
INTERPROCEDURAL ANALYSIS AND THE INFORMATION DERIVED BY IT

F. E. Allen

Computer Sciences Department
IBM T. J. Watson Research Center
Yorktown Heights, New York 10598
USA

ABSTRACT

Well structured programs are usually expressed as a system

of functionally oriented procedures. By analyzing and

transforming an entire system of procedures, linkages can be

modified or eliminated and interprocedural data dependencies

documented to the user. This paper presents some of the

methods being developed to effect such interprocedural

analysis and transformations.

i. INTRODUCTION

As part of the effort to improve programmer productivity and

system reliability, a number of excellent guidelines have

emerged for the programmer: "write in a high level

language", "avoid goto's and external variables" ("use the

parameter passing mechanism instead"), "write small,

functionally oriented routines", "annotate .and document the

programs carefully", etc. Furthermore a number of languages

and language constructs have been developed to support (and

292

enforce) some of these techniques. While these and other

developments in programming methodology have greatly

increased the potential for improved programmer productivity

and system reliability, there are some major problem areas

requiring attention. In this paper we consider one aspect

of the problem of developing, managing and maintaining the

entire collection of procedures which will typically exist

in a large system, particularly one which has been developed

in a top-down style using many small, functionally oriented

routines.

The context in which we will be considering this problem is

that of a compiling system. We will be concerned with

collections of procedures (and functions) written in a high

level language. Both nested and external procedures are

considered. Since compilers traditionally compile only one

external procedure at a time, a quite radical departure from

the traditional design is required; indeed the compiler

should be viewed as one component of an entire system which

interfaces with the user and manages his programs. The

design of such a compiling system will not be further

discussed in this paper. However, most of the ideas

presented here have been, or are being implemented in an

Experimental Compiling System (ECS) currently under

development. Since this system is PL/I oriented, the

methodology being developed is designed to accommodate the

many features supported by that language and hence should be

293

applicable to a number of other languages.

In this paper a method (actually a composite of methods) is

presented which analyzes the collection of procedures which

constitute all or part of a program. The analysis

determines the possible control flow and data flow within

each procedure and between the procedures. The next

section, Section 2, lists some of this information and

references the Appendix, which contains a program analyzed

by ECS. Section 3 gives the algorithm used to develop the

information. A brief discusssion of possible uses of the

information in developing, managing and transforming

programs is given in Section 4. We conclude with a summary,

acknowledgements and a bibliography.

2. INFORMATION DERIVED

As a result of performing the analysis to be outlined in the

next section, a great deal of information is obtained about

the possible data and control relationships in the program.

Some of the information which is produced is:

a. the call graph showing the possible invocation

relationships in the collection

b. a control flow graph for each procedure

c. the data flow within each procedure

d. the control flow between procedures

e. the data flow between procedures.

294

The example given in the appendix shows some of the

information currently being produced by the Experimental

Compiling System. The example has been chosen to illustrate

the type of information available rather than the PL/I

features supported by ECS. Using the example, we now give a

more detailed discussion of the information collected by

interprocedural analysis.

2°1 The Call Graph

Given a collection of procedures, (PI' P2' ..o pn) , the

referencing relationships between the procedures can be

expressed by a directed graph C = (N,E) of nodes ni~N and

edges ~i~E in which

a. each node~ n i, represents a procedure, Pi' and

b. each edge (nj~n k) = ~ieE, represents one or more

references in procedure Pi to procedure pj.

Such a graph C is termed a call graph.

Although methods [7,8] are currently being developed for

analyzing programs which contain recursive procedures, in

this paper we will restrict our attention to non-recursive

procedures. The call graph in Figure 1 depicts the

collection of procedures A, B, C, Dr E. The main procedure,

A, contains references to procedures B and C; procedure, B,

references Ca D, and E; and procedure, D, references C and

E.

295

It should be noted that the call graph is not a control flow

graph since returns are not shown. Figure A2 in the appendix

shows the call graph produced by ECS for the partial program

given there.

2.2 The Control Flow Graph

For each procedure the flow relationships are depicted by a

"control flow graph". A control flow graph is a directed

graph in which the nodes represent basic blocks and the

edges represent control flow paths. A basic block is a

linear sequence of program instructions having one entry

point (the first instruction executed) and one exit point

(the last instruction executed).

