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ABSTRACT 

Well structured programs are usually expressed as a system 

of functionally oriented procedures. By analyzing and 

transforming an entire system of procedures, linkages can be 

modified or eliminated and interprocedural data dependencies 

documented to the user. This paper presents some of the 

methods being developed to effect such interprocedural 

analysis and transformations. 

i. INTRODUCTION 

As part of the effort to improve programmer productivity and 

system reliability, a number of excellent guidelines have 

emerged for the programmer: "write in a high level 

language", "avoid goto's and external variables" ("use the 

parameter passing mechanism instead"), "write small, 

functionally oriented routines", "annotate .and document the 

programs carefully", etc. Furthermore a number of languages 

and language constructs have been developed to support (and 
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enforce) some of these techniques. While these and other 

developments in programming methodology have greatly 

increased the potential for improved programmer productivity 

and system reliability, there are some major problem areas 

requiring attention. In this paper we consider one aspect 

of the problem of developing, managing and maintaining the 

entire collection of procedures which will typically exist 

in a large system, particularly one which has been developed 

in a top-down style using many small, functionally oriented 

routines. 

The context in which we will be considering this problem is 

that of a compiling system. We will be concerned with 

collections of procedures (and functions) written in a high 

level language. Both nested and external procedures are 

considered. Since compilers traditionally compile only one 

external procedure at a time, a quite radical departure from 

the traditional design is required; indeed the compiler 

should be viewed as one component of an entire system which 

interfaces with the user and manages his programs. The 

design of such a compiling system will not be further 

discussed in this paper. However, most of the ideas 

presented here have been, or are being implemented in an 

Experimental Compiling System (ECS) currently under 

development. Since this system is PL/I oriented, the 

methodology being developed is designed to accommodate the 

many features supported by that language and hence should be 
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applicable to a number of other languages. 

In this paper a method (actually a composite of methods) is 

presented which analyzes the collection of procedures which 

constitute all or part of a program. The analysis 

determines the possible control flow and data flow within 

each procedure and between the procedures. The next 

section, Section 2, lists some of this information and 

references the Appendix, which contains a program analyzed 

by ECS. Section 3 gives the algorithm used to develop the 

information. A brief discusssion of possible uses of the 

information in developing, managing and transforming 

programs is given in Section 4. We conclude with a summary, 

acknowledgements and a bibliography. 

2. INFORMATION DERIVED 

As a result of performing the analysis to be outlined in the 

next section, a great deal of information is obtained about 

the possible data and control relationships in the program. 

Some of the information which is produced is: 

a. the call graph showing the possible invocation 

relationships in the collection 

b. a control flow graph for each procedure 

c. the data flow within each procedure 

d. the control flow between procedures 

e. the data flow between procedures. 
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The example given in the appendix shows some of the 

information currently being produced by the Experimental 

Compiling System. The example has been chosen to illustrate 

the type of information available rather than the PL/I 

features supported by ECS. Using the example, we now give a 

more detailed discussion of the information collected by 

interprocedural analysis. 

2°1 The Call Graph 

Given a collection of procedures, (PI' P2' ..o pn ) , the 

referencing relationships between the procedures can be 

expressed by a directed graph C = (N,E) of nodes ni~N and 

edges ~i~E in which 

a. each node~ n i, represents a procedure, Pi' and 

b. each edge (nj~n k) = ~ieE, represents one or more 

references in procedure Pi to procedure pj. 

Such a graph C is termed a call graph. 

Although methods [7,8] are currently being developed for 

analyzing programs which contain recursive procedures, in 

this paper we will restrict our attention to non-recursive 

procedures. The call graph in Figure 1 depicts the 

collection of procedures A, B, C, Dr E. The main procedure, 

A, contains references to procedures B and C; procedure, B, 

references Ca D, and E; and procedure, D, references C and 

E. 
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It should be noted that the call graph is not a control flow 

graph since returns are not shown. Figure A2 in the appendix 

shows the call graph produced by ECS for the partial program 

given there. 

