¥ormal Definition in Program Development

C. B, Jdones, IBM Laboratory Vienna.

ABSTRACT

The dintent of the current paper is to show hov a large problen
like compiler developrent can be divided in a way vwhich
provides a structure for arguments of correctness., Although
rechanically checked proofs are not envisaged, the use of
forwal notation is reconnended so that the basis for
correctness arguments exists.

The paper reviews three ‘topics; the first tvo are relevant
particularly to the development of compilers; the third is more
general. The subject of the first section is the style of
language definition to be used as a basis for developament,
Beginning with a small language, possible ways of describing
added featnres are discussed.

The selection c¢riterion for definition techniques is their
usability in developing a specification of the compiling
process: it is this development which is the subject of the
second section.

The third section briefly reviews the process of "formal
Development” which has been described more fully elsewvhere.

(:) IBM Osterreich 1974

388

0. INTRODUCTION

This ©paper provides an overview of a number of pieces of work
related t¢ program correctness., Since the possibility of having
completely mechanically checked ©proofs for large programss
appears to be some way off, the approach taken 1is one of
docuwmenting a "justification" for human readers. The paper will
attempt to show how a large prcblem can be decomposed into

spal}l enough steps that such justifications car be convincing.

The particular problem to be considered is that of developing a
compiler, Of course, a compiler is a very special program, but
to oversimplify for a moment one can consider that it is
special only in requiring twc extra stages of development to

precede that which is applicable to any program.

Three major parts of the compiler development problem are
discussed in sections 1 te 3 cof this paper. The first section
discusses the definition of the language to be compiled. This
definitiop of the semantics of the source language provides the
overall cerrectness criteria for the compiler: whatever results
can be deduced abeout a rrogram written in the source langquage
must alsce be true when running the object code produced by
cempiling that pregram, The discussion identifies important
properties of a language definition to be used in the next
stage.,

Given a particular object machine, the next step is to develop
a mapping frem the source to the object language. How this is
done is the sgubject of the second section of the paper.
Fxamples are given of mapping the abstract state objects of the
definition ontc the store of a target machine (cf, refs. [9,
15]).

Any top-down development process nust begin with an overall
correctness criterion: that is, a specification of an
input/cutpnt relation. The purpose of section 2 was to show how
exactly this can be grovided fcr the compiling problem., The
process of developing such a specification by a step-vise

389

process to a runniag progras is discussed in section 3. It is
argued that the use of data abstraction and appropriate choices
of implicitly defined functions can provide the structure for
justificaticns of large programs.

Since no specific length lisit was given to the author, it must
be confessed that his lack of time is the reason that all three
sections are not written up fully. The ideas behind section 3
are well enocugh decumented in cther papers that an overview
should suffice., Althcugh the general direction to be followed
in the work covered by section 2 is clear, the example provided
is very small, This runs into the usual problem that in such
cases it is easy to ‘“see"™ the c¢orrectness, whereas it is
precisely +the inability of our "small head"™ to contain a large
probler that gives rise to the need for a justification. Only
section 1 arproaches the level cf completeness the author would
have liked tc attain.

The ©process of "rFormal Develcpment® outlined in section 3 is
applicable to any programming prchblem. As was obgerved above,
it is an oversimplification to think that it is therefore
sufficient to show how to tackle any other computing task. In
precisely the way that for a compiler it was a significant
problem, gererating the input/output relation for other tasks
will be difficult. It is abnecrmal for initial specifications to
be couched in terms of such relations, and, other than arguing
that its production should be the first step, the curreant paper
offers nc help as to how it can be obtained.

The emphasis thrcughout is on the method of decomposing a large
problem intec small encugh steps to provide a Justification.
Certain common reguirements result from this, one of which is
the necessity to use a formal notation: only then will it be
possible to document justifications. It is not, however, the
intention tc argue for one particular potatjon. ‘

A further technigue, which becomes almost a necessity if proofs
are to be of an acceptable length, is the use of abstraction.
Dijkstra has used the terms "Crerational Abstraction™ to cover
implicitly defined operations and “Representational

390

Abstracticn® to refer to the rostponement of unnecessary data
properties. Both of these technigues will be used, but again no
particular notation is reccmmended.

Tt is the intention 1in the current paper to concentrate on
techniques rather than deep results. Transcending the choice of
a particular mathematical discipline to underly the work are
the practical steps which must appear in any justification: the
attempt is to threw some 1light on these.

1. LANGOUAGE DEFINITICHN 3TYLE

This cpart of the ©paper suggests certain properties of a
language defipition which will facilitate its subsequent use in
develecpment of a translator design. Notice that a definition
censtructed along the proposed lines will not necessarily sauit
other purposes like ©proving programs correct in the defined
language.

Although easy to express (see summary) it is not alvays easy,
given a language feature vwanting definition, to find a
formulation with the required properties. For this reason the
plan adopted below is toc consider separate language features
and possible formulations for their definitions. An attempt has
been made to deliberately separate the language concepts. 1In
this way it is hoped that the reader can see the requirement
for the different formulations in isolation, vhereas in a
complete definition of a language it is often difficult to see
the gource of the complexity. If the current approach vwere
executed op all of the features of the respective languages one
would then be able to explain ref, [1] and ref. [4] as the
tcross products® of their respective <formnlatioms. For,
although the notation of the latter is a step forward, both
definitions possess the properties discussed.

rather than discussing notation, the emphasis bhelow is on
finding the agppropriate model for a language feature. The

391

distinction between and similarities of the so-called
"operational™ and "mathematical™ approaches are considered but
it is argmed that there are criteria for choosing the model

which transcend the distinction.

Host of the solutions discussed are behind a number of current
language definiticns. Only the solution of the goto problem is

A

novel,

Tn corder to provide an overall context for the decisions made
below it is worth pointing out the origin of the difficulties
which led to a reconsideration of some aspects of the "VDL®
{(Vienna Definition Language) notation. During 1969/70 the
agthor had the pleasure cf co-operating with P. Lucas and his
colleagues on attempts to document correctness arguments for
compiling algorithns ba sed on the then current forpal
definiticn of PL/T (ref. [24]). Although the feasibility was
sho¥np in refs. [14, 7, 9], a number of difficulties were
encountered, With the excepticn of the use of the control
mechanisy {see 1.4 below) these were certainly not caused by
any shertcorings in the formal onotation itself. The common
origin of most problems was, in fact, the tendency to be "over
specific® in its use, By this is meant that the abstract
interpreter used +to define the language sometimes indicated
results net required by the language. Although it vas
certainly possible to deduce that such results had no effect on
the final cutcome, this procf frequently went far beyond the
part of the language under consideration.

A simple exanple was the wuse in some VDL models of a never
recurring "unique name generator" to obtain new locations when
required. This certainly gave a sufficient model which gave the
required cutcome, However, if one wanted +to prove correct a
stack isplementation, in which +the 1locations of previously
closed blocks could be re-used, one was more interested in the
pecessary conditions of wunigueness. Wow it was, of course,
possible tc prove that, since nev locations were initialised to
an undefined state, it is permissible to re-use discarded
lccations. However, cne was paying with a very expensive vproof
the saving of relatively few lines of definition.

392

The tasic waxim to be followed then will be to avoid giving
properties to the definition which are not reguired by the
language.

Before coping to the language features proper, a brief section

on notation is offered.

The forwmulae which follow should offer no difficulty as regards
their use ¢f notation for set and logical operations. Use is
alsc made of simple programming constructs like "if thepn else"
and conditional statements, This section confines itself +to
sketching meanings for the non-stapdard items. TFor a more

complete discussicn see vart 1 of ref. [4].

The concept of Abstract Syntax, introduced in ref. { 17], was
used to advantage in the VDL definpitions. Not only is its use
still considered mandatory to divorce a semantic definition of
a language'from the richness of its syntactic alternatives; but
also the subseguent parts of this paper will shovw its

importance in translator develcpment.

The abstract syntax notatior now used has been changed somevhat
from ref. {247 in corder tc shorten and clarify descriptions.
Given a grammar it can be read as set eguations as follows -

Blementary Objects as names of unit sets -
ABC ~ {ABC}
Non-terminals as names of the sets defined in the respective

rule.

Rules for defining alternatives of nnon-terminals -
£ = X|% - ¥= Xy 2

393

Rules for introducing ccnstructers -
X 22 YZ - X = fek-X{y,2) | YeY A zeZ}

farthermore, selectors can be introduced -

]

X 22 s~n1:Y s-n2:2 -~ s-n1{mk-X{y,7)}
s-n2 {mk~-X {y,2))

#
1]

The use of a nonterginal name which ends in "%" (V-get®)
denotes a list (set) of objects of the class defined by the
name without its suffix.

To test for membership of a set -
is-¥{o) or is~-X{0)

Other thar decomposition by selection it is possible to
decompose by using the constructor on the left of a definition-

let mk-X{y,2}) = x ~ let ¥y = s-n1(x)
let z = s-n2(x)

Use is alsc made of this binding of names in a cases construct-

cases w:

rk~X{y,2) ~> £(y,2) ~ is~X{w} -> {let ak-X(y,2z) = w;
£{y,2))

2k... iSe..