Figure A5 shows the control flow graph for the outer

procedure EXAMPLE, in the appendix. The blocks are

arbitrarily numbered and each block in the printout shows

its number and the serial numbers of the source statements

in the block. Block 1 is a dummy block and block 2 contains

everything up through the IF test. Block 3 contains the

first call to SUB and block 4 contains the branch around the

ELSE clause which will be executed on return from the first

call. Block 5 (for statement 8) has the second call and

block 6 has the return statement.

296

2.3 The Data Flow Within Each Procedure

For each procedure two types of data flow information are

obtained: "definition-use" relationships and "live"

information°

Using the notation X d, to denote the definition of data item
l

X in block b i and X u, to denote the use of X in block bj
3

then a definition-use relationship (or simply, a def-use

relation) exists between them if the value created by the

definition at b. can be the one used at b.. With this
I 3

notation~ (introduced in [3]), a def-use relation is

the pair(X~, X~). Such a relationship can expressed by

exist only if there is a path from b to b. which does not
l]

contain a redefinition of the data item. Consider the

d A~) and (A~, example in Figure 2. The def-use pairs are (AI,

A~).

It should be noted that the term "data item" rather than

variable was used in defining the relationship. The same

data item can have several aliases which must all be

reconciled if the information is to be useful. These

aliases can result from parameter-argument associations, the

use of pointers or simply by overlaying storage.

In Figure A6 in the appendix the def-use relationships for

the outer procedure~ EXAMPLE, are shown. Here we see some of

the effects of interprocedural analysis on local def-use

297

information. Variables A, B, and C are all passed to SUB; A

and B are used in SUB and C (via parameter Z) is modified.

The def-use information in Figure A6 reflects this. A, for

example, is shown as being defined at statement 3 in basic

block 2 and used in the two basic blocks, 3 and 5, which

contain the calls to SUB. On the other hand C is shown as

being defined in statements 5, 7, and 8 but not used. (C

is, in fact, "dead" and interprocedural optimization might

eliminate it.)

The second form of data flow information is the live

informatiom. Given a def-use relation (X~, X~) then Xdl is

live on all edges of any path from b. to b. which does not
l]

a redefinition of X° X~ is live on edges 3 to 4, contain

and 4 to 2 in Figure 2.

2.4 The Control Flow Between Procedures

Not only are the usual calling relationships in a system of

procedures exposed but non-nested control transfers

(abnormal returns) are also found.

2.5 The Data Flow Between Procedures

When one procedure references another, certain data items

are mutually accessible. These are data items which are

passed as arguments, are defined as global variables, have

298

the same scope, or are indirectly accessible through

pointers~ overlays~ etc. At each call point the data items

which are referenced and/or modified as a result of the call

are identified.

The Experimental Compiling System has a listing annotator

which automatically inserts comments into the source listing

at certain points. These comments contain some of the

interprocedural flow information. Figure A8 shows the

partial result of such an annotation at the call point.

3. ANALYSIS ~THOD

Given a collection of procedures, PI' P2 Pn' which

constitute all or part of a program P, the problem which we

want to consider in this section is how to derive the

information listed in Section 2. We will draw heavily on

material in the literature, particularly on the paper,

Interprocedural Data Flow Analysis [!]. In order not to

complicate the presentation, we will initially assume that

the collection is complete, i.e., all of the procedures

referenced are in the collection. It will later be evident

that this requirement can be relaxed but will result in less

accurate (but not incorrect) information being produced.

Before giving the analysis approach, a basic question needs

to be resolved: in what order should the procedures be

299

analyzed? The dilemma posed by this question can be

illustrated by the procedures in Figure 3.

If S is analyzed first we cannot determine what is defined

and used by the CALL statement: G, A, and B may each be

defined and/or used. We cannot, therefore, accurately

deduce the data flow of S.

If T is analyzed first we don't know whether or not X, Y and

G are aliased in any way: X and Y might refer to the same

actual argument which also might or might not be G. Hence

the definition of X may also be defining Y and/or G. Again

our data flow information might be inaccurate.