2.2 The Control Flow Graph 

For each procedure the flow relationships are depicted by a 

"control flow graph". A control flow graph is a directed 

graph in which the nodes represent basic blocks and the 

edges represent control flow paths. A basic block is a 

linear sequence of program instructions having one entry 

point (the first instruction executed) and one exit point 

(the last instruction executed). 

Figure A5 shows the control flow graph for the outer 

procedure EXAMPLE, in the appendix. The blocks are 

arbitrarily numbered and each block in the printout shows 

its number and the serial numbers of the source statements 

in the block. Block 1 is a dummy block and block 2 contains 

everything up through the IF test. Block 3 contains the 

first call to SUB and block 4 contains the branch around the 

ELSE clause which will be executed on return from the first 

call. Block 5 (for statement 8) has the second call and 

block 6 has the return statement. 
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2.3 The Data Flow Within Each Procedure 

For each procedure two types of data flow information are 

obtained: "definition-use" relationships and "live" 

information° 

Using the notation X d, to denote the definition of data item 
l 

X in block b i and X u, to denote the use of X in block bj 
3 

then a definition-use relationship (or simply, a def-use 

relation) exists between them if the value created by the 

definition at b. can be the one used at b.. With this 
I 3 

notation~ (introduced in [3]), a def-use relation is 

the pair(X~, X~). Such a relationship can expressed by 

exist only if there is a path from b to b. which does not 
l ] 

contain a redefinition of the data item. Consider the 

d A~) and (A~, example in Figure 2. The def-use pairs are (AI, 

A~). 

It should be noted that the term "data item" rather than 

variable was used in defining the relationship. The same 

data item can have several aliases which must all be 

reconciled if the information is to be useful. These 

aliases can result from parameter-argument associations, the 

use of pointers or simply by overlaying storage. 

In Figure A6 in the appendix the def-use relationships for 

the outer procedure~ EXAMPLE, are shown. Here we see some of 

the effects of interprocedural analysis on local def-use 
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information. Variables A, B, and C are all passed to SUB; A 

and B are used in SUB and C (via parameter Z) is modified. 

The def-use information in Figure A6 reflects this. A, for 

example, is shown as being defined at statement 3 in basic 

block 2 and used in the two basic blocks, 3 and 5, which 

contain the calls to SUB. On the other hand C is shown as 

being defined in statements 5, 7, and 8 but not used. (C 

is, in fact, "dead" and interprocedural optimization might 

eliminate it.) 

The second form of data flow information is the live 

informatiom. Given a def-use relation (X~, X~) then Xdl is 

live on all edges of any path from b. to b. which does not 
l ] 

a redefinition of X° X~ is live on edges 3 to 4, contain 

and 4 to 2 in Figure 2. 

2.4 The Control Flow Between Procedures 

Not only are the usual calling relationships in a system of 

procedures exposed but non-nested control transfers 

(abnormal returns) are also found. 

2.5 The Data Flow Between Procedures 

When one procedure references another, certain data items 

are mutually accessible. These are data items which are 

passed as arguments, are defined as global variables, have 
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the same scope, or are indirectly accessible through 

pointers~ overlays~ etc. At each call point the data items 

which are referenced and/or modified as a result of the call 

are identified. 

The Experimental Compiling System has a listing annotator 

which automatically inserts comments into the source listing 

at certain points. These comments contain some of the 

interprocedural flow information. Figure A8 shows the 

partial result of such an annotation at the call point. 

3. ANALYSIS ~THOD 

Given a collection of procedures, PI' P2 .... Pn' which 

constitute all or part of a program P, the problem which we 

want to consider in this section is how to derive the 

information listed in Section 2. We will draw heavily on 

material in the literature, particularly on the paper, 

Interprocedural Data Flow Analysis [!]. In order not to 

complicate the presentation, we will initially assume that 

the collection is complete, i.e., all of the procedures 

referenced are in the collection. It will later be evident 

that this requirement can be relaxed but will result in less 

accurate (but not incorrect) information being produced. 

