructing a proof that it

fulfills its specification. The possibility to use abstraction

during a development makes the construction of a step-wise

proof far more tractable. Furthermore, the amount of work to be

redone, when an attempt to construct a proof uncovers an error,

is reduced.

It may also avoid misunderstanding if it is stated right away

that Formal Development is not proposed as a rule to order

invention. The backtracking and effect of inspiration conveyed

426

by ref. [20] are much more typical of program invention. But,

Just as one frequently rearranges a proof when writing it up,

it is worth documenting a design so that a reader can see a

cohere~% development of ideas.

Two main sorts of development steps are discussed. The first is

the one norla!Iy connected mith top-do~ development. Given a

specification of w_hha~ is required, one writes some sequence of

operations which show hoXw the task may be achieved. The

operations may be either statements of some language or assumed

sub-operations: in either case their specifications are also

recorded. Since some formal notation is being used it is now

possible tC write down M~I one believes t h e combined

sub-operations perform the give~ task.

The second sort of development step comes from the wish to use

abstractions of normal data objects. By using objects which

only have the properties relevant to an algorithm, it is

possible to drastically reduce the length of both

specifications and correctness arguments. At some point in the

development it becomes necessary to seek an efficient

representation which can be described in the language being

used: such steps of development are considered in section 3.2.

!~!___o_me_r~.~io~a! A__bb_s_t_ra_c/tio~

Operations are considered to be transformations on states from

some class, say Z. For some operation, say CP -

means that OP will ~rcduce a state ~' when "run in" a state

(only deterministic operations are considered in the current

paper).

The term abstraction is applied because operations, which may

not De available (other than by a yet to he performed

427

construction) can be discussed. They are in fact discussed via

an implicit specification. The definition of an operation will

be given via two predicates one which specifies the domain over

which it must yield a result -

pre-OP : Z -> {t_~rue,f~!se}

pre-oP(q) = (3#') (G [OP] ,')

and the other cf which specifies the input/output relation

required for the operation -

post-OP : Z Z -> {tr_ue,false}

pre-OP(#) ^ w [OP] #' = post-OP(#,#')

If both of these conditions hold the fact is recorded by -

pre-OP <oP> post-OP

These two predicates, then, record everything necessary about

the meaning of OP (there is of course nothing about performance

etc.) .

Suppose a specification is given in this form, how does one

proceed? The problem is decomposed to sub-problems by choosing

a set of (simpler) operations, which, if one had them, could be

combined in some stated way to fulfil the specification. The

assumptions on the sub-operations will be recorded in exactly

the sate style. Eventually all of the sub-operation assumptions

will be true of statements in the language being used. Until

that time they provide specifications for further work.

The most trivial way of combining two operations in most

languages is to separate them with ":" showing that the

execution of the first is to be immediately followed by

execution of the second. The conditions necessary to show that

such a combination of the two operations -

428

pro-OPt <OPt> post-OPl

pre-OP2 <OP2> post-OP2

will satisfy -

pro <OPI~OP2> post

are firstly that each operation will only be used over its

stated domain-

pro(G1) = pre-OP1 (=1)

pre(,1) A post-OPt(,1,=2) = pre-OP2(q2)

and secondly %hat the overall input/output relation can be

~erived frow the combination -

pre{#1) ~ post-OPl(~1,e2) ^ post-OP2{,2,~3)= post(,1,,3)

(The adequacy of these conditions is proved in refo [12])~ For

such a sisp!e combination, the requirement to prove three

lemmas appears excessive. In wany sit~atious however, special

cases can be applied. For instance, with total operations (pre

= ~X~) the first two lemmas are vacuously true. Furthermore,

it is certainly not being suggested that every use of ":" in a

program should be accompanied by formal proofs: but a check

list has been provided to which an appeal can be made in case

cf doubt.

The reader should observe that a specification is passed on to

the next stage of development which states all of the

properties relied onQ Thus it is not necessary to later show

that the development cf that operation does not disturb the

current proof. There is a complete split of the problem of

providing J ~stif ications.

More methods of combining operations are defined in the same

style by ref. [12], section 9 of that paper also considers how

the set could be further extended.

429

3~ many respects this might be the more important of the two

forms of abstraction being considered: it is certainly the one

which is under-employed.

The idea of data abstraction has, in fact, already been used in

the earlier parts of the paper. The language definitions and

mappings have both used an abstraction of the program text

(i.e. that class of objects described by the abstract syntax).