T could be analyzed in its ~eference context in S. However,

if there are many references to T this could be very costly.

In [i] this dilemma is resolved by choosing the "inverse

invocation order". In that paper it was assumed that a

"worst case" estimate was always made regarding certain

interferences such as between X, Y, and G in Figure 3. In

this paper the notion of an initial estimate [9] is

introduced which, if the estimate is based on an actual

examination of the program, is more accurate than a "worst

case" estimate. This approach is the one actually used in

the Experimental Compiling System. The basic algorithm is

now given.

300

Algorithm for Interprocedural 7hnalysis

Ste~ ~. Establish an initial estimate (actually an

overestimate) on the control and data relationships in P.

Ste ~ 2o Establish an order for processing the

procedures based upon the invocation relationships deduced

as part of step 1 or, if the process is iterated, the more

refined invocation relationships which can be determined

from the information collected in Step 3.

Step 3. Establish the control and data relationships

in P by processing the procedures in the order determined in

Step 2 by using either the estimate on the control and data

flow relationships or the relationships already deduced for

procedures appearing earlier in the processing order.

Step 4. If desired, update the estimates with the

information collected in step 3 and repeat steps 2, 3, and

4.

A reason for the iterative refinement of the information may

be illustrated by considering the following example.

Suppose a procedure, S, contains a CALL EV where EV is an

entry variable. By the initial estimate we may determine

that EV can take on a number of procedure values say PI, P2,

and P3. However, having performed steps 2 and 3 on that

assumption we may be able to deduce that EV can, in fact,

only have the value P2, say, at that point in S° Redoing

steps 2 and 3 with this new information leads to much more

accurate information.

30I

The steps in the process will now be elaborated.

3.1 (Ste~ l) Establish an initial estimate on the

relationships in P. Three types of information are

determined by the analysis performed in this step:

a. the possible values of all pointer, label and entry

variables in P

b. the aliasing relationships including parameter-argument

associations. In this way we determine, for example,

that the parameters and the global variable in T in

Figure 3 are all distinct.

c. the call graph.

The analysis method used in ECS for performing this step is

described in [i0]. It essentially scans each procedure,

collecting up the information of interest into a binary

matrix showing immediate relationships. It is in this form

that the information is expanded to expose transitive

relationships (e.g., the effects of calling a procedure

which calls other procedures).

3.2 (Step 2) Establish a processing order on the collection

of procedures, PI' P2' "'" Pn" From the intial estimate

(Step i) or the revised estimate (Step 4) we know the

possible invocation relationships in the collection and have

a call graph. If the call graph is cycle free, we can

readily determine an inverse invocation order [i] for a call

302

graph C with nodes n l, n 2, Consider the precedence

relation~ -~: ni-<n j if and only if node n i is an immediate

predecessor of node n~o The nodes of C can be given a
3

linear order (nl, n2r °.. n~) which satisfies the constraint

that if ni-~fn j then i < j in the linear order. The inverse
i

invocation order K = (n] ... n2~ n i) is the inverse of the

linear order. By processing the procedures in this order the

control and data flow within a procedure will be determined

before the procedures which call it are analyzed. One

inverse invocation order for the example in Figure 1 is (C,

E, D, B, A).

3.3 (Ste~ ~) Establish the control and data relationships in

P by processing the procedures in the order determined in

step 2o A number of methods [3,5~6,7] exist for performing

this analysis within each procedure. All of these methods

presume that information about what data items are used and

defined in each block is known and that the control flow can

be determined. In establishing this information in the

context of the interprocedural analysis algorithm, the

effects of a procedure call are known since it will have

been previously analyzed. Thus a call can be treated like

any other statement when establishing the information about

local uses, defines and control flow changes.

Reference [i] discusses a means of establishing the possible

flow of external data items within a procedure. The

303

approach is to treat each such item as if it were defined at

the entry point and to determine from that what uses can be

affected by it and whether or not such a definition could be

preserved by the procedure. In this way we can deduce the

effects of the procedure on data flow from outside.