Before giving the analysis approach, a basic question needs 

to be resolved: in what order should the procedures be 
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analyzed? The dilemma posed by this question can be 

illustrated by the procedures in Figure 3. 

If S is analyzed first we cannot determine what is defined 

and used by the CALL statement: G, A, and B may each be 

defined and/or used. We cannot, therefore, accurately 

deduce the data flow of S. 

If T is analyzed first we don't know whether or not X, Y and 

G are aliased in any way: X and Y might refer to the same 

actual argument which also might or might not be G. Hence 

the definition of X may also be defining Y and/or G. Again 

our data flow information might be inaccurate. 

T could be analyzed in its ~eference context in S. However, 

if there are many references to T this could be very costly. 

In [i] this dilemma is resolved by choosing the "inverse 

invocation order". In that paper it was assumed that a 

"worst case" estimate was always made regarding certain 

interferences such as between X, Y, and G in Figure 3. In 

this paper the notion of an initial estimate [9] is 

introduced which, if the estimate is based on an actual 

examination of the program, is more accurate than a "worst 

case" estimate. This approach is the one actually used in 

the Experimental Compiling System. The basic algorithm is 

now given. 
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Algorithm for Interprocedural 7hnalysis 

Ste~ ~. Establish an initial estimate (actually an 

overestimate) on the control and data relationships in P. 

Ste ~ 2o Establish an order for processing the 

procedures based upon the invocation relationships deduced 

as part of step 1 or, if the process is iterated, the more 

refined invocation relationships which can be determined 

from the information collected in Step 3. 

Step 3. Establish the control and data relationships 

in P by processing the procedures in the order determined in 

Step 2 by using either the estimate on the control and data 

flow relationships or the relationships already deduced for 

procedures appearing earlier in the processing order. 

Step 4. If desired, update the estimates with the 

information collected in step 3 and repeat steps 2, 3, and 

4. 

A reason for the iterative refinement of the information may 

be illustrated by considering the following example. 

Suppose a procedure, S, contains a CALL EV where EV is an 

entry variable. By the initial estimate we may determine 

that EV can take on a number of procedure values say PI, P2, 

and P3. However, having performed steps 2 and 3 on that 

assumption we may be able to deduce that EV can, in fact, 

only have the value P2, say, at that point in S° Redoing 

steps 2 and 3 with this new information leads to much more 

accurate information. 
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The steps in the process will now be elaborated. 

3.1 (Ste~ l) Establish an initial estimate on the 

relationships in P. Three types of information are 

determined by the analysis performed in this step: 

a. the possible values of all pointer, label and entry 

variables in P 

b. the aliasing relationships including parameter-argument 

associations. In this way we determine, for example, 

that the parameters and the global variable in T in 

Figure 3 are all distinct. 

c. the call graph. 

The analysis method used in ECS for performing this step is 

described in [i0]. It essentially scans each procedure, 

collecting up the information of interest into a binary 

matrix showing immediate relationships. It is in this form 

that the information is expanded to expose transitive 

relationships (e.g., the effects of calling a procedure 

which calls other procedures). 

3.2 (Step 2) Establish a processing order on the collection 

of procedures, PI' P2' "'" Pn" From the intial estimate 

(Step i) or the revised estimate (Step 4) we know the 

possible invocation relationships in the collection and have 

a call graph. If the call graph is cycle free, we can 

readily determine an inverse invocation order [i] for a call 
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graph C with nodes n l, n 2, .... Consider the precedence 

relation~ -~: ni-<n j if and only if node n i is an immediate 

predecessor of node n~o The nodes of C can be given a 
3 

linear order (nl, n2r °.. n~) which satisfies the constraint 

that if ni-~fn j then i < j in the linear order. The inverse 
i 

invocation order K = (n] ... n2~ n i) is the inverse of the 

linear order. By processing the procedures in this order the 

control and data flow within a procedure will be determined 

before the procedures which call it are analyzed. One 

inverse invocation order for the example in Figure 1 is (C, 

E, D, B, A). 