That this was necessary can be seen by considering the

alternative of redefining %hose functions in terms of concrete

strings.

If then, it is difficult tc even state the specification in

terms ef detailed data representations, it will become

impossible tc write arguments for correctness at such a level

of detail.

The proposal is that development of an algorithm should only

bring in those properties of the data structure that have an

effect on the algorithm. That this permits a reasonable

percentage cf the development can be seen in the example of

section 3.~ below. ~hus one is able to postpone fixing the

represe,tafion of a data object until adequate reason (e.g. the

performance of a sub-algorithm) can be ascertained.

The interface between operations might, then, be described in

terms of sets or maps for example: in the final code linked

lists or hash tables might be the chosen representations.

~t is necessary to discuss what goes on in a development step

which refiDes a data representation. Essentially what one is

doing is adding properties t o the data structure (e.g. the list

has an ordering property not present in the set). It is

possible to re~iev~e all of the data of the abstract level from

the more concrete.

430

Suppose an opsratic~ ~n states of class D has been used, such

that -

prod <OPd> postd

and one now wishes to show that -

pree <OPe> poste

is an adequate simulation. If is sufficient to find a

relationship between the two state classes -

retrd : g -> D

which shows that OPe works on a wide enough class of states -

pred(d) ^ retrd(e)=d = pree(e}

and that the ne~ operation produces states matching (under

retrd) those produced by the old operation -

prod(d) ^ retrd(e)=d ^ poste {e ,e ') = postd(d,retrd(e'))

(This ~ction differs from that in ref. [18] in that the

Operations are Dot, necessarily, functions).

3j___~le___o_f_~_xa_re_s si o_n_C_o_~ t_ii_on

The input/output [elation given for trans-expr in section 2 is

defined %o operate cn objects of type "expr". These were

conveniently chosen to be tree representations of %he original

linear form (presumably infix). Without going all of the way to

consideriDg the parsing and tokenising of an external string,

consider a reverse-~olish text which might result from such a

first parse-

431

c-expr ::= c-inf-expr ~ c-Tar-tel ~ c-const

c-inf-expr ::= c-expr c-expr c-op

c-var-ref ::= ...

c-const ::= ...

The relation of this to the class expr can be specified hy a

retrieve function which uses a stack -

retr-expr (tl) =

!_o_r i = ~ _to ! t l ~o

(is-c-var-ref (tl[i]) ->

~ush (retr-var (tl[i]))

is-c-const (tl[i]) ->

p.ush (retr-ccnst (tl[i]))

is-c-op (till]) ->

(!_e_t e2: p_q~;

l~t e1:~o~;

9.~sh(mk-ex~r (el,retr-op (tl[i]) ,e2)))) ;

result is (~o~)

type: c-expr -> expr

Not only does this retrieve function give the correctness

criterion for the following translate function, the stacking is

suggestive o f a way to track the temporaries,

432

Assuming an external variable b -

trans-c-ezpr (t i) :

~~_r i = I t c _! t l do

(is-c-var-ref (tl[i]) ->

(b:=b+ I;

assign (rib],contents (retr-var (tl[i ~)))

is-c-const (tl[i]) ->

(b :=b+ t ;

assign (t[b 3, retr-const (tl[i])))

is-c-op(tl[i]) ->

(assign (t[b-1].appl y-op (contents (t[b- I),

retr-op (tl[i ~ ,

contents (t[b]))) ;

b := b-l)

type: c-expr =>

The correctness ca~ now be proved if -

b := O; trans-c-expr(tl|

trans-expr (retr-expr (tl) , I)

This result follews from a Froof, by induction on the length

{and possible ccnstructions of) tl, of the stronger statement -

b := k; trans-c~expr(tl)

leaves b = k + I and creates the same as

frans-expr (retr-expr (tl) ,k+ I)

The rather short treatment of Formal Development offered may

leave the reader unclear as tc he, a bigger example looks.

Whilst the notation used in ref. [12] is thought to have

correctly made the step from development via functions to

development via operations, the example of that report is

433

unconvincing. This is mainly because the algorithm considered

was so oriented to arrays that the use of an abstract data

representation is somewhat artificial.