At the points vhere it is necessary to discuss more carefully
the manipulation of functions, use 1is made of the Lanmkda
notation~

£Ux) = .eaXeuo -~ f = A% ce.X.euo

However, these uses will coften be "sugared" in Landin's style
(see ref. [13])

)}~ (xx.gi(x}) (e}

394

Maps are used where the graph of a function can be explicitly
constructed -

[dt -> r11 explicit definition
[d->1 1 p(d,r}] implicit definition
+ joining

are the counterrarts of the set concepts.

Toe core now to the problem of Semantic [efinition. The
definitiors given below will be wuritten in terms of functions
from stated domains to ranges. In using the term functional
sepantics it is intended to emphasise the distinction from the
¥bL style models, ref. [16], in which an explicit control
component exists in the interpreting wmachine (this point is
discussed more fully below in connection with the goto
construct). The relaticn betveen functional semantics and
mathematical sepantics ref, [22] is of more interest and will
be reviewed in connection with several of the language features
considered, To begin with it is worth showing the definition of
a langnage which is itself functional and thus affords an easy

path tc functionpal semantice.

1.2 Expression_Language

Consider the language given by the following abstract syntax
rules -

B1 expr = inf-expr | var-ref | const

B2 inf-expr :: exyr Of expr

83 var-ref z: id

B4 const :: INIG

385

The <class op is not further specified other than by the

existence of a function -
B5 apply-op : INTG op INTG -> INTG

Now, for a given set of denctations (the terr "environment"® is
avoided because it will be used below) for the free
identifiers~

B6 DEN : id -> IN1G

the denotation of an expression, which is also an integer, is
given by -~

B7 eval-expr{e,den) =
£ases e:
mk-inf-expr(el,op,e2) ->
{let vi=eval-expr{et,den);
let v2=eval-expr{e2,den);
regsult is (apply-op{vi,op,v2}))
nk-var-ref{id) ~> den(id}
pk-const{n) -> n

type: expr DEN ~-> INIG

This definition has the ©property that the denotation of a
composite expression depends only on {and can therefore be
constructed from) the denctaticns of its component expressions.

The introduction of the concept of a dynamic assignment to a
variable is perhaps the @most distinctive feature of a
progranming language. The fact that, in contrast to
mathematics, ome is forced to consider the value of a wvariable
at a givep point in time foses problems for the definition of
semantics.

396

1.3 Assjignment Landuage

Consider the language whose programs consist of a sequence of
assignment statements {as-st) which can be described =~

C1 as-st*
C2 as-st :: s-lhs:id s-rhs:iexror

The effect of such a sequence of statements will be to
transfore sope ipitial set of denotations for the variables,
step by sStep, into their final denotations. Thus it is no
longer sufficient to consider the DEN as an argument to the
interpretation: the DEN reguired as the argument to the second
{and subsequent) calls c¢f the interpretation may have been
changed by the interpretation of the first assignment. The
function given belc¥ appears to ignore this problem by simply
omitting all mention of the DEN, This is done hecause the
intention is to c¢ffer a number of different explanations. It
should ©be possible to see the intent of what is written if one
accepts that assign ®%changes" the DEN for the given id, and

assumes eval-expr uses the current DEN -
C3 int-st-1{st~-1,1)

C4 ipt-st-1{st-1,i):
if i < 1Ist-1
{let mk-as~-st{lhs,rhs) = st-1[i];
let v:ieval-expr(rhs):
assign(lhs,v);
int-st-1{st-1,i+1}}

type: as-st> INIGC =>

1t is ©possible +to consider three ways of reading such

formulae, The firset possibility is to read them as progranms.

397

Az such, each functicn would ccrrespond to a subroutine which
refers to one nen~local variable (i.e. the DER), Tt is, of
course, the same non-local variable referenced by the modified
eval-expr and all calls of int-st~l. The sub-program assign is
trivially defined to rodify this variable, The separator ";¢
has its usual ordering implications. Subroutine +type <clauses
are written with "=>", and their calls are marked with a ":¥%,
in both cases to distinguish them from pure functions.

Given this view and using the notation of ref. [12], the types
could be given in full by -

int-st-1 :: DEN:as-st* IRTG ->
eval-expr :: DEN:exrr ~-> INTG
assign :: DEN:id INTG ~>

Rith +this sieple, constructive, viewv it is already possible to
discuss one of the desirable properties of a language
definiticn, McCarthy has used the term "™Spall State" to
describe a definition in which only those things which change
very dynarically are put into the state used by the defining
functions., This is ip contrast to a "Grand State"™ style in
wvhich all wvariables, with the possible exception of progras
text, are put into the state, Although in this trivial language
there 1is no incentive to do so, it would have been possible to
make the statement counter part of the state and show
sequencing by a side effect on this new non-local variable. The
disadvartage of taking this approach is that it would not be
clear, without further inspection, that the statement counter
could nct be affected by, for example, eval-expr.

Returning now to the discussion of alternative views of the
function int-st~1. The second rpossible interpretation is to
regard all functions as taking an extra argument and yielding
an extra result: in each case a DEN., This, which is the view of
ref. {1], would give-

int-st-1: as-st* INTG DEN -> DEN
eval-expr: expr DEX -> INTG DEN
assign: id INTG DEN ~-> DEN

398

{(In fact it is oftep possible to simplify; in the above
example, since it can cause n¢ changes, eval-expr need not
return a DEN.)

But it is no longer possible to rely on the programsming viev of
wen_ T¢ is necessary to describe it as a combinator between
functicns. The task of doing this is complicated by the various
alternative contexts and it is easier to show the result which
would come from using the combinator -

int-sgt-l{st-1,i,den} =
if i < 1st~-}
then
et mk~as-st(lhs,rths) = st-1[i };
et (v.,den1) = eval-expr (rhs,den);
t den2 = assign{lhs,v,dent);

EEELSS =X

type: as-st* IHIGC DEE ~> DEN

Since the ™"lets"” avre now on pure functions, they are simply a
sugared form ¢f lambda expressions.

The ¢third view one cowld take of the function int-st-l is that
of ref. [22], The cosment was made on the definition of the
functional language, that the denotation of its sub-components
was all that was necessary to determine the denotation of a
unit. By regarding the denotation of an assignment statement as
a functiop it is again possible to enjoy this property. (That
this is sc¢ i35 more clearly shown if the abstract syntax of a
composite statement is given recursively.) The resulting types
would be~

ipt~st~-1: asg-st®¥ INTG -> {(LEN -> LER)
eval-expr: expr -> (DEN -> INTG LEN}
assign: id => {IN1G6 -> {ZEX ~-> DEN))

399

Again ir this view it is necessary to define ;" as a
combipator, But now the fact that the wunits to be <combined
{(after arplying +the functions +to the static components) are
basically functions of the type DEN -> LEN means that the very
pleasing model of functicnal composition is adequate,

The Oxford group (refs. [22, 23, 19]) have gone rather far in
degigning combinators which wculd permit formulations like -

(]

int-gt~-1(st-1,1)
Mden, (if 1 5 Jst-1

{(l1et mk-as-st{lhs,rhs) = st-1{i];

int-st-1{st-1,i+1)°

COMB (eval-expr {Ths),
assign(lhs)))

type: as-st¥ INIG ~> (DEN ~> DEN)
where -

COMB(vf,uf) =
Aden. (Av,dent. {uf (v} (den1)) (vE(den)))

{It should be made clear that if this had been written by a
genuine devotee of mathematical semantics, it would have looked
very different. Tt is the current author's view that excessive
zeal in shortening definitions makes them less rather than more
readable, cf. ref. (193, ref, [1)).

Since this is a function one can look at its result for a test

pregram! Consider -

400

Then after reduction~

int-st-1{p,1}) =
{(nden.den 4 [y ~> den(x)+2] 2 {(Nden.den + [{x -> 1]

which 1is the result expected., (This exercise is somewhat nmore
illuminating on larger examrles.}

{Reverting for a moment to the earlier discussion of grand
versus small state approaches, it is worth noting that it would
have been possible tc nake the {(undesirable) step of putting
the statemert ccunter in the state and still give a definition
in terms co¢f a function to functions from states to states. Tt
would not, however, have been possible to provide such simple
compbinators., In vrparticular, the static role of the statement
counter is reguired to provide the required decomposition of

the semantics.)

If the appropriate combinator definitions were written, we have
now provided three ways of reading the formula int-st-1l, The
gquestion of which should be used must now be discussed.

The vpositics advanced in the next part of this paper is that
the interpretive view is useful during the development of the
translator mapping and it is c¢nly then that one need take the
view of mapping source programs to functions. Chserve, hovever,
+hat thinking in terms of combinators reguired that certain
problems be resclved more carefully: this leads to retention of
also this view of the formulae. Thus the notation will develop
the style above; definitiors written in this style will be
manipulated as if they were operational; the mathenmatical view
way be appealed to when decisicns are otherwise unclear.