In the Experimental Compiling System, the Interval analysis

method [4] is used to establish the control flow

relationships. Since this method iteratively combines

subgraphs into blocks to form new graphs in which the nodes

represent increasingly larger areas of the program, the data

flow within a procedure can be hierarchially structured.

Thus the data relationships between large areas of the

procedure are given, then between the areas within each

area, etc.

3.4 (Step 4) Update the estimates and interate. It is not

at all clear at this time how valuable such an iteration

would be. (ECS does not incorporate this feature yet.) It

seems probable that one iteration would make substantial

improvements but it is unlikely that more iterations could.

Before completing this section it is important to consider

the obvious questions of algorithm cost and what to do if

procedures are missing from the collection. First of all it

should be observed that existing compilers which analyze one

procedure at a time make "worst case" estimates for certain

304

data item a!iasing, particularly that associated with

parameters and external variables, and for the effects of

calls. When a procedure is missing we revert to that

strategy~

As stated earlier we view the compiler as part of a larger

system which manages programs~ We would not envision

reanalyzing an entire system of procedures each time one was

changed. An intelligent procedure library management system

should be able to deduce which procedures need to be

reanalyzed when one is changed. Furthermore the programmer

should probably be given some control over which procedures

are to be included in the collection of procedures for

analysis~

4. APPLICATIONS OF INTERPROCEDUP~L ANALYSIS INFORMATION

The information collected by an interprocedural analyzer can

be useful in a number of applications. In this section we

will briefly sketch possible uses in three major areas:

a. documentation to the programmer

bo program management

c. program optimization

4.1 Documentation to the Programmer

As a result of performing the interprocedural analysis, a

305

great deal of information is collected which is often not

obvious or not available to the programmer. For example if

the programmer is using procedures not created by him, he

may not be fully aware of the effects of referencing these

procedures. Furthermore the analysis will frequently expose

relationships which he had not intended.

Three forms of documentation seem desirable:

a. error messages which draw the user's attention to

definite or possible errors in the program. For example

the analysis will find variables which are used before

being defined, mismatches between arguments and

parameters, unreferenced arguments, etc. These should

probably be presented to the programmer even when not

solicited.

b. annotated listings. The Experimental Compiling System

has a listing annotator which automatically inserts

comments into listings at certain points such as at

procedure definition and reference points. These

comments sum up the effects of the procedure or of

making the reference. The annotation inserted after the

CALL T(A,B) in procedure S of Figure 3 would contain the

following:

whether A was used and/or modified

whether B was used and/or modified

whether G and any other external variable was used

and/or modified

306

other invocations resulting from this invocation and

the effects of such invocations~

In other words any effect an invocation can have on the

invoking procedure will be included in the comments

inserted at that point. Figure A8 contains a partial

example°

c. documentation~ preferably via an interrogation system

which permits selective probes on the information. The

amount of information produced is so voluminous that an

unselective presentation would be overwelming. For

example, all the uses of each definition in the program

are known and all the definitions affecting each use.

If a programmer is tracking such data flow it is easy to

postulate a system which gives him the information as he

requests it and which is, thereforer more meaningful to

him than a vast dump of the information in which he has

to track the flow.

4.2 Progra{n. Management

Whenever a change is being made to a procedure in a

collection of procedures we often need to change other

procedures in the collection and frequently would like to

know what the effects of such a change are. For example if

the programmer decides to eliminate the use of external

variables from his system and uses the argument-parameter

mechanism itself. From the interprocedural analysis

3O7

information he could determine what procedures reference the

externals, how the procedures are linked and then adjust the

appropriate parameter lists on the basis of this

information. It is not hard to visualize a program

management system which, in fact, makes many of these

changes automatically or with only a few assists from the

user.

4.3 Program Optimization

A number of the well known program optimizations such as

eliminating unused code, moving code out of loops,

eliminating redundant expressions, can be applied in the

context of procedure references as a result of the

information collected. Consider the procedure fragment in

Figure 4. If A and B are not changed in SUB then the

expression A + B can be removed from the loop. In fact if

SUB itself does not depend on anything in the loop and is

reducible, i.e., the number of references to it can be

changed, then it might be possible to remove the entire

reference from the loop and effect a large program

improvement.