3.3 (Ste~ ~) Establish the control and data relationships in 

P by processing the procedures in the order determined in 

step 2o A number of methods [3,5~6,7] exist for performing 

this analysis within each procedure. All of these methods 

presume that information about what data items are used and 

defined in each block is known and that the control flow can 

be determined. In establishing this information in the 

context of the interprocedural analysis algorithm, the 

effects of a procedure call are known since it will have 

been previously analyzed. Thus a call can be treated like 

any other statement when establishing the information about 

local uses, defines and control flow changes. 

Reference [i] discusses a means of establishing the possible 

flow of external data items within a procedure. The 
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approach is to treat each such item as if it were defined at 

the entry point and to determine from that what uses can be 

affected by it and whether or not such a definition could be 

preserved by the procedure. In this way we can deduce the 

effects of the procedure on data flow from outside. 

In the Experimental Compiling System, the Interval analysis 

method [4] is used to establish the control flow 

relationships. Since this method iteratively combines 

subgraphs into blocks to form new graphs in which the nodes 

represent increasingly larger areas of the program, the data 

flow within a procedure can be hierarchially structured. 

Thus the data relationships between large areas of the 

procedure are given, then between the areas within each 

area, etc. 

3.4 (Step 4) Update the estimates and interate. It is not 

at all clear at this time how valuable such an iteration 

would be. (ECS does not incorporate this feature yet.) It 

seems probable that one iteration would make substantial 

improvements but it is unlikely that more iterations could. 

Before completing this section it is important to consider 

the obvious questions of algorithm cost and what to do if 

procedures are missing from the collection. First of all it 

should be observed that existing compilers which analyze one 

procedure at a time make "worst case" estimates for certain 
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data item a!iasing, particularly that associated with 

parameters and external variables, and for the effects of 

calls. When a procedure is missing we revert to that 

strategy~ 

As stated earlier we view the compiler as part of a larger 

system which manages programs~ We would not envision 

reanalyzing an entire system of procedures each time one was 

changed. An intelligent procedure library management system 

should be able to deduce which procedures need to be 

reanalyzed when one is changed. Furthermore the programmer 

should probably be given some control over which procedures 

are to be included in the collection of procedures for 

analysis~ 

4. APPLICATIONS OF INTERPROCEDUP~L ANALYSIS INFORMATION 

The information collected by an interprocedural analyzer can 

be useful in a number of applications. In this section we 

will briefly sketch possible uses in three major areas: 

a. documentation to the programmer 

bo program management 

c. program optimization 

4.1 Documentation to the Programmer 

As a result of performing the interprocedural analysis, a 
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great deal of information is collected which is often not 

obvious or not available to the programmer. For example if 

the programmer is using procedures not created by him, he 

may not be fully aware of the effects of referencing these 

procedures. Furthermore the analysis will frequently expose 

relationships which he had not intended. 

Three forms of documentation seem desirable: 

a. error messages which draw the user's attention to 

definite or possible errors in the program. For example 

the analysis will find variables which are used before 

being defined, mismatches between arguments and 

parameters, unreferenced arguments, etc. These should 

probably be presented to the programmer even when not 

solicited. 

b. annotated listings. The Experimental Compiling System 

has a listing annotator which automatically inserts 

comments into listings at certain points such as at 

procedure definition and reference points. These 

comments sum up the effects of the procedure or of 

making the reference. The annotation inserted after the 

CALL T(A,B) in procedure S of Figure 3 would contain the 

following: 

whether A was used and/or modified 

whether B was used and/or modified 

whether G and any other external variable was used 

and/or modified 
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other invocations resulting from this invocation and 

the effects of such invocations~ 

In other words any effect an invocation can have on the 

invoking procedure will be included in the comments 

inserted at that point. Figure A8 contains a partial 

example° 

c. documentation~ preferably via an interrogation system 

which permits selective probes on the information. The 

amount of information produced is so voluminous that an 

unselective presentation would be overwelming. For 

example, all the uses of each definition in the program 

are known and all the definitions affecting each use. 