Hith the awrount of notation introduced so far it would be easy
to define Wif then elge" or any variant of the "for"™. In doing
this for any reasonably complex language the question arises as
te how w®uch notation is it reasonable to add to the
meta-language. Would it, for instance, be acceptable to have a
while copstruct? The answer must always be sought in the ease
of reasoning about a construct. Thus in ref. [4]) both ¥hile

401
and for constructs have been included, but they are of a wmuch
more restricted kind than the FOR of FL/I which was being

defined.

This ‘topic brings us to the challenge of giving a semantic
definition of goto.

1.4

‘.’ﬂ
les
zO
e
[
s

J4

™

ge

The 1long debate on the morality of the goto construct has not
yet resulted in its banishment from descriptions of languages
by standards committees. To be serious, it appears to te
valuabkle %o have scme pmechanism for abnormal sequencing
situations and an ability to provide formal definitions for
them may be one of the tocls fcr cemparison.

The probler with defining goto is that, other than the local
hep, its ability tc leave or enter phrase structures upsets the
attempt to state the semantics of a unit solely in terms of the
semantics of its sub-units. In this section the compound
statement 1is chosen as the phrase structure whose semantics
should be provided. Although this is simpler than block exits,
it has the oproperty that the same phrase structure can be
terminated and initiated abnormally so that with a shorter
definitien bothk problems canm be discussed. The subject of
block termipations is discussed in the next section.

The technigque fcr modelling goto employed in ref. [28] was to
introduce a contrcl stack component into the state of the
abstract wmachine. {In fact the control was more general, but
this point is discussed below in connection with arbitrary
evaluation order.) 1Instead of describing the meta-langnage
directly as functions, a VDL definition is itself described by
an interpreting function (called LAMBDA in vef. [24}). A step
of the interpreting functicn removes the top instruction fronm
the contrel stack: if this operation is elementary, it is

obeyed and the next step of operation is performed; in the case

402

of a "macro® operation, the appropriate operations are put on
the centrel stack =¢ that the next step will encounter thes,

So far this can be thought of as a way of describing functional
application, The ©purpese, however, of making the control
component an eaxplicit part of the state was to make possible
its explicit manipulaticn. Thus one way to model goto out of a
phrase structure was to define the Tobvious" operations
structured in line with the phrase structure, but to simeply
delete frem the control cosponent any operations which
corresponded to parts of the program being jumped over,

The effect of this was that, in general, it was not possible to
present arguments whose inductive structure followed the phrase
structure o¢f the program, It was of course possible to present
proofs, but they had to be by induction over the sequence of
states generated by LAMBDA. Cne could argue that this is
precisely the undesirable effect of the gotg, but in fact the
definition had gcne too far, It was one of the places where
the geperality, in this case to change the control in any
instruction, forced one to show that, in precisely the places

one 4id nct require the povwer, it was not used.

Tn fact the deletion of parts of the control was sometimes only
used for exits frowm blecks: the reason that it was not used for
more lecal rhrase structures was the solution adopted for
handling abnormal entry intc such phrase structures. Easically,
sore definitions adopted a ¥Wcurrent statement selector® which
was simply changed to point tc the next statement, This made
goto 1into and out of phrase structures very easy to describe
providing there was nc special epilogue action to be performed
on exit from the phrase structure. (This can, in fact be viewed
as abscrbing part cf the LAMBDA function into the definition).
Bowever, such definitions tended to cloud the normal action by
the necessity to describe finding the successor to an embedded
unit by wmanipulating the crointer (see, for example, the
treatment of END in ref. [25]).

The current author became convinced that setting up the normal

action and letting a goito Mtake the machine by surprise®™ was

403

the wrong model, The propesal made was that any unit which
could result in abnormal termipation should return an extra
"abnerzal® result, which was some null value in the normal
case. Any call of a function which could result in an abnormal
return wmust test for this possibility and perform appropriate
actions, (Together with W, Henhapl, vwho provided the statement
selector treatment, this vas written up in ref. [6]).

In order to define Algol 60, in which it is possible to goto
into both "if" and compcund statements, it was necessary to
address the other part of the problem., The approach employed in
ref, {1] is tc previde functions which run through the phrase
structure without executing but setting up all of the actions
to follow, Sipce these functicns prompted the execution as to
where to begin they became called "cue-functions™ {(as in acting
- Dag Stichwort).

Consider, fcr example, the follcwing -

en 1:s1
else s2;
33

Yot onrly should this, rather odd, transfer of control get to s1
without evaluating p, it should also set up the events to be
pecformed thereafter so that s2 is skipped and s3 is next

considered.

The completely functional definition of Algol given in ref. [1]
became tediocus because of the many places where the effect of a
goto can cause a change of events and therefore the abnoraal
return value must be tested. It was, however, clear +that the
most commen action was simply to refrain from executing the
next operation and pass back the abnormal value to the next
level. 1In fact there are very few places vhere it is necessary
to describe any special action, Based on this observation P.
Lucas proposed that adopting sone unit to trap the

404

interpretation vhere the action was required would 1leave one

free to drop the "test and return® case by convention.

This abbreviation is the one used in ref. [4] and below. 2All
aormal returns ave written omitting the (implied) return of a
nil wvalue €or ABH, Non~nil values for ABN are returned
explicitly by the exit statement. Normal action on being
returned a non-pil ABR walue is to terminate also the calling
function abnormally with the same value for ABN. An explicit
action to be performed for a pon-pil ABN value is defined by
means of a trap exit unit bracketed together with the statement
to which it applies. Completicn of the trap unit completes the

containing functicn.

The developmert of this idea has been described in terws of an
interpreter partly because this is how it actually occured and
partly because it is ¢prchbably easier to first read the
following functions in this way.

{In fact <the separation of the, largely similar, functions
int-ns-1 and cue~int-nas~-1 would probably not be made if one
were taking the ©purely interpretive view: it is only for the
more mathematical view given below that the functions are
gritten separately.)

The 1language considered is given by the following abstract
syntax. It is assuwed that among the unlisted statement types
is scmething like the assignment of the previous section which
would force retention of the DEN component.

01 st = goto=st | cpd-st | ...

D2 goto-st z: id

D3 cpd-st :: nmd-st*

D4 nad-st 1z s-np:fid] s-body:st

id ncot further defined

405

The defining functions can now be given (the ™u" operator means
"the unique cbject satisfying®) -

D5 int-st(st):
cases st:
mk-goto-st{lab) -> exit {lab)
nk-cpd~st{ns-1) ~> int-ns-1{ns-1,1)

-

type: st =>

D6 ipt-ns-1l{mns-1,1):

if i € 1Ins-1

then cue-int-ns-1 {ns-1,lab}
glge exit (lab);

int-st(s~body(ns~1{i)}
int-ns=-1{ns-1,i+1))

o
{2
o

type: nmd-st* INTG =>

406

D7 cue~int-ns-1{ns-1,lab):

let i = (Li) {is-contained{lab,<ns-1{i]>}}
if ladb = s~ne{ns~-1[i))

thepn int-ns-1(ns-1,i)

else

(trap exit(lab) with
f is-contained {lab,ns-1}

then cue~int-ns~-1{ns-1,lab)
cue-int~ns~-1l¢{s~-body(ns-1[i]} ,1ab)};
int-ns~1{ns-1,i+1))

type: ned-st¥* id =)

D8 is-contained{ladb,ns~1) =
{3i) {s-nm({ns-1{i]) = lab) v
{31) {is~cpd=-st({s=-body(ns=-1[iN} ~
is-contained (lab,s~body (ns-1[{3 1)}

type: id nmd-st* -> [true,false}

I+ was ohbhserved above that a deeper understanding is often
obtained by viewing a meta-language construct in mathematical
semantics terms. This view is now attempted of the above
constructs. Tirst it is necessary %o uncover what has been
hidden in the "=>" of the type clauses -

int-st: st -> {DEN -> DEN ABN)
int-ns-1: npd-st* INTG -> (DEX -> LER ABN)
cue-int-ns~1: nmpd-st* id (DEN ~> DEN AEN)

Tt is easy t¢ define the denotation of two meta-language
statements separated by ™3™ in terms of their ipdividual

denotaticns.

st1;5%t2 =~ aden. {let (deni,abnt} = sti{den);

g

abnl = pil
then st2{denl)

else (dent,abnl)

407

This gives us the way of creating a function whose type is (&
-> & ABX¥) from two functions of similar type: the fact that the.
test 1is dypamic is wunavoidable because the occurence of the
goto will, in general, depend on the state.

I+ 1is also possible to¢ write a very straightforward combinator
for the trap exit but, if this results in an egually dynanmic
action, the fact that the trap exit body again uses defining
functions applied to the whole text (of the current unit) would
make it impossible to ascribe a semantics of the required type
to a unit., The key observation is that although the labels
which will come tc the trap are unknown (in the sense they may
be either contained or free within the unit), the set of labels
for which one can do something is known: it is precisely the
set of contained labels.