In addition to increasing the utility of the traditional

program optimizations, another form of optimization can be

made on the basis of the information collected: procedure

integration. In this multiple procedures can be combined

308

into one procedure and the usual formal linkages eliminated.

5. S UMMARY

An algorithm has been given which collects control and data

flow information from the collection of procedures which

constitute all or part of a program. The information

produced as a result of applying the algorithm was discussed

with reference to a specific example in the appendix which

illustrates the form of the information. This example shows

some of the output of the Experimental Compiling System

which currently contains a partial implementation of the

algorithm. The algorithm presented here does not handle

recursive procedures but current indications are that this

method can be extended to accommodate them.

The information produced includes:

a. a call graph showing procedure relationships

b~ the control flow of a procedure in the form of a graph

c. all the uses of each definition in a procedure and

inversely all the definitions affecting each use

d. the external effects of a procedure in terms of what

arguments and external variables it uses and/or

modifies, what kind of return it makes, what procedures

it invokes, etc.

All of the information is collected by a compile time and

therefore, represents

relationships.

309

potential rather than actual

A brief discussion of possible applications for this

information for documenting, maintaining and optimizing

programs was given.

6. ACKNOWLEDGEMENTS

Ken Davies and Bob Tapscott have contributed more than the

author to the material presented in this paper. The author

wishes to thank them and the many others who have

contributed to this work.

310

REFERENCES

[i] F. E. Allen, ~'Interprocedural Data Flow Analysis"r
~roceedin~s IFIP Conference 1974, North Holland
Publishing Company, Amsterdam, 1974 (also as IBM
Research Report RC4633, T. J. Watson Research Center,
Yorktown Heights, N.Y., November, 1973).

[2] F. E. Allen, "A Basis for Program Optimization :~ ,
Proceedings IFIP Conference 1971, North Holland
PUblishing Company, Amsterdam, 1971.

[3] F.E. Allen, "A Method for Determining Program Data
Relationships", International S_~mposium on Theoretical
Programmin[, Edited by Andrei Ershov and Valery A.
Nepomniaschy, Lecture Notes in Computer Science, Vol.
5, Springer-Verlag, pp. 299-308, 1974.

. Analysls , [4] F E. Allen, "Control Flow " " Pr0ceedings of a
Symposium on Compiler Optimization, SIGPLAN Notices,
July, 1970.

[5] Matthew S. Hecht and Jeffrey D. Ullman, "Analysis of a
Simple Algorithm for Global Flow Problems", Conference
Record of ACM Symposium on Principles of Programming
Language, Bost0n, Mass., October,]973

[6] K° Kennedy, "A Global Flow Analysis Algorithm",
International Journal of Computer Math., Vo!. 3, pp.
5-15, December, 1971.

[7] Gary A. Kildail, "A Unified Approach to Global Program
Optimization, Conference Record of ACM Symposium o_~n
Principles of Programming Languages, Boston, Mass., pp.
194-206, October, 1973.

[8] Barry K. Rosen, "Data Flow Analysis for Recursive PL/I
Programs" (In preparation).

[9] J. Schwartz, "Inter-Procedural Optimization", SETL
Newsletter #134, Courant Institute of Mathematical
Sciences, New York University, 251 Mercer Street, N.Y.,
N.Y., July i, 1974.

[I0] Thomas C. Spillman, "Exposing Side-Effects in a PL/I
Optimizing Compiler", Proceedings of IFIP Congress
1971, North Holland Publishing Company, Amsterdam,
1971.

311

APPENDIX: An Example
The example given here illustrates some of the results
of interprocedural analysis as currently available in
the Experimental Compiling System. It will be noted
that the example includes only nested procedures and
does not have multiple external procedures: ECS has
been designed to handle multiple procedures, both
external and nested, but not all of the required
components are currently available. Furthermore the
example does not show a recursive procedure -- another
feature which is currently unsupported.

