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ABSTRACT 

Languages generated by monogenic (i.e. deterministic) context independent Linden- 

mayer systems (DOL systems) are investigated. Necessary and sufficient conditions are 

established under which the language generated by a DOL system is finite. Thus, sharp 

bounds on the cardina&ity of such a language are obtained. A feasible solution for 

the membership problem is given. The problems are solved of what is the minimum sized 

alphabet over which there is a DOL language of cardinality n and, conversely, what is 

the maximum sized finite DOL language over an alphabet of m letters. This in turn pro- 

vides us with some number theoretic functions, interesting in their own right, of 

which several properties, interrelations and asymptotic approximations are derived. 

I. INTRODUCTION 

Lindenmayer systems are a class of parallel rewriting systems introduced by Lin- 

denmayer E59,60] as a model for the developmental growth of filamentous organisms. A 

Lindenmayer system consists of an initial filament, symbolized by a string of letters, 

and the subsequent stages of development are obtained by rewriting all letters in a 

string simultaneously at each time step. It is called deterministic if the system is 

essentially monogenic, i.e. each string has a unique successor. It is called context 

independent if the rewriting of a letter does not depend on its neighbors. 

The study of Linder~nayer systems and the languages they generate has gone a long 

way since its original biological motivation. It has found its own place within the 

~) This paper is registered at the Mathematical Center as IW 18/74. 
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body of formal language theory by the growing interest in parallel processes and the 

different notions, problems and techniques particular to this field, see e.g. Herman 

and Rozenberg [45]. For instance, the notion of generating languages by monogenic re- 

writing systems is altogether foreign to the usual generating grammar approach since 

there such a language would either be empty of contain one element. It is in this di- 

rection that o~: present investigations take place. We shall be concerned with deter- 

ministic context independent Lindenmayer systems and the languages they generate. 

This family of languages has been studied in detail, e.g. with respect to its place 

in the Chomsky hierarchy [91,117], (anti)closure properties [91,102], and the growth 

of word length [111,15,75,98,116]. The membership problem for DOL languages has been 

solved affirmatively in [14] where a gigantic upper bound on the size of such a lan- 

guage is given in case it is finite. 

The present paper consists of two parts. In the first part we establish, by a 

simple combinatorial argument, necessary and sufficient conditions (with respect to 

the production rules) under which the language generated by a deterministic context 

independent Lindenmayer system is finite. These conditions yield sharp bounds on the 

size of such a language depending on the size of the alphabet and She production 

rules. Furthermore, a feasible decision procedure for the membership problem is pro- 

vided and we solve the problems of what is the minimum sized alphabet over which there 

is a deterministic context independent Lindenmayer language of size n and, conversely, 

what is the maximum sized finite deterministic context independent Lindenmayer lan- 

guage over an alphabet of m letters• The solutions to these last two problems provide 

us with some number theoretic functions, interesting in their own right, which form 

the object of study in the second part of our paper. We derive severs/ properties, 

interrelations and asymptotic approximations to these functions. 

2. FINITE DETERMINISTIC CONTEXT INDEPENDENT LINDENMAYER LANGUAGES 

We assume that the standard terminology of formal language theory is familiar. 

We customarily use, with or without indices, i,j,k,n,m,p,q to range over the set of 

natural numbers ~= {0,1,2, .... }; a,b,c,d to range over an alphabet W; v,w to range 

over W*, i.e. the set of all words over W including the empty word h. A deterministic 

context independent Lindenmayer system (DOL system) is a triple G = <W,8,w> where W 

is a finite non-empty alphabet, ~ is a tots/ mapping from W into W* called the set of 

production rules, and w ~ WW* is the axiom. We extend 6 to W* by defining ~(h) = h 

• W*. ~i and 6(ala2...an) = 6(a1)6(a2)..6(an). (I.e. ~ is a homomorphism on ) is the 

composition of i copies of ~ and is inductively defined by 60(v) = v and ~i(v) = 

= ~(~i-1(v)) for i > 0. The DOL lan~F~ge generated by G is L(G) = {~i(w) I i -> 0}. A 

letter a e W is mortal (acM) iff ~i(a) = ~ for some i; vital (a~V) iff a ~ M; recur- 

sire (a£R) iff ~i(a) e W*{a}W* for some i > 0; monorecursive (aeMR) iff 8i(a) E 
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E M*{a}M* for some i > 0. Clearly, if a ~ M,R,MR then there is an i as above such 

that i ~ #M,#R,#MR, respectively, where #Z denotes the eardinality of a set Z. 