This point can be illustrated by the following example =~

n geto 1

h
1se goto ms

Then -

int-ns~1{S,1) =
iet (denil,abnl) = int-st(if p then goto 1 else goto m}:
{abnt = pil -> int-st(s2)
abpt = 1 -> cue~int~-ps-1(S,1)
T -> exit(abni)y

Now since -

cue-int-ns-1{5,1) = int-s5t(S2)

it can be seen how tc¢ ccnstruct the denotation of S. This wvas,
of course, a trivial case. But even where the graph of goto
statements introduces looping, an equation will be given whose
fixed point can be sought,

408

It should be conceded at this point that it is also possible to
grite "definitions” using exits vwhich do not permit static
combination. This is a cause for further consideration.

The above wechaniswr is not the one usuvally employed in giving
mathempatical semantics: the mechanism vwhich appears to have
been accepted {(cf. ref. [23]) is that of "Continuations¥.
Basically, the deroctation of a label is the function (say £ ~>
Ey which represents starting at that label and running to the
end of the program! This is certainly a more powerful concept:
that it can define more general languages, the current author
found out to his cost when he tried to show that it was
possible to sliminate continuvations in ref. [21]. However, the
maxim is toc be sparing cp power in the meta-~language and using
continuaticns to rmodel 3lgol 60 labels {ref. [19)) may be too
general, Tt seems unfortunate, for instance, that in -

the latel ! canpot be "treated locally”.

The actual choice between continuvations and the model offered
here must be made in the context of the use of the language
definition, Since the Oxford group has an interest in proving
compilers correct it will await a larger example before this
can be decided. The experience with basing correctness
arguments on exit is, sc far, encouraging.

409

1.5 Block Structured langwage

Both blecks and rprocedures permit their user to introduce a
local level of pasing., Since the names defined within different
{even nested) blocks 40 not have to be distinct, the simple DES
of 1.3 will not suffice as a state. Consider the case of a
language in which no recursion is allowed. It is necessary to
"rememher” the value cf a variable, say x, over the lifetime of
a nested block in which another variable x is declared. One vay
to overcome this problem would be to wmake all identifiers
statically distinct by, for exanple, gualifying them with a
unigque block number.

The static renaming scheme would not, however, be adeguate if
recursion vere alsoc allowed. It would then be necessary to keep
distinct, pultiple instances of a variable which is declared in

a recursive block.

Before considering the passing of procedures as parameters, it
is appropriate to discuss call-by-reference since its solntion
introduces a tool which makes the remaining problems both
easier tc state and solve.

Consider the following -~

begin
int ag
proc p(x): ipt x; x := a;
r{a)

end

If the variable a is passed by reference, the parameter x will
refer to a. In an implementaticn the non-local reference a and
the parapeter x would result in a reference to the same
location. The descripticnr of Algol 60 in the Algol Report, was
in this part very operational. The model given was to copy in
the arqgusent in all places vhere the formal parameter vwas
referenced. In this way the body of the above procedure would
become -

410

Some <care was necessary in describing the "copy rule™ partly
because concrete strings vere being discussed {cf. the
discussion of when parentheses should be ipserted). Eut even
using abstract prograss, it becomes somewhat tedious to
describe this copying (cf. ref. [1]). 3t least for
call-by-reference (see below for call-by-name} there is a
simpler, equivalent, mechanism. The idea is to show the sharing
by having scme auxiliary class of objects and associate both
jdentifiers with the same member of the class. This association
is maintained by an environment which maps identifiers into
L0Cs {chosen in the example below to be suggestive of machine
locations}. The storage compcnent will no longer associate
values directly with identifiers but instead with locations.

What has really been done is to decompose -

DEW
id =====-=> VAL

into-

kot in doing so, the possibility is introduced to have

1d1 ----
fe==>n ===> v
142 »w=-

so that any change via one of the identifiers is reflected to
references via the cther, {The use of LOC is, in this model, no
more thar the expressicn of an eguivalence relation over

identifiers}).

T+ is onow necessary to consider how a wodel which has
environments handles the bleck and recursive block problenms
mentioned above. The locaticons will be generated so as to be

dynramically distinct, so the problenm of entering a block and

411

destroying a denctation which will later be required has
certainly been overcome. 211 that happens is that a new local
enpvironment is generated wmapping the identifier to a new
location (notice such a copying of DEN would be incorrect). In
the case of a block which can be known by and called from
deeper blocks (i.e. a procedure), it is necessary to show how
the base envircmment, to which it will dinsert its local
bindings, is to be found.

The most econecmical =wmocdel would be to assume again that all
jdentifiers are distinct in which case it is possible to show
that any valid calling environment contains the required base
environment as a sub-part. In this case, then, only the Tmost
recent" existence of any variable can be referred to. This
soluticn does nct cover the case where procedures can be passed
as parameters! This 1is precisely because other than "most
recent” references are possible. (For a fuller discussion see
ref. [77). The general sclution, then, will be to "remember"
for any procedure what its base environment should be. In an
operatioral model one would make a procedure denotation contain
the pair of procedure text and enviroament, In a mathematical
semantics style definition cne would use these tvo entities to
create a function,

The lanquage toc be considered is -

E1 proc :: s-nm:id s-parms:id* proc-set s-dcls:id-set st

B2 st = call-st | as-st !} ...

E3 call-st :: s-pn:id s-args:id*

B4 as-st :: s-lhs:id s-rhs:expr

Identifiers then correspond either to variables {only one type
is comsidered) or procedures: in the former case a LOC is
required, in the latter a procedure denotation, as the

associated object.

ES ENV : id -> (LOC | PBROC-DER)

412

3 not yet initialised value for a variable is allowed, so =~

E6 S ¢ LOC -> VAL

27 LOC soee infinite set

1}

8 VAL = INTG | Z

A functional type fcr vrocedure denotations is given -

E9 PROC~DEY : ({LOC | PROC-DEN)* -> {5 ~> 5)

{¥otice that goite is nct im the current language, so ABN is not

reguired).

In order to cover recursive procedures it is necessary that the
denotation of a procedure is available wherever it might (even
indirectly) <call ditseif. In an interpretive definition the
denctation would have been a pair of the text and the declaring
environeent. Since denotations here are functional objects,
the definition of env® is M"recursive®™, {(The validity of such
definitions is discussed in ref. [221].)

B0 eval-grec~dcl{proc,env) =
let <id,parm-1,rrocs,dcls,st> = proc;
Jet £({den-1)
{let env?

i

#

env +
{fparm-1{i] - den-1{i] | 1ziclparm-1} s
fid - eval-dcl{id) | idedcls] v
{s=nm(proc) - eval-proc-dcl{proc,env') |
proceprocs});
int-st{st,env?};
for all id ¢ dcls dg
release (env® {id)})})

result is (f)

tyre: prec ENY -> PROC-DER

413

EN eval-dcl{id):
let 1:alloc{};
assign(1,2);
result is (1)

type: id => LOC

E12 int-st(st,env):

cases st:

pX~call-st(pn,arg-l) =>
(let £ = envipn):
let den-1 = <env{arg-1{i])) | 1%i<larg-1>;
f{den~-1}))

rk-as-st{lhs,rhs) =>
(let v:eval-expr(rhs,env);
assign{env {1lhs) ,v))

2Keao

type: st ERY =>

The functions -

E13 alloc : => LOC

E14 release : LOC =>

extend and restrict, respectively, the domain of storage.
While-

E15 assignp : LOC VAL =>

E16 contents : LOC => INTG

rodify and read, respectively, values of storage.

Based on the environsent it is possible to clarify two

important pecints., PFirst, it is interesting to note that this
is precisely the response of both constructive and mathematical

414

definitions to the prcblem of defining a block structure
language., This leads to the second point: in what respects is
the above manipulaticn cf the environment better than, say
"ref. [2647? The VDL models used the grand state approach and
the envircapent, as well as all *"stacked™ versions, vwere
cortained in the state. This means that, potentially, they can
be modified by any function. It was then necessary to show that
the interpretation of twc successive statements in a statement
list was under the same environment. MNoreover, such proofs were
non-trivial because if the first statement was, for example, a
call, the environment was indeed dumped then changed: the proof
had %o sheow that by termination of the interpretation of the
call, the dumped environment had bheen restored. The passing of
environments as arguments, on the other hkand, shows guite
explicitly that two successive calls of iant-st are passed
exactly the same argument. ({This was +the subject of the,
somevwhat tedious, procfs of the first two lemmas in ref. [9].)

The language now available is tich enough to discuss the topic
of Coptext Copditions. In the definition given, it is assumed
that certain conditions hold for abstract programs which are
not expressed by the syntax rules. For example, the definition
would simply be undefined for a program which attempted to call
a simple variable or which called a defined procedure but with
less arguments than parameters., ({The attempt to include such
type rules in the abstract syntax of ref. [1] vwvas an
unnecessary encumberance.) It would, of course, be possible to
write aprropriate checks intc the defining functions. This,
however, would not show that the checks, in this language, are
of a static nature, That is, it is ©possible to define a

predicate ~
is-well-foreed : troc -> (true,false}

which cnly yields true in the case that all such static context
conditions are fulfilled. This is not intended to take a
position cn to what estent type guestions in a language should
be statically checkable., It is only to argue that it is a
useful <ycroperty of a definition to explicitly shov what is

static and what can only be checked dynamically. {An

415
associated point is that it peraits freedom to an
implementation for programs which contain statically checkable

errors ir an unexecuted part).