P
L
/
i

C
H
E
C
K
O
U
T

C
O
M
P
I
L
E
R

S
T
M
T

L
E
V

N
T

I
0

2
I

0

3
I

0
4

I
0

5
1

0
6

I
0

7
I

0

8
1

0
9

t
0

1
0

I
0

11

2
0

1
2

2
0

1
3

2
I

1
4

2
I

1
5

2
0

1
6

2
0

1
7

2
0

1
8

I
0

E
X
A
M
P
L
E
:

P
R
O
C
E
D
U
R
E
(
P
A
R
M
)
;

S
O
U
R
C
E

L
I
S
T
I
N
G

E
X
A
M
P
L
E
~

P
R
O
C
E
D
U
R
E
(
P
A
R
M
)
;

/
*

A

M
E
A
N
I
N
G
L
E
S
S

P
R
O
G
R
A
M

T
O

I
L
L
U
S
T
R
A
T
E

A
N
A
L
Y
S
I
S

R
E
S
U
L
T
S
°

~
/

D
E
C
L
A
R
E

A
=

I;

B
=

2
;

C
=

3
;

D
=

4
;

P
A
R
M

F
I
X
E
D

B
I
N
A
R
Y
~

A
F
I
X
E
D

B
I
N
A
R
Y
~

B
F
I
X
E
D

B
I
N
A
R
Y
r

C
F
I
X
E
D

B
I
N
A
R
Y
~

D
F
I
X
E
D

B
I
N
A
R
Y
;

I
F

P
A
R
M

>
0

T
H
E
N

C
A
L
L

S
U
B
(
P
A
R
M
,
A
,
B
,
C
)

;
E
L
S
E

C
A
L
L

S
U
B
(
P
A
R
M
,
B
,
A
,
C
)

;
R
E
T
U
R
N
;

S
U
B
-

P
R
O
C
E
D
U
R
E

(
N
,
X
,
Y
,
Z
)

;

D
E
C
L
A
R
E

N
F
I
X
E
D

B
I
N
A
R
Y
,

I
F
I
X
E
D

B
I
N
A
R
Y
,

X
F
I
X
E
D

B
I
N
A
R
Y

Y
F
I
X
E
D

B
I
N
A
R
Y
,

Z
F
I
X
E
D

B
I
N
A
R
Y
,

G
(
1
0
)

F
I
X
E
D

B
I
N
A
R
Y

E
X
T
E
R
N
A
L
;

D
O

I
=

I
T
O

1
0

B
Y

I
;

G
(
I
)

=
G
(
I
)

+
D
;

E
N
D
 ;

Z

=
X

+
Y
;

R
E
T
U
R
N

;

E
N
D

S
U
B
 ;

E
N
D

E
X
A
M
P
L
E

;

F
i
g
u
r
e

A
I

E
X
A
0
0
0
1
0

E
X
A
0
0
0
2
0

E
X
A
0
0
0
3
0

E
X
A
0
0
0
4
0

E
X
A
0
0
0
5
0

E
X
A
0
0
0
6
0

E
X
A
0
0
0
7
0

E
X
A
0
0
0
8
0

E
X
A
0
0
0
9
0

E
X
A
0
0
1
0
0

E
X
A
0
0
1
1
0

E
X
A
0
0
1
2
0

E
X
A
0
0
1
3
0

E
X
A
0
0
1
4
0

E
X
A
0
0
1
5
0

E
X
A
0
0
1
6
0

E
X
A
0
0
1
7
0

E
X
A
0
0
1
8
0

E
X
A
0
0
1
9
0

E
X
A
0
0
2
0
0

E
X
A
0
0
2
1
0

E
X
A
0
0
2
2
0

E
X
A
0
0
2
3
0

E
X
A
0
0
2
4
0

E
X
A
0
0
2
5
0

E
X
A
0
0
2
6
0

E
X
A
0
0
2
7
0

E
X
A
0
0
2
8
0

E
X
A
0
0
2
9
0

E
X
A
0
0
3
0
0

E
X
A
0
0
3
1
0

~o

313

IDENTIFIER ALIASES
Z C,C
X A,B
Y B,A

CALL GRAPH

I I I
I
{(SYSTEM) I

I
I
V

I 2
I
I EXAMPLE

I
i
V

3
i
I SUB

PROCESSING ORDER WILL BE :
SUB EXAMPLE

Figure A2

314

*** ANALYSIS FOR SUB ON AUGUST 27, 1974 AT 10:32 AM

08.000 SECS. ***

FLOW GRAPH FOR SUB

I 1 I
I I
i o- O l

i
I
V

L 2 I
I I
l 1 0 - 1 2 1

1
I

V

- - - > 3

12 -

4

*--- 13 - 14

12

I

t 5 I<---
I

I 15 - 16!