The example of ref. [11] is more interesting with respect to

data abstraction and a short outline of a rewrite of its

development is now given -

Specification:

algorith~ -

find a (general, table driven recogniser)

REC : grammar nt s y m b * - > {_Y_E_S,~O}

Where the abstract form of a grammar is -

grammar : nt -> rhs-set

rhs = el*

e! = symb I nt

The pro-condition defines that there are rules for each

non-terminal and that there is exactly one rule for the

sentence non-terminal. The post-condition states that R~C

should yield "YES" if and only if the symbol string can be

produced from the given gra$mar. ("Produceable" is defined).

Step I: Splits the problem into an input stage which stores the

grammar: a main stage which creates "State Sets" which will

contain information on all possible top-down parses: an output

stage which yields YES or NO depending on a predicate of the

state sets. The storage for the grammar is still specified in

terms of the (abstract) map. This may be a disappointment to

the programmer assigned the task of constructing the input

routine since he has little to work on yet. But the cost of

fixing this interface for his convenience is that the far more

time consuming parsing operation has not yet been developed far

enough to get h~s views on an efficient representation.

The state sets are also described abstractly (as a list of sets

of tuples) since the purpose of this stage is to show that

certain upper and lower bounds on the state sets are sufficient

434

to make the final Fredicate correct. Notice this extreme form

of abstract definition. There is a great deal of freedom in the

give~ bounds and different algorithms could be constructed to

use this freedom. (In fact the specification has been of

considerable use in considering optimisations).

Step 2: introduces Earley's operations (Prediction, Completion,

Scanning] which generate nee stales. The state sets are defined

as the ~inimum sets satisfying a certain equation. Such sets

are showP to fall within the bounds stated in Step I. Notice

that not o~ly are these operations defined in terms of abstract

data objects, they are also implicitly defined. This is in

distinction to ref. [8] in which the algorithms are programmed

with operations on the abstract data: this form of development

is employed later.

Step ~: Begins %c ccnsider representations by mapping state

sets onto state lists. But notice that, since a list of lists

is not a convenient data object in a yon NeQmann machine, the

step to a concrete representation is not yet complete. Using

the chosen algorithm on lists it is necessary to iDtrodnce a

restriction (no zero length rhs) to the allowable grammars. ~t

would, however, have been possible to use a different algorithm

at _this stage of development and avoid the restriction.

Step 4: Makes a similar ordering step to the data structure

representing grammars.

~t this mcint most of the algorithms as such, is designed and

it ix clear what the common oFerations on the data structures

are. Now is the time to give the concrete (~L/I) data objects!

(In fact those used were quite complicated HASEE variables with

the REFEP option.) Doing this prompts a macro style of data

abstraction like refo [5] which is similar to that used in ref.

[S].

4. SU~M~RY

435

The aim of the paper has been to show how a large problem, in

this case the development of a compiler, can be decomposed into

small steps. Providing each step is adequately documented, a

complete design history is thus obtained. One of the views

expressed is that each stage of development should be supported

by a justification. ~his implies that steps of design are

recorded in a notation cn which it is nossible to base a

correctness argument. Such correctness arguments are sought

with a view to human readers rather than mechanical theorem

checkers.

The key to making such an approach practical is the use of

ahstraction. In each of the sections the value of stating the

minimum properties has been shown. Although it is frequently

more difficult to find an ~FFropriate abstraction than to

provide a construction, the advantages of the former make the

effort worthwhile.

By emF]cying both data and operational abstraction, a view of

the development process is obtained where the successive stages

are rea]isations of the same algorithm at ever greater levels

of detail. Taking this view, the normal style of correctness

argument is based on showing how the (more) abstract model can

he retrieved from the (more) concrete realisation. In this way

it is possib]e tc avoid general equivalence proofs.

The requirements of a design language to be able to specify

operations imp!ici%ly and tc ~se very abstract data objects are

very different from these of ~rogramming languages. A!tho~gh a

particular netatiGn (that of ref. [4]) has been employed as the

design language, it should be emphasised that it is the method

not a Farticular notation which is being proposed here.

436

Ackncwle~sement

~ost of the ideas contained in this paper were developed i~

co]]ahcraticn with se~bers of the Hsrs!ey and vienna IBM

Laboratories. The members and meetings of IYIP WG 2.3 have also

been a great stimulus.

~eferences

[I] C.9.%]]en~ 9.N.Chap~an and C.E. Jones, "A ~ormal

Definition of Algol 60", IB~ Hursley Technical Report, TR

12.1~5 August 1972.