I+ would be possible to define both blocks and function
procedures in the style of this section.

1.6 Further Topics

This section will consider how some other, familiar, language

constructs could be tackled in the same spirit as above.

With regard to goto, it is straightforward to extend the last
definition tc cover gotgo ocut of procedure calls. This, along
with the merging of the other features already defined, is done
in the Appendix. The rroblem is simple because only known, and
therefore most recently activated, instances of labels can be
referenced., Tf the language allcws the passing of 1labels as
parameters this property no lcnger holds. It is now necessary
to make each instance c¢f a label dynamically distinct and to do
this reguires some mechanism like the activation identifiers of

ref, [4].

The introduction of label variables {or, in fact, entry
variables) into a language brings with it the additional
consideraticn of referencing a label instarce which no longer
exists. 2l1gcl 68 aveids this by constraining the 1lifetime of
any target variable to be not-greater than the lifetime of the
label being assigned, PL/T does not make this restriction and
so the definition is forced to add a validity check via
something like a set of currently active activations,

The definition of call-by-value is simple to include by the
creation of a special location which will be the only one
affected by any changes via the parameter. This is a close
model of the Algol 60 description of assignment +to new
variables in ap imaginary bleck., The fact that PL/I makes the

418

choice ‘bPetween call-by-value and call-by-reference on the
calling side dis shown in ref. [4], The pmore powerful
call~by-nrane of Algol 60 1is handled via the mechanism for
passing procedures.

It is fregquently desirable ipn a languwage definition to leave
the isplementer some freedom of order of evaluation. This is a
wider freedom than optimisations which guarantee an eguivalesnt
resplt. Ycr instance, it may be reasonable to permit the
access o¢f referenced variables in an expression to be made in
any order even if the expressicn contains function references
which ceould cause side-effects, In allowing such orders in a
definition the language designer is warniag the user not *to
Write programs which rely on any particular order. The question
of how tc formally define such freedom is an open proklen!

First note that in -
{a + (b + c))

the definition may wish to allow not only -

atc,achb, bca, cba

but also -

¢ a bt etc,

It is net, therefore, adequate to choose one path or the other
at each branch: it is necessary tc inherit the arbitrariness.
The response of ¥DL to this problem was to make the control
compenent of the gachine into a tree. The operations to be
performed were vput on parallel branches if they were to be
executed in any crder and the LAMBDA function randomly chose
any available leaf of the ccntrcl for execution.

The defisiticn in ref, [1] was in fact very similar and only
achieved its functiemal nature by building this relevant
property of LAMBDA into the definition. Since the only place
such arbitrary eorder cenld occur was in expression evaluation
this was in fact a reasonably small impact.

417

The definition in ref. {4)] shifts the problem to the
peta-language by introducing the "," separator. The probles is
not solved bhecause the definition of a coabinator which
provides for the inheritance of sequencing freedom is not
provided.

H. Bekié, among others, has pointed out that to combine two
pieces of "interfering"” prograe it is necessary to knov more
than their (extenmsional} functional meaning. His approach to
this proklem is discussed in ref. [37]. While this approach may
be generally reguired, the current author would prefer to
pursue the definition more axicwmatically: in the first place by
defining conditions of gecod cooperation that guarantee

ron-interference.

One final area, that of Storage Models, brings in the role of
axiomatic parts of a definition. In some langquages there is
great freedos 1left +to the ismplementor as to what storage
mappings of the data structures are regquired. In PL/I, for
efficiency reasons, the programmer can take alternative views
of an aggregate and thus the language does somewhat constrain
the mappings. Even in ref. [4], however, it was found
worthwhile tc state the basic storage wmodel abstractly (for
example, viewing an array value as a mapping fros a (hyper=~
yrectangle of integers to values, rather than as a linearised
list thereof) and to express the additional «constraints
separately. For a fuller discussion see ref. [2].

The difficulty of defining a programming language as distinct
from a purely functiocral language is that changes to a state
occur. A functicnal definition in which functions are read
extensionally (cf. section 1.2) is not immediately applicable.
Three alterpative solotions vwere discussed; to consider the
definition as an ipterpreting rrogram (ref. [24]); to consider
all interpreting functions as having an additional argument and

418

result which is the state (ref. [1)): to consider the defining
functions as producing a functions from states to states (ref.
7197). It is possible, by adopting carefully chosen notation,
to write in a style which cap be read in more than one way.
Except for the prcbleew cf arbitrary order, combinators «can be
provided whichk persit ref. [#] to be read in all three wvays.,

The advantages of the different ways of viewing a definition
are returned to in the next part of the paper.

Whatever one®s chosen view of a semantic definition, there are
rore important considerations which influence what is written.
The central guide-line proposed is that the definition should
not possess properties shich are not inherent in the language
heing defined. 1This is not to say that such definitions are
wrong in the overall effect they describe for a program, bat
rather that a proof is often reguired that certain details of
the model have no effect on the final outcome., If the model can
eliminate suchk details it w%will facilitate the use envisaged
below.

Frapples of where definitions can be over-specific range fron
the use of the grand state approach to trivial items like the
use of lists vwhere sets could suffice for components of the
state in ref. {25].

Before tgproceeding ¢¢ the discussion of proving a cosmpiler
correct with respect to a language definition, a fevw nmoments
should be spert on the gquestion of the correctness of the
language definition., As far as "proving” that the definition
correspends to a norsal verbal definition, there is little
hope. Most such standards descriptions are a mixture of
properties (axicmsy and partial models for the language. Even
if it were possible, which it is not, for the matural language
to bhe read precisely, such defipitions would be shown to be at

best incosplete, at worst inconsistent.

The direction fcllowed by ref. {25} is, of course, very
encouraging in that it is a huge step tovards standardising via

a document which could be considered to be formal.

419

In spite of the difficulties in establishing correctness, it is
possible to consider some property like consistency. At the
most trivial level a definiticn of the size required by current
languages should be checked to be free of clerical errors 1like
vassing the wrong number of arguments to a function. Much more
subtle are the questions of termination and existence of
implicitly defined objects. In ref., [4] an attempt has been
made tc insert pre, post and assertion comments as an aid to
seeing vhy the agthors Dbelieve the definition to be

wconsistent®?, The guestion of what a proof would entail is
currently under ccnsideraticn,

2, DEVELOPMENT OF R TRANSLATOR SPECIFICATICN

The overall +task under consideration is the creation of a
program to translate texts of a source langmage into texts of a
pachine language. Based on a definition of the source
language, this section discusses how to obtain a specification
for a wapping from the scurce to the object language. It is
obvicus that before this process can begin, an understanding of
the object wmachine 1is required. The guestion of whether this
understanding must be "formally® documented is returned to
below. The step by step develcpment process to be discussed is
very similar tc that in ref. [15] (and even ref. [9)).

The firet gquestien to be resolved is which of the reading
styles ocf the source definition are to be adopted. This
question nmust +to some extent remain open until more examples
have been fully wcrked out. There seem, to the current author,
to be two arguments for taking the interpretive view of the
definiticn as the basic one. Firstly, it is very unlikely that
the case distinctions, which have been shown in the source
definition, are exactly those required in the choice of code to
be rproduced. Secondly, a mapping of source programs to
functicns from states to states has more to be developed than
these generated functions: manipulations of, for exanmple, the
environment will alsc require mocdelling in the object state.

420

The abstract state of the source definition was chosen to
permit a large range of isplementations, The time has now cone,
with a vparticular machine in view, to be more specific., The
designerts task is to find concrete realisations, on his
particnlar object wmachine, for the abstract state. This
developrent might be a multi-stage process in the case of
developing sopething like an ENY to a display model like those
of ref. [7}. Bach stage of development provides a new, more
concrete, version of an object. This wmodel will have
properties not possessed by the more abstract object. For
exanple a 1list has an ordering property not present in a set,
Por this reason, the appropriate style to document the relation
believed to¢ express the correctness is from (more) concrete to
abstract. Thus, if 5 is a set and modelled by a 1ist L, the set
is retrieved by =~

retr-3{L} =
fL{i] § 1€i<dL}

type: LIST -> SET

One would then prove that the new function models the old in
the sasme style as discussed in section 3 {this notion is like
Bilper*s "*Sipulation® in ref. [18)}.

Another exampie of the decisions made during the development of
the interpreter, is the rercoval of arbitrary ordering. The
flexibility was permitted by the language to provide freedon
for the jisplementor., Other than those aspects whichk result in
real use of oparallel thardvare, the randomness is removed in
favour of the choice that best fits the compiler design.

The ratiorale is to attempt always to find a model and express
its ccrrectness by showing how, among other irrelevant details,
it computes the result of the previous stage. Ip this way it is
possible tc avoid large equivalence proofs whose structure is
hard to see. In fact, for many stages, documenting the retr
functions wmay itself be an adeguate justification. The
definition is thus providing, not only the correctness criteria

but alse a basis for the correctness argument.