Figure A3

315

DEFINITION - USE

IDENTIFIER

DATA FLOW INFORMATION FOR PROCEDURE - SUB

RELATIONSHIPS

DEFINED AT USED IN
STMT BLOCK BLOCKS

D

Z

G

I

X

Y

LIVE INFORMATION

IDENTIFIER

D

Z

G

I

X

Y

0 1

15 5

13 4

12 2

14 4

0 I

0 I

IS

4

NOT USED OUTSIDE THE BLOCK

4

3
4

3
4

5

5

DEFINED AT LIVE ON EDGES
STMT BLOCK FROM - TO

0 I I 2
2 3
3 4
4 3

15 5 IS NOT LIVE

13 4 3 4

12 2 2 3
3 4

14 4 3 4
4 3

0 I I 2
2 3
3 5
3 4
4 3

Figure A4

316

**~ ANALYSIS FOR EXAMPLE ON AUGUST 27, 1974 AT 10:32 AM
25.000 SECS. ***

FLOW GRAPH FOR EXAMPLE

I I I

I o - o i

I
!

V

i 2 I

I I - 71

I
I

V

I 3 I
I I
I 7 - 71

I
I

V

I 7 - 7 1 - - - I
. i

I
I

. I

i 5 I < - - -
I I
I 8 - s l

I
I

V

1 6 I <
I I
I 9 - 91

Figure A5

DEFINITION - USE

IDENTIFIER

A

PARM

LIVE INFORMATION

IDENTIFIER

A

B

C

D

PARM

317

DATA FLOW INFORMATION FOR PROCEDURE - EXAMPLE

RELATIONSHIPS

DEFINED AT USED IN
STMT BLOCK BLOCKS

3 2

4 2

5 2 IS

7 3 IS

8 5 IS

6 2

0 I

3
5

3
5

NOT USED OUTSIDE THE BLOCK

NOT USED OUTSIDE THE BLOCK

NOT USED OUTSIDE THE BLOCK

3
5

2

DEFINED AT LIVE ON EDGES
STMT BLOCK FROM - TO

3 2 2 5
2 3

4 2 2 5
2 3

5 2 IS NOT LIVE

7 3 IS NOT LIVE

8 5 IS NOT LIVE

6 2 2 5
2 3

0 1 1 2

Figure A6

7

I

0

I

I
F

P
A
R
M

>

0

I
E
X
A
0
0
1
3
0

I

T
H
E
N

C
A
L
L

S
U
B
(
P
A
R
M
,
A
,
B
,
C
)

;

t
E
X
A
0
0
1
4
0

+
 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

A
N
N
O
T
A
T
I
O
N

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

A
R
G
U
M
E
N
T

A
R
G
U
M
E
N
T

A
R
G
U
M
E
N
T

A
R
G
U
M
E
N
T

I

:

P
A
R
M

,
V
A
R
I
A
B
L
E
,
N
O
T

U
S
E
D
,
N
O
T

M
O
D
I
F
I
E
D

2

:

A

,
V
A
R
I
A
B
L
E
,
U
S
E
D
,
N
O
T

M
O
D
I
F
I
E
D

3

:

B

,
V
A
R
I
A
B
L
E
,
U
S
E
D
,
N
O
T

M
O
D
I
F
I
E
D

4

:

C

,
V
A
R
I
A
B
L
E
,
N
O
T

U
S
E
D
,
M
O
D
I
F
I
E
D

N
O

S
E
C
O
N
D
A
R
Y

I
N
V
O
C
A
T
I
O
N
S

M
A
Y

O
C
C
U
R

A
S

A
N

I
N
D
I
R
E
C
T

R
E
S
U
L
T

O
F

T
H
I
S

I
N
V
O
C
A
T
I
O
N
~

T
H
E

V
A
R
I
A
B
L
E
S

O
F

T
H
I
S

P
R
O
C
E
D
U
R
E

I
N
D
I
R
E
C
T
L
Y

M
O
D
I
F
I
E
D

B
Y

T
H
E

I
N
V
O
K
E
D

P
R
O
C
E
D

T
H
E

V
A
R
I
A
B
L
E
S

O
F

T
H
I
S

P
R
O
C
E
D
U
R
E

I
N
D
I
R
E
C
T
L
Y

U
S
E
D

B
Y

T
H
E

I
N
V
O
K
E
D

P
R
O
C
E
D
U
R

A

B

T
H
E

E
X
T
E
R
N
A
L

V
A
R
I
A
B
L
E
S

D
I
R
E
C
T
L
Y

M
O
D
I
F
I
E
D

B
Y

T
H
E

I
N
V
O
K
E
D

P
R
O
C
E
D
U
R
E

G

I
N

S
U
B

T
H
E

E
X
T
E
R
N
A
L

V
A
R
I
A
B
L
E
S

D
I
R
E
C
T
L
Y

U
S
E
D

B
Y

T
H
E

I
N
V
O
K
E
D

P
R
O
C
E
D
U
R
E

G

I
N

S
U
B

T
H
E

V
A
R
I
A
B
L
E
S

O
F

T
H
I
S

P
R
O
C
E
D
U
R
E

D
I
R
E
C
T
L
Y

U
S
E
D

B
Y

T
H
E

I
N
V
O
K
E
D

P
R
O
C
E
D
U
R
E

D

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

E
N

D

A
N
N
O
T
A
T
I
O
N

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

F
i
g
u
r
e

A
7

C
O

C
O

9
I

0
1 I

10

I
o

I

R
E
T
U
R
N
;

S
U
B
:

P
R
O
C
E
D
U
R
E

(
N
,
X
,
Y
,
Z
)
;

T
H
I
S

P
R
O
C
E
D
U
R
E

I
S

I
N
V
O
K
E
D

A
T
:

S
T
A
T
E
M
E
N
T
-

7

I
N

E
X
A
M
P
L
E

S
T
A
T
E
M
E
N
T
-

8

I
N

E
X
A
M
P
L
E

G

G

A

B
 D

X

11

z

G

I

A
N
N
O
T
A
T
I
O
N

E
X
T
E
R
N
A
L

V
A
R
I
A
B
L
E
S

U
S
E
D

E
X
T
E
R
N
A
L

V
A
R
I
A
B
L
E
S

M
O
D
I
F
I
E
D

V
A
R
I
A
B
L
E
S

I
N

C
O
N
T
A
I
N
I
N
G

B
L
O
C
K
S

U
S
E
D

I
N

E
X
A
M
P
L
E

I
N

E
X
A
M
P
L
E

I
N

E
X
A
M
P
L
E

V
A
R
I
A
B
L
E
S

I
N

C
O
N
T
A
I
N
I
N
G

B
L
O
C
K
S

M
O
D
I
F
I
E
D

I
N

E
X
A
M
P
L
E

P
A
R
A
M
E
T
E
R
S

O
F

T
H
I
S

P
R
O
C
E
D
U
R
E

U
S
E
D

Y

L
O
C
A
L

V
A
R
I
A
B
L
E
S

U
S
E
D

I

P
A
R
A
M
E
T
E
R
S

O
F

T
H
I
S

P
R
O
C
E
D
U
R
E

M
O
D
I
F
I
E
D

L
O
C
A
L

V
A
R
I
A
B
L
E
S

M
O
D
I
F
I
E
D

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

E
N
D

A
N
N
O
T
A
T
I
O
N

F
i
g
u
r
e

A
8

I
 E
X
A
0
0
1
6
0

I
E
X
A
0
0
1
7
0

I
 E
X
A
0
0
1
8
0

~
D

F-
'-

,.Q

I1

li
II

321

S: PROCEDURE;
DECLARE G EXTERNAL;

T: PROCEDURE (X,Y);
DECLARE G EXTERNAL;

CALL T (A,B) ; X =

END S;
END T;

Figure 3

DO I = 1 TO 100;
CALL SUB (A,B);
X(I) = A + B;

END;

Figure 4