[2] H.~ekie and K. Walk, "Permalisa~ion of Storage Properties"

i~ ~'Sym~osiu~ on Semantics of Algorithmic Languages"

[Ed.) E.Engeler, SF~iDger-Verlag Lecture Notes in

~athema%ics No. IS8, October 1979.

[3] H.Beki&~ Presentation on "Semantics of Actions" given at

Newcastle University, September 197~.

[~] Ho~eki£ et a] "A Formal ~efinition of PL/I" to be printed

as a Technical Re~ort Gf T~ Laboratory Vienna.

[5] A.Hansal, "Soft,are Devices for Processing Graphs Using

PL/I compile-time Facilities", Into Proc Letters. 1974.

[6] W.~e~hap] a~d C.B. Jcneso ~'On the Interpre%ation of Gore

Statements in the VDL ~, I~ Vienna Note, LN 25.3.065,

March 1970.

[7] ~.He~hapl and C.B. Jones, "The Hlock Concept and Some

Possible Implementations, with Proofs of ~quivalence",

IBM Vienna Tech,ical Report, TN 25.104, April 1970.

437

[8] C.A.R.Hoare, "Proof ef Correctness

?epresentations", Acta Informatica, Vo!. 1,

1972.

of Eata

pp 271-281,

[9] C.B.Jo~es and P. Lucas, "Proving Correctness of

Implementation Techniaues", in "Symposium on Semantics of

Algorithmic Languages" (Ed.) E. Engeler, Springer-Verlag

Lecture Notes in Mathematics No. 188, October 1970.

[10] C.B. Jones, "Sufficie ~t Properties for Implementation

Correctness: Assignment Language", IB~ Hursley Note, TN

9002, June 1971.

[11] C.B.Jcnes, "Formal Development of Correct Algorithms: An

Example Based on Harley's ~ecogniser", presented at AC~

S!GPLAN Conference, SIG~AN Notices Vol. 7, No.l, January

1972.

[12] C.B.Jcnes, "Formal Development of Programs", !~M Rursley

Technical Deport, TR 12. 117, June 1973.

[13] P.J.Landin, "R Correspondence Between Algol 60 and

Church's Lambda-Notation: Part !", Comm. of ACM, Vol.8,

No.2, February 1965.

[14] P.Lucas, "Two Constructive Realisations of the Block

Co,cept and their Equivalence", IB~ Vienna Technical

Report, TR 25.085, 1968.

[15] P.Lucas, "On Program Correctness and the Stepwise

Development cf I mple me nfa tions", presented at IB~

Conference at Pisa University, 1972.

[16] P.Lucas and K. Walk, "On the Formal Description of PL/I"

in Annual Review in Automatic Programming, Vol.6, Part 3,

Pergamon Press, 1969.

[17] J.McCarthy, "Towards a Mathematical Science

Computation" presented af !FIP Congress 1962.

of

438

[18] R.~il~er, "An Algebraic Definition of Simulation Between

Programs"~ Stanford University AIM-I~2, February 1971.

[Ig] P.gosses, "~he ~athematical Semantics of Algol 60",

Oxford University Computing Laboratory, PNG-12, January

197g.

[20] Po Naur, "An Experiment on Program Eevelopment", HIT 12,

pp 3~7=365, 1972.

[21] J.C.~eynolds, ~'Definitic~al I,terpreters for Higher-Order

Programming Languages", presented at 25th National ACM

Conference, August 1972o

[22] DoScott and C.Strachey, "Toward a Mathematical Semantics

for Computer Languages", in "Proceedings of the Symposium

on Computers and Automata", ~icrowave Research Institute

Symposia Series Vo!.21, Polytechnic Institute of

Brcok!yn, 1971.

[23] C. Strachey, ,'Continuations: A Mathematical Semantics

which can deal with Full Jumps", unpublished.

[2~] K.Wa~k et al, "~bstract Syntax and Interpretation of

PL/I", TBM Vienna Technical Report, T~ 25.098, lg69.

[25] "PL/I BASIS/I" ECMA ANSI working document, February 19g~.

439

A ~ p e n d i x

This appendix contains a definition of the language obtained bT

merging the separate features of section I. The definition is

written in a style (cf. the tlpe clauses) which can he read as

mathematical sesantics.