421

At the ‘terminatiocn of the work detailed above, which may be
malti~-stage, there exists an interpreter which functions on a
state representable on the object amachine. The state
transitions, however, are still written in a meta-language. It
is now possible to record the machine operatioss which are
helieved to produce exactly the same state transformation. In a
sense, this can be considered as documenting assumptions about
the object pachine which may be a more attainable goal than
seeking its full formal definition.

Tt should now be possible to read the interpreter as a mapping
by expanding all of the case distinctions which are static in
the sense that they depend on the text alone, If the machine
operations are inserted, this is now a function from (abstract)
source language to the cbject language,

Such a function %will serve as the specification for the
developrent to be described in section 3. It is important to
note that the subsequent develcopment reguires no understanding
of the scurce language! The meaning of the language was used to
justify this wmapping. The nagping itself is a specification
purely in teres of strings.

T+ is now appropriate to consider an example. It might have
been useful for this section to consider some nodel of the
block concept (cf., ref. [7]), but it will provide a better 1link
to the next section to use the example of coapiling
expressions.

Consider the language of secticn 1.3, States are -

1 DEN:id -> INTG

Given, ig -

2 apply-op : INTG op IKTIG ~> INTG

422
Then the definition copld be written -

3 ewvaleexpr{e}:
cages e
gk~inf-expriet,op,e2) ->
flet vi:eval-expr(el);
let v2:eval-ezxzpriel);
result is (apply-op(vi,op,v2)}}
nk-var-ref{id}) ~> contents(id)

gk-consti{n) -> n

type: expr =2 INIG

4 int-st-1{st-1,i}:
if

{let mk-as~st{lhs,rhs} = st-1{i];
let v:eval-expr{rhs):;
assign(lhs,v):
int-gt~1{st-1,i+1})

g(ﬁ
st

i
i 1o

type: as-st¥ INTG =>

Now, considering an actual machine, the first problem to note
is the way individual values are retained by the "let vi" even
though the evalvation of the cther sub-expression may itself
give rise tc many such uses. Opn most machines this would give
rise to scme use of temporaries, so consider storage extended

so that -
5 DER1 : {id } T} -> INTG
where -

6 id a T = 0}

423

3 simple algoriths can novw be given which will act as an
interpreter on the new class of states., (The author is aware
that superfluous assignments are made =~ but their removal
lengthens the exanmple without adding any new concepts).

7 trans-expri{e,i):
cases e:
ek-inf-expr{el,cp,e2) ->
(trans-expr(el,i);
trans-expr{e?,j+1);
assign(tf{ j],apply~op{contents (t[§]) ,op,
contents{t{i+13))
nk-var~-ref (id) ->
assign{t{ jl,contents(id))
ak-const(n) ->
assign{t[j1.n)

type: expr IRIG =>

8 trans-st-l(st~1,i}):
if i € 1st-1
then
(let mk~as-st(lhs,rhs) = st-1[i];
trans-expr{rhs,1) ;
assign{lhs,contents{t{ 1))
trans-st~1{st-1,i+1))
is

D
[

-

type: as-st¥ INIG =D

To sho¥ that the trans-expr interpreter models eval-expr, it is
necessary to prove -

contents(t{i]) after trans-expr{e,ij) = eval-expr (e)

Tf one appends the statement that for i < j, trans-expr (e, j)
leaves contents{t{j]} unchanged, it is easy to prove the

424

cogbined property by structeral induction on the class of
expressions. The further extension to as-st lists is trivial.

As suggested above the new interpreter has been shows to model
the original defining interpreter by showing how to retrieve
the results of the latter from the former.

The type of the function

assign{t{ il,apply~op{..<})
is DEN1 -> DER1

Suppose the cbject machine is o¢f 3 address type {cf. IEM 1401
then, an aprropriate instruction might be -

op = ADD ~ ADD(t{ 3], t[J1.t[j*+1]

Inserting such operations, it is now possible to use the
function trans-expr as a wmapping from sSource to object
languages. It is important to vremember that this has been
derived ster by step from the definition.

(At the risk of labouring the point, it could be remarked that
had the statement counter been made part of a grand state, it
®#ould nov pose problems because there is no model for it in the
object state}.

It should be clear from the methods used so far that not only
in the source definition, but also in the subsequent
development it is likely to lead to more work if unnecessary
properties are introduced, This, however, touches on one of
the ©problems which has not really been solved. In a large
problem the mapping is likely to be such that it cannot be
expressed conveniently in a T"single pass". If a multi-pass
sapping is described and its structure differs from that of the
eventual translator, the 7proof is 1likely +to be much more
difficult. More work is needed in this area.

425

Before <concluding this section it is worth considering what
happens if a defiping wmodel is chosen, or given, which is in
some areas of the language too concrete, That is, there are
some details present which do npot appear in the planned aodel.
¥ot only should ope refrain frcm throwing the definition awvay:
one should also not esbark on a complete equivalence proof., It
has been shown in ref. {10] hov one can, as a development
stage, introduce a more abstract notion than that of the source
definition for one area of the language, One can then prove
that satisfying the new abstract notion enssres overall
eguivalence, The subseguent development can now be made fros
the wore abstract definition., Isa this respect it would be
interesting to prove that the storage model of ref, [25] vwas a
model of that in ref. [4].

3. FORMAL DEVELOPMENT

Faced wvith a progras specification and a code listing it is
difficult to ascertain whether the latter satisfies the foramer.
The basic intention of Yormal Development is to provide a
framevork in which the design can be recorded step by step.
Thus, +the idea of top~dewn documentation of a development is
subscribed to. In addition it is argued that each level of
development can be docusented precisely enough that its
correctness can be the subject of a proof.

It 1is important to distinguish the current proposal from the
idea of writing a program then constructing a proof that it
fulfills its specification., The possibility to use abstraction
daring a development makes the construction of a step-wise
proof far more tractable. Furthermore, the amount of work to be
redone, when an attempt to construct a proof uncovers an error,
is reduced.

It may also avoid misunderstapding if it is stated right away
that Formal Development is not proposed as a rule to order
inventicn. The backtracking ard effect of inspiration conveyed

426

by ref. [20) are much sore typical of program invention. But,
just as one fregquently rearranges a proof when writing it ap,
it is vorth documenting a design so that a reader can see a
coherent development of ideas.

Two main sorts of development steps are discussed. The first is
the one norgally connected with top-down development. Given a
specificaticn of ghat is required, ome urites some seguence of
operations which shov how the task may be achieved. The
operations may be either statements of somse language or assamed
sub-operations: in either case their specifications are also
recorded. Since =some formal notation is being used it is now
possible tc¢ write down yhy one believes the combined
sub-operaticns perform the given task,

The second sort of development step comes from the wish to use
abstractions of normal data objects. By using objects w#hich
only have the properties relevant +to an algorithm, it is
possible to drastically reduce the length of both
specifications and correctness arguments., At some point in the
development it Dbecomes necessary to seek an efficient
representation which can be described in the language being
used: such steps of development are considered in section 3.2.

3.1 Operational Abstraction

operations are considered to be transformations on states fronm
some class, say r. For some operation, say CP -

g [OPY o

weans that OP will produce a state ¢' vhen "run in®™ a state #
{only deterministic operations are considered in the current

paper).

The term abstraction is applied because operations, which may
not bte available (other +than by a yet to be performed

427

construction) can be discussed. They are in fact discussed via
an implicit specification. The definition of an operation will
he given via two predicates one which specifies the domain over
which it must yield a result -

pre-0P : I ~-> {true,false}
pre-0OP(e) = (3o*) {o [OP] «%)

and the other of which specifies the input/oatput relation
required for the operaticn -

post-0P : ¥ £ -> {true,false}

pre-0P (o) A ¢ [OP] o' = post-0P{(v,e")

If both of these conditions hold the fact is recorded by -

pre-0OP <OP> post-0OP

These twc predicates, then, record everything necessary about
the meaning of OP (there is of course nothing about performance
etc.).

Suppose a specification is given in this form, hov does one
proceed? The problez is decomposed to sub-problems by choosing
a set of (simpler) operations, which, if one had them, could be
combined in some stated way to fulfil the specification., The
assumptions on the sub-operations will be recorded in exactly
the sare style. Eventually all of the sub-operation assumptions
wvill be +true of statements in the language being used. Until
that tipe they provide specifications for further vork.