If a programmer is tracking such data flow it is easy to 

postulate a system which gives him the information as he 

requests it and which is, thereforer more meaningful to 

him than a vast dump of the information in which he has 

to track the flow. 

4.2 Progra{n. Management 

Whenever a change is being made to a procedure in a 

collection of procedures we often need to change other 

procedures in the collection and frequently would like to 

know what the effects of such a change are. For example if 

the programmer decides to eliminate the use of external 

variables from his system and uses the argument-parameter 

mechanism itself. From the interprocedural analysis 
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information he could determine what procedures reference the 

externals, how the procedures are linked and then adjust the 

appropriate parameter lists on the basis of this 

information. It is not hard to visualize a program 

management system which, in fact, makes many of these 

changes automatically or with only a few assists from the 

user. 

4.3 Program Optimization 

A number of the well known program optimizations such as 

eliminating unused code, moving code out of loops, 

eliminating redundant expressions, can be applied in the 

context of procedure references as a result of the 

information collected. Consider the procedure fragment in 

Figure 4. If A and B are not changed in SUB then the 

expression A + B can be removed from the loop. In fact if 

SUB itself does not depend on anything in the loop and is 

reducible, i.e., the number of references to it can be 

changed, then it might be possible to remove the entire 

reference from the loop and effect a large program 

improvement. 

In addition to increasing the utility of the traditional 

program optimizations, another form of optimization can be 

made on the basis of the information collected: procedure 

integration. In this multiple procedures can be combined 
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into one procedure and the usual formal linkages eliminated. 

5. S UMMARY 

An algorithm has been given which collects control and data 

flow information from the collection of procedures which 

constitute all or part of a program. The information 

produced as a result of applying the algorithm was discussed 

with reference to a specific example in the appendix which 

illustrates the form of the information. This example shows 

some of the output of the Experimental Compiling System 

which currently contains a partial implementation of the 

algorithm. The algorithm presented here does not handle 

recursive procedures but current indications are that this 

method can be extended to accommodate them. 

The information produced includes: 

a. a call graph showing procedure relationships 

b~ the control flow of a procedure in the form of a graph 

c. all the uses of each definition in a procedure and 

inversely all the definitions affecting each use 

d. the external effects of a procedure in terms of what 

arguments and external variables it uses and/or 

modifies, what kind of return it makes, what procedures 

it invokes, etc. 

All of the information is collected by a compile time and 
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relationships. 
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potential rather than actual 

A brief discussion of possible applications for this 

information for documenting, maintaining and optimizing 

programs was given. 
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APPENDIX: An Example 
The example given here illustrates some of the results 
of interprocedural analysis as currently available in 
the Experimental Compiling System. It will be noted 
that the example includes only nested procedures and 
does not have multiple external procedures: ECS has 
been designed to handle multiple procedures, both 
external and nested, but not all of the required 
components are currently available. Furthermore the 
example does not show a recursive procedure -- another 
feature which is currently unsupported. 



P
L
/
i
 

C
H
E
C
K
O
U
T
 

C
O
M
P
I
L
E
R
 

S
T
M
T
 

L
E
V
 
N
T
 

I 
0 

2 
I 

0 

3 
I 

0 
4 

I 
0 

5 
1 

0 
6 

I 
0 

7 
I 

0 

8 
1 

0 
9 

t 
0 

1
0
 

I 
0 

11
 

2 
0 

1
2
 

2 
0 

1
3
 

2 
I 

1
4
 

2 
I 

1
5
 

2 
0 

1
6
 

2 
0 

1
7
 

2 
0 

1
8
 

I 
0 

E
X
A
M
P
L
E
:
 

P
R
O
C
E
D
U
R
E
(
P
A
R
M
)
;
 

S
O
U
R
C
E
 

L
I
S
T
I
N
G
 

E
X
A
M
P
L
E
~
 

P
R
O
C
E
D
U
R
E
(
P
A
R
M
)
;
 