A B___STIR]%CC~. SYNTAX

prOC

St

as-st

goto-st

ca l l -s t

c p d - s t

nmd-st

expr

:: s-nm:id s-parms:id~ proc-set s-dcls:id-set cpd-st

= as-st ~ gore-st | call-st ~ cpd-st

:: s-lhs:id s-rhs:expr

:: in

:: s-pn:id s-args:id~ /'args dcl, proc or parma/

:: nmd-st*

:: s-ns:[id S s-body:st

= inf-expr ~ vat-rot ~ const

inf-expr :: expr o~ expr

vat-tel :: id

const :: INTG

in }

op)

INTG)

not further specified

DOMAINS

ENV: i d - > (LOCI ~ROC-DEN)

S: LOC-> VAL

LOC = infinite set

v~n = I~TG I !

PROC-DEN: (LOC I PROC-DEN}~ -> (S -> S ABN)

AB. = [id]

440

FUNCTIONS

eva!-~roc-dcl (proc) (env) =

le_t <id,par~-l,~rocs,dclsgmk-cpd-st(ns-l) > = proc;

!e_t f~den:!)=

{!_~ ! env' : e~v +

([par,-![i]

[id

[s-nm (proc)

den-l[i] ~ 1<_i_<iparm-l]

eval-dcl|id) ~ id~dcls] u

e val-proc-dcl (proc) (env')

pro cE procs]) ;

(t~a~ ezit (lab} with

(free (dcls,env') ;

e/x!_t (lab)) ;

int-ns-l{ns-l,1) (env')) ;

free{dcls) (envv)) ;

result is(f)

type: proc-> (ENV-> PROC-D~N)

eval-d¢l (id) :

!e_!t !: alloc () :

assign(l) (I) ;

result is(])

type: id -> (s - > s LOC)

free(dcls) (env) :

for all id(dcls d~o

release (env (id))

441

type: id-sef-> {ENV-> (S-) S))

i,t-st (st} (env) :

cases st:

ink-as- st (lhs.rhs) ->

(let v: eval-expr(rhs) (env) ;

assign(e,v(lhs)) (v))

mk-goto-st (lab) ->

ex i t (lab)

~k-cal]-st(pn.arg-l) ->

(l_eet f = env{pn):

1_~et den-I = <env(arg-][i])

f (de,- I))

mk-cpd-st (ns-l) -)

int-ns-I (ns- I. I) (env)

I 1-<i-<!arg-I >:

type: s t - > (ENV-> (S-> S ~BN))

442

int- ns-I (ns- !,i) (env} :

i_f i~!~s- 1

t_~h_en

((t_xa_a _~_xi_t ~lab) _wi_!h_

if is-coDtained (lab,ns-l)

~he@ cue-int-~s-l{ns-l.lab) {env)

_~!gm _e!i_!t (lab) :

int-s% (s-body (ns-l[i D) (env)) :

int- ns-i (n~-lai÷ I) (env))

e_/!_s_e

!

type: hind-st* INTG -> (ENV -> (S -> S ABN))

cue-int- ~s-! (ns-1, lab) (env) :

let i = (hi} (is-ccntained(lab~<ns-l[i]>)} ;

if lab = s-~m(ns-1[i])

t hhen int-ns-l(ns-l,i) (env}

e_!~e ((_tr_a~ e~l~ (lab) _~it___h

i f is°co~tai.ed (lab,ns-l)

then cue-int-ns-l(ss-l.lab) (env)

else e_zxi_~ (lab) ;

cse-int-ns-l(s-body(ns-l[i]),!ab) (en¥)}:

int-ns-I (ns-l.i+ 1) (env))

type: nsd-st ~. id-> (ENV-> (S-> S ~B~))

443

eval-expr (e) (en,) :

cases e:

mk-inf-expr (el,op,e2) ->

(_]_et vq: eval-expr(el) (env) ;

l__e% v2: eval-expr(e2) (emv) ;

r e_sul_~t is (a p~ly-op (vl ,op, V2)))

mk-var-ref(id) -> contents(enw(id))

mk-comst(n) -> n

t~pe: expr-) (ENV-> (S-> S INTG))

is-contained: id nmd-st* -> B

app]y-op: INTG op !R~G -> INTG

alloc: -> (S -) S LOC)

release: LOC -> (S -> S)

assign: LOC -> (VAL -> (S -> S))

contents: LOC ->(S -> S INTG) /* _.~ yields e_~ror */