The most trivial way of combining two operations in most
languages is to separate ther with ";™ showing that the
execution of ¢the first is to be immediately followed by
execution of the second. The ccnditions necessary to show that
such a combination of the two operations -

428

pre~0P1 <0P1> post-0OP1
pre-0P2 <GP2> post-0P2

will satisfy -~

pre L0P1;0P2> post

are firstly that each operation will only be used over its
stated domain -

pre{ei} = pre-021{cfl)
pref{el} A~ post-OP1{et,e¢2) > pre-CP2{e2)

and secondly that the overall dnput/output relation can he
derived from the combipation -

pref{et} » post-OP1{«1,¢2) A~ posSt-OP2{e2,e¢3} » post{el,el)

{The adeguacy of these conditiocns is proved in ref. {12} . For
such a sisple combination, the reguirement ¢to prove ¢three
lemmas appears excessive. In many situations howvever, special
cases can be applied. For instance, with total operations ({pre
= trge) the first tvwo lemmas are vacuously true. Furthermore,
it is certainly not being suggested that every use of ";" in a
program should be accompanied by forsal proofs: but a check
list has been provided to which an appeal can be made in case
cf doubt.

The reader should observe that a specification is passed on to
the next stage of development which states all of the
properties relied on, Thus it is not necessary to later show
that the development cf that cperation does not disturb the
current gproof. There 1is a <conmplete split of the problem of
providing justifications.

¥ore methods of combining operations are defined in the sane
style by ref. [12], section 9 of that paper also considers hov
the set could he further extended.

429

3,2 __Rerreseptatjonal Abstraction

In many respects this might be the more important of the two
forss ¢f abstraction being censidered: it is certainly the one
which is under-employed.

The idea of data abstraction has, in fact, already been used in
the earlier parts of the paper. The langunage definitions and
mappings bhave both used an abstraction of the program text
{(i.e. that class of objects described by the abstract syntax).

That this was necessary can be seen by considering the
alternative of redefining these functions in terms of concrete
strings.

If +then, it is difficult tc even state the specification in
terms of detailed data representations, it will becone
impossible tc¢ write arguments for correctness at such a level
of detail.

The proposal is that development of an algoritha should only
bring ir these properties of the data structure that have an
effect on the algorithm., That this permits a reasonable
percentage cf the development can be seen in the example of
section 3.4 below. Thus one is able to postpone fixing the
representation of a data object until adegquate reason (e.4. the
performance of a sub-algorithm) can be ascertained.

The interface between operations might, then, be described in
terms of sets or mars for example: in the final code linked
lists or hash tables might be the chosen representations.

¥t is necessary to discuss what goes on in a development step
which refires a data representation. Essentially what one is
doing is adding properties to the data structure {e.g, the list
has an ordering property not present in the set). Tt is
possible to retrieve all of the data of the abstract level from

the mcre concrete.

430

Suppose an operation cop states of class D has been used, such
that -

pred <0Pd> postd

and one no¥ wishes tc show that -

pree <0Pe> poste

is an adeguate simulaticn. It is sufficient %o find a
relaticnship betveen the twc state classes -

retrd ; 28 -> D

which shows that OPe works on a wide enough class of states -

pred {(d} a retrd(e)}=d > pree (e}

and that the new operation produces states matching ({(under
retrd) those produced by the old operation -

pred(d) » retrd{e}=d4 ~ poste(e,e'} > postd {d,retrd(e})

{This nocticn differs from that in ref. [18] in that the
Operaticns are not, necessarily, functions}.

3.3 Exapple of Expression Compilation

The inpmtsoutput relation given for trans-expr in section 2 is
defined to cperate on cbjects of type “expr". These vwere
conveniently chosen to be tree representations of the original
linear fors {presusably infix). Without going all of the way to
considering +the vparsing and tokenising of an external string,
consider a teverse-tolish text which might result from such a

first parse -

431
c~expr ::= c~inf-expr | c-var-ref | c-const
c-inf-expr ::= c-eXpr Cc-€Xpr c-op
c-var-ref ::= ...
c-const 1:F ..,

The relaticn ¢f this to the class expr can be specified by a
retrieve functicon which uses a stack -

retr-expr (tl) =
fer i =1 tol t1 dg
{is~c-var-ref (t1[i])) ~->
push{retr-var (tifi }})
is-c-const(tlfi}) ->
push(retr-ccnst (t1[i]))
is~c-op{tifi}]) ->
{let e2:pop;
let el:pop;
push(mk-expr(el,retr-op(tlfi],e2))));
resylt is (pep)

type: c-expr -> expr

Not only does this retrieve function give the correctness
criterion for the following trasslate function, the stacking is
suggestive of a way to track the temporaries.

432

Assuming an external variable b -

trans-c~expr{tl):
foxr i =1 to 1 tl do
{igs-c~var~ref (t1{i)} ->
{b := b + 13
assign{t{bJl,contents{retr-var (t1{i }H)))
is-c~const{tifi}y ->
{b 1= b + 13
assign{t{b],retr-const (t1{i B})
ig-c-op{ti[i}} =>
{assign(t[b~1]),apply-op{contents (t[b~1),
retr-op {(t1[i),
contents{t{ b1} });
b = b-1}

type: Cc-eXpr =>
The correctnaess can novw be proved if -

b := §; trans-c~expr{tl}

'Y

~ trans-expr{retr-expr{tl),1)

This result follows from a rroof, by induction on the length
{and possible ccnstructions of) tl, of the stronger statement -

b := k: trans-c-expr{tl}

leaves b = X + 1 and creates the same as
trans-expriretr-expr(tl) ,k+1)

3.4 The_Earley Exanple

The rather short treatment of Pormal Development offered may
l¢ave the reader upclear as tc how a bigger example looks.
Whilst the notation used in ref. [121 is thought to have
correctly made the step froe development via functions to
development via operations, the example of that report is

433

anconvincing, This is mainly because the algorithm «considered
was so oriented to arrays that the use of an abstract data
representation is scmewhat artificial.

The example of ref. [11] is more interesting with respect to
data abstraction and a short outline of a rewrite of its
development is now given =~

Specification: find a (general, table driven recogniser)
algoriths -

REC : gramepar nt synmb* -> ([YES,NO}

Where the abstract form of a grammar is -

gramsar : nt -> rhs-set
ths = el*
el = symb | nt

The pre-conditicn dJdefines that there are rules for each
non-tersinal and that there is exactly ome rule for the
sentence noenterminal. The ©post-condition states that REC
shoauld yield "YES™ if and only if the symbol string can be
produced from the given grasmar. ("Produceable™ is defined).

Step 1: Splits the problem into an input stage which stores the
grammar; a rain stage which creates "State Sets"™ which will
contain informaticn on all possible top-down parses; an output
stage which yields IES or NO depending on a predicate of the
state sets. The storage for the grammar is still specified in
terms of the (abstract} map. This may be a disappointment to
the programmer assigned the task of constructing the input
routine since he has little to work on yet. But the cost of
fixing this interface for his convenience is that the far more
time consuming parsing operation has not yet been developed far
enough to get his views on an efficient representation.

The state sets are also described abstractly (as a list of sets
of tuples) since the purpcse of this stage is to show that
certain upper and lower hounds on the state sets are sufficient

434

to make the final rpredicate correct. Notice this extreme fornm
of abstract definition, There is a great deal of freedom in the
given hounds and different algorithms could be constructed to
use this freedom. (In fact the specification has heen of
considerable use in considering optimisations).

Step 2: Introduces Farley's operations (Prediction, Completion,
Scanning) which generate new states., The state sets are defined
as the wpinimum setg satisfyisg a certain eguation. Such sets
are showp to fall within the bounds stated in Step 1. |VNotice
that not only are these operations defipned in terms of abstract
data objects, they are also iwmplicitly defired., This is in
distincticn to ref. [8] in which the algorithms are programnmed
with coperations on the abstract data: this form of developnent

is employed later,

Step 3: Begins tc censider representations by mapping state
gets onte state lists., But notice that, since a list of 1lists
is mnot a convenient data cbiject in a von Neumann machine, the
step to a cencrete representation is not yet complete, Using
the choser algorithm on lists it is necessary to introfduce a
restricticn {no zerc length rhs) to the allowable grammars. Tt
would, hcwever, have been pessible to use a different algorithe

at this stage cof development and avoid the restriction.

Step 4: Makes a sigilar ordering step to the data structure

representing gramgars,

2t this opeint mest of the algerithm, as such, is designed and
it is clear what the common operations on the data structures
are., Now is the time to give the concrete (FL/I) data ohijects!
{Tn fact those used vwere quite complicated BASEL variables with
the REFFR cpticn.} Doing this prompts a macro style of Jata
abstracticn like ref. [57] which is similar to that used in ref.

£81.

435

4, STUMMARY

The aim of the paper has been to show how a large problem, in
this case the develorment of a compiler, can be decomposed into
serall steps. Providing each step is adegquately documented, a
complete design history is thus obtained., One of the views
expressed is that each stage of development should be supported
by a justification. This imrlies that steps of design are
recorded in a nctaticn on which it is vossikle to hase a
correctness argument. Such correctness arguments are sought
with a view toc human readers rather than mechanical theorenm

checkers.

The key tc making such an aprroach practical is the use of
abstraction. In each of the sections the value of stating the
minimue properties has been shown, Although it is freguently
nore difficult tc €find an ayprropriate abstraction than to
provide a <construction, the advantages of the former make the
effort werthwhile.