/
*
 
A 

M
E
A
N
I
N
G
L
E
S
S
 

P
R
O
G
R
A
M
 

T
O
 
I
L
L
U
S
T
R
A
T
E
 

A
N
A
L
Y
S
I
S
 

R
E
S
U
L
T
S
°
 

~
/
 

D
E
C
L
A
R
E
 

A 
= 

I;
 

B 
= 

2
;
 

C 
= 

3
;
 

D 
= 

4
;
 

P
A
R
M
 

F
I
X
E
D
 

B
I
N
A
R
Y
~
 

A 
F
I
X
E
D
 

B
I
N
A
R
Y
~
 

B 
F
I
X
E
D
 

B
I
N
A
R
Y
r
 

C 
F
I
X
E
D
 

B
I
N
A
R
Y
~
 

D 
F
I
X
E
D
 

B
I
N
A
R
Y
;
 

I
F
 
P
A
R
M
 

> 
0 

T
H
E
N
 

C
A
L
L
 

S
U
B
(
P
A
R
M
,
A
,
B
,
C
)
 

; 
E
L
S
E
 

C
A
L
L
 

S
U
B
(
P
A
R
M
,
B
,
A
,
C
)
 

; 
R
E
T
U
R
N
;
 

S
U
B
-
 

P
R
O
C
E
D
U
R
E
 

(
N
,
X
,
Y
,
Z
)
 
; 

D
E
C
L
A
R
E
 

N 
F
I
X
E
D
 

B
I
N
A
R
Y
,
 

I 
F
I
X
E
D
 

B
I
N
A
R
Y
,
 

X 
F
I
X
E
D
 

B
I
N
A
R
Y
 

Y 
F
I
X
E
D
 

B
I
N
A
R
Y
,
 

Z 
F
I
X
E
D
 

B
I
N
A
R
Y
,
 

G 
(
1
0
)
 

F
I
X
E
D
 

B
I
N
A
R
Y
 

E
X
T
E
R
N
A
L
;
 

D
O
 

I 
= 

I 
T
O
 

1
0
 
B
Y
 

I
;
 

G
(
I
)
 

= 
G
(
I
)
 

+ 
D
;
 

E
N
D
 ;

 
Z 

= 
X 

+ 
Y
;
 

R
E
T
U
R
N
 
; 

E
N
D
 

S
U
B
 ;
 

E
N
D
 

E
X
A
M
P
L
E
 
; 

F
i
g
u
r
e
 

A
I
 

E
X
A
0
0
0
1
0
 

E
X
A
0
0
0
2
0
 

E
X
A
0
0
0
3
0
 

E
X
A
0
0
0
4
0
 

E
X
A
0
0
0
5
0
 

E
X
A
0
0
0
6
0
 

E
X
A
0
0
0
7
0
 

E
X
A
0
0
0
8
0
 

E
X
A
0
0
0
9
0
 

E
X
A
0
0
1
0
0
 

E
X
A
0
0
1
1
0
 

E
X
A
0
0
1
2
0
 

E
X
A
0
0
1
3
0
 

E
X
A
0
0
1
4
0
 

E
X
A
0
0
1
5
0
 

E
X
A
0
0
1
6
0
 

E
X
A
0
0
1
7
0
 

E
X
A
0
0
1
8
0
 

E
X
A
0
0
1
9
0
 

E
X
A
0
0
2
0
0
 

E
X
A
0
0
2
1
0
 

E
X
A
0
0
2
2
0
 

E
X
A
0
0
2
3
0
 

E
X
A
0
0
2
4
0
 

E
X
A
0
0
2
5
0
 

E
X
A
0
0
2
6
0
 

E
X
A
0
0
2
7
0
 

E
X
A
0
0
2
8
0
 

E
X
A
0
0
2
9
0
 

E
X
A
0
0
3
0
0
 

E
X
A
0
0
3
1
0
 

~o
 



313 

IDENTIFIER ALIASES 
Z C,C 
X A,B 
Y B,A 

CALL GRAPH 

I I I 
I 
{(SYSTEM) I 

I 
I 
V 

I 2 
I 
I EXAMPLE 

I 
i 
V 

3 
i 
I SUB 

PROCESSING ORDER WILL BE : 
SUB EXAMPLE 

Figure A2 
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*** ANALYSIS FOR SUB ON AUGUST 27, 1974 AT 10:32 AM 