By emplcying both data and operational abstraction, a view of
the development process is cbtained where the successive stages
are realisations of the same algorithm at ever greater levels
of detail, Taking this view, the normal style of correctness
argument is based on showing how the (more) abstract model can
te retrieved from the (more) concrete realisation. In this way

it is prossible tc avoid general equivalence proofs.

The requirements of a design language to be able to specify
operations implicitly and tc use very abstract data objects are
very different from thcse of programming languages. Although a
particular notation {that of ref, [41) has been employed as the
design 1language, it should be emphasised that it is the method
not a particular notation which is being proposed here.

436

Ackneowledgerent

Most

of the ideas contained in this paper were developed in

collatcraticn with smegbers of the Hursley and Vienna 1IBH

Laboratories, The members and meetings of IFIP WG 2.3 have also

teen a great stimulus.

References

=
[]
s

[31

£5]

]
ol
[

{7]

C.h.31len, D.N.Chapman and C. E.Jones, s Formal
Definition of Algcl 60%, IBM Hursley Technical Report, TR
12.105 Rugust 1372,

H,Beki& and K.Walk, "Pormalisation of Storage FProperties"®
in "Sypposiur cn Semantics of Algorithmic Languages”
(24d.) E.EZngeler, Springer-Verlag Lecture JNotes in
#athematics No. 188, Octcher 1970,

H.Bekidé, Presentation on "Sermantics of Actions™ given at

Newcastle University, Sertember 1974,

H,Bekié& =t al "A Formal Definition of PL/I"™ to be printed

as a Technical Report of TIEM laboratory Vienna.

A.Hansal, "Software Devices for Processing Graphs Using
[
PL/T Compile~timpe Facilities®™, Info PFroc Letters. 1974,

W.Henbapl and C.B.Jcnes, "On the Interpretation of Goto
Statements in the VYDL®, IBM Vienna Bote, LN 25,3,065,
Barch 1970,

¥.Hdenhapl and C.B.Jcnes, *"The Block <Concept and Some
possitle Trplementations, with Proofs of Fguivalence®,
TBM Vienna Technical Report, TR 25.104, april 1970.

£91]

(1]

[1]

[12]

(131

[18]

(15]

[16]

[17]

437

C.A.R,Hoare, "Proof of Correctness of Lata
Representations%, Acta Informatica, Vvol., 1, pp 271-281,
1972.

C.B.Jones and P, Lucas, "Proving Correctness of
Imrlementation Technigues™, in Y"Symposium on Semantics of
Algorithmic Languages" (Ed.) E.Eingeler, Springer-Verlag
Lecture Notes in Mathematics No., 188, October 1970.

C.B.Jdones, "Sufficient Properties for Isplementation
Correctness: Assignment language™, IBM Hursley HNote, TN
3002, June 1371,

C.B.Jones, "Formal Develcyment of Correct Algorithms: An
Exarple Based on Barley's Becogniser", presented at ACNK
SIGPLAN Conference, SIGELAN Kotices Vol. 7, No.1, January
1972.

C.B.Jones, "Formal Development of Programs®, I1EN HRursley
Technical Report, TR 12,117, June 1973.

P.J.Landin, "A Corresrondence Between Algol 60 and
Church's Lambda-Notation: Part I, Comm. of ACH, Vol.8,
8c.2, Pebruary 1965.

P.Lucas, "Twc Constructive Realisations of the Block
Concert and their FEguivalence®™, IBM Vienna Technical
Report, TR 25.085, 1968.

P.Lucas, "On Program Correctness and the Stepwise
Developmsent c¢f TImplementations"®, presented at 1BM
Ceonference at Pisa University, 1972.

P.Lucas and K,#®alk, "On the Formal Description of PL/I"
in Arnual Review in Autcmatic Programming, Vol.$, Part 3,
Pergamon Press, 1969,

J.¥cCarthy, "Towards a Mathematical Science of
Corputation® presented at IFIP Congress 1962.

%)

[}

438

R.Milper, ™an Algebraic PDefinition of Simulation Between
Programs”, Stanford University AIM~142, February 1971,

P.Mosses, ™The Mathematical Semantics of Algol 607,
Ozxford University Computing laboratory, PRG6-12, January
1974,

P. Waur, "An Experiment on Program Tevelopment®™, BIT 12,
pp 347-385, 1972.

J.C.Beynolds, "Definiticnal Interpreters for Higher-Order
Programming languages"™, presented at 25th National ACH
Conference, August 1972,

D.Scott and C.Strachey, "Toward a Mathematical Semantics
for Computer LanguagesY, in "Proceedings of the Symposiue
on Computers and Automata"™, Microwave Research Institute
Syerosia Series Vol, 21, Polytechnic Institute of
Breoklyn, 1971,

C.Strachey, "Continuaticns: & Mathematical Semantics

which can deal with Full Jumps"™, unpablished,

K.¥alk et al, "abstract Syntax and Interpretation of
PL/I", IBM Vienna Technical Report, TE 25.09f, 1569.

"pPL/I BASIS,1" ECHA ANSI working document, February 1974.

439

Appendix

This appendix contains a definition of the language obtained by
merging the separate features cf section 1, The definition is
written in a style (cf. the type clauses) which can le read as

mathematical semantics.

ABSTRACT SYNTAX

proc sz s-nm:id s-parms:id* proc-set s-dcls:id-set cpid-st
st = as-st | goto-st | call-st | cpd~-st
as-st ¢z s-1hs:id s-rhs:expr

goto~-st :: id

call~st :: s-pp:id s-args:id* /*args dcl, proc or parm¥/
cpd-st :: nmi-st*

nnd~st 2 s-ne:fid]) s-body:st

it

expr inf-expr { var-ref | const

inf-expr :: expr or expr
var-ref :: id

const 1 INIG

iq not further specified

INTG

DOMAINS
ENV: id -> (LOC | EROC~DEN)

5: LOC =-> VAL

LocC infipite set

i

VAL

it

INIG | 2

PROC~-DEN: {LOC | PROC-DEN}* ~-> (S -> S ABN)

ABN = [id)]

440

eval-grec~dcliproc) {env} =

let «<id,parz-i,rrocs,dcls,nk~-cpd-st{ns-1}> = proc;

et

£y
{let env?! : env 4

£
14
o]
]

ot

st
i

{fparp-1fi] - den-1fi] | 1<iglparm~-1] @
fid - eval-dcl (id) | idedcls] v
{s-nm{proc) - eval-proc-dcl {proc) {env') {

PTOCEProcs);
{trap exit{labjuith

{free{dcls,env'};
exit(lab});
int-ns-1{ns-1,1) {env?)}:
free{dcls) {env?));

result is(f)

type: proc -> {ERY ~-> PBOC~LEN)

eval~dcl(id}:

et 1: alloc{}:
assign (1) (2}

type: id => (S -> S 10C)

441

free(dcls) {env):

for all idedcls dg

release {env (id))

type: id-set -> (EBNV => (S5 => 5))

int-st{st) (env}):

cagses st:

mk-as-st{lhs,rhs) ->
{let v: eval-expr(rhs) (env) ;
assign{env{lhs)) (V)

mk-goto-st (lab) ->
exit(lab)

nk-call-st{pn,arg-1l) =>
{let £ = env(pn);
let den-1 = <env{arg-1fi]) | 1<i<larg-l>;
f(den-1))

rk-cpd-st (ns-1) =>

int-ns-1{ns-1,1) {(env)

type: st -> (ENV -> (S -> S ABN))

442
int-ns~lins-1,1i} {env}:

if i<lnps-1
then
{{trap exit{lab) with
if is-contained (lab,ns-1)
then cue-int~ns-1{ns-1,1ab} {env)

else exit (lab);
int~-st{s-body{ns~-1{i]} {env)};

int-ns-1l{ns-1,i+1} {env}}
als

[[1]

type: nwd-stx INTG -> (ERV -> (S ~-> § ABH))

cue-int-ns-1{ns-1,lab) {en¥):

let 4 = (Li) {is-contained (lab,<ns~1{iP}))};
if lab = s-ne{ns-1{i)}
then inpt-ns-1{ns~1,1i} {env)
else {{trap exit{lab) with
if is-contained {lab,ns-1)

then cue-int-ns~1{ns-1,lab} (env}

else exit(lab);
cue~int-ns~1(s-body{ns~-1{i }} ,1ab} {env)}:
int-ns~1(ns-1,i+1) {env)}

type: ned-gt® id -> {EEV -> (5 ~> S5 ABR}}

443
eval-expr{e) {env):
cases e:
pk-inf-expr{el,op,e2} =->
{let vi: eval-expr(el) (env);
let v2: eval-expr (e2} (env) ;
result is{appiy-op(vi,op,v2)})

nk-var-ref {id) -> contents{env(id))
mk-const{n) -> n

type: expr -> (ENV -> (5 -> S INTG))

is-coptained: id nmd~-st* -> B

apply-op: INTG op IRIG -> INTG

alloc: -> (S -> § LOC)

release: LOC =-> (S ~> §)

assign: LOC -> {[VAL -> (S =-> S))

contents: LOC ->{S -> S INTG)

/* 2 yields error */