08.000 SECS. *** 

FLOW GRAPH FOR SUB 

I 1 I 
I I 
i o- O l  

i 
I 
V 

L 2 I 
I I 
l 1 0  - 1 2 1  

1 
I 

V 

- - - >  3 

12 - 

4 

*--- 13 - 14 

12 .... 

I 

t 5 I<--- 
I 

I 15 - 16! 

Figure A3 
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DEFINITION - USE 

IDENTIFIER 

DATA FLOW INFORMATION FOR PROCEDURE - SUB 

RELATIONSHIPS 

DEFINED AT USED IN 
STMT BLOCK BLOCKS 

D 

Z 

G 

I 

X 

Y 

LIVE INFORMATION 

IDENTIFIER 

D 

Z 

G 

I 

X 

Y 

0 1 

15 5 

13 4 

12 2 

14 4 

0 I 

0 I 

IS 

4 

NOT USED OUTSIDE THE BLOCK 

4 

3 
4 

3 
4 

5 

5 

DEFINED AT LIVE ON EDGES 
STMT BLOCK FROM - TO 

0 I I 2 
2 3 
3 4 
4 3 

15 5 IS NOT LIVE 

13 4 3 4 

12 2 2 3 
3 4 

14 4 3 4 
4 3 

0 I I 2 
2 3 
3 5 
3 4 
4 3 

Figure A4 



316 

**~ ANALYSIS FOR EXAMPLE ON AUGUST 27, 1974 AT 10:32 AM 
25.000 SECS. *** 

FLOW GRAPH FOR EXAMPLE 

I I I 

I o - o i  

I 
! 

V 

i 2 I 

I I - 71 . . . .  

I 
I 

V 

I 3 I 
I I 
I 7 - 71 

I 
I 

V 

I 7 - 7 1 - - - I  . . . .  
. . . . . . . . . . . . .  i 

I 
I 

. . . . . . . . . . . . .  I 

i 5 I < - - -  
I I 
I 8 -  s l  

I 
I 

V 

1 6 I <  . . . . . . .  
I I 
I 9 -  91 

Figure A5 



DEFINITION - USE 

IDENTIFIER 

A 

PARM 

LIVE INFORMATION 

IDENTIFIER 

A 

B 

C 

D 

PARM 
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DATA FLOW INFORMATION FOR PROCEDURE - EXAMPLE 

RELATIONSHIPS 

DEFINED AT USED IN 
STMT BLOCK BLOCKS 

3 2 

4 2 

5 2 IS 

7 3 IS 

8 5 IS 

6 2 

0 I 

3 
5 

3 
5 

NOT USED OUTSIDE THE BLOCK 

NOT USED OUTSIDE THE BLOCK 

NOT USED OUTSIDE THE BLOCK 

3 
5 

2 

DEFINED AT LIVE ON EDGES 
STMT BLOCK FROM - TO 

3 2 2 5 
2 3 

4 2 2 5 
2 3 

5 2 IS NOT LIVE 

7 3 IS NOT LIVE 

8 5 IS NOT LIVE 

6 2 2 5 
2 3 

0 1 1 2 

Figure A6 
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S: PROCEDURE; 
DECLARE G EXTERNAL; 

T: PROCEDURE (X,Y); 
DECLARE G EXTERNAL; 

CALL T (A,B) ; X = 

END S; 
END T; 

Figure 3 

DO I = 1 TO 100; 
CALL SUB (A,B); 
X(I) = A + B; 

END; 

Figure 4 