Lemma t .  Let G = <W,8,w> be a DOL system. If there is an i and a b ~ R-MR such that 

b is a subword of 8i(w) then L(G) is infinite. 

Proof. If b e R-MR then there is a j ~ #R and a c ~ V such that ~J(b) = VlbV2cV 3 or 

6J(b) = VlCV2bv 3. Hence, if lgv(V) denotes the number of occurrences of vital letters 

in a word v, we have 

(I) • . lgv(6n j lgv(6Z±nJ(w)) a (b)) > n, 

and L(G) is infinite. D 

Lemma 2. Let G = <W,~,w> be a DOL system. If there is an i ~ #(V-R) and a b £ V-R 

such that b is a subword of 8i(a) for some a £ W then there is a ~ < i and a c ~ R-MR 

such that e is a subword of 6J(a). 

Proof. There is a sequence of letters a0,al,...,a i such that a 0 = a, a.z = b and aj+ I 

is a subword of 6(aj) for 0 ~ j < i. If b ~ V-R then a.j e V for 0 ~ j N i. Since 

there are at least #(V-R)+I a.'s there is one which is recursive and therefore there 
J 

is a ~1 < i such that ajl £ R. It is easy to see that for a recursive letter d always 

holds that 6t(d) contains a recursive letter as a suhword for each t. Therefore, 

~l-J1(ajl) = VldV2bv 3 or z J1(ajl ) = VlbVfdv3 where d ~ R and b £ V-R. Hence a.31 ¢ 

c R-~. By taking c equal to a. the lemma is proved. D 

Lemma 3. Let G = <W,6,w> be a D0L system. If 6t(w) ~ (MuMR) w for t = #(V-R) then L(G) 

is finite. 

Proof. Suppose 

(2) J(V-R)(w ) = v]alv2a2...VnanVn+1 , 

where al,a2,...,an c MR and Vl,V2,...,Vn+ I ~ M . Now it is easy to see that for each 

a.z ¢ MR there is a k i (1~ki~#MR) and a sequence aio,ai],...,aik ' such that ai0 = 
1 

= aik i = ai, aij I # a..ij2 for 0 ~ Jl < J2 < ki' and a i j+1 ~ MR is the only vital let- 

ter in ~(aij) , 0 s j < k..1 Also, 

(3) JM(b) = ~ for all b ~ M. 

Hence, for all a. ~ MR and all t,t' 2 #M holds 
1 

(4a) 6t(a i) = 6t'(ai ) for t ~ t' mod k i, 
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(~,b) 6t(a i) # vl~t'(ai]v 2 for t ~ t' mod k i, for all vl,v 2 e W*. 

By (2), (3) and (4) we have that for all t a #(W-H) holds: 

(5) 

where m, .  
mJ i 

an~ (5): 

~ • o.o~ • 

6t(w) ~lj 1 2J 2 nJ n 

Ji 
= 6 (ai) , Ji ~ t mod k i and #M s Ji < #M+ki, I -< i -< n. By (2), (4) 

(6a) ~t(w) # at'(w) 

(6b) at(v) = at'(w) 

for all t,t' such that 

~(W-H) ~ t < t' < #(W-H) + 1.c.m. (kl,k 2 ..... kn); 

for all t,t' such that t,t' z #(W-R) and 

t ~ t' mod (l.c.m. (kl,k2, .... kn)). 

Therefore 

(7) l.c.m. (kl,k 2 ..... k n) ~ #L(G) ¢ l.c.m. (kl,k 2 ..... kn) + #(W-R). 0 

We are now ready to state the main theorem of this section. 

Theorem I. Let G = <W,6~w>bea DOL system. L(G) is finite iff 6t(w) E (MuMR)* for 

t = ~(V~H). 

Proof. "If". By lemma 3. 

"Only if". 

Case I. ~t(w) e W*(R-MR)W*. By lemma I L(G) is infinite. 

Case 2. 6t(w) e W*(V-R)W* for t = #(V-R). By lemma 2 there is a t' < t such that 

6t'(w) e W*(R-MR)W*, and therefore case I holds and L(G) is infinite. 

Hence, if 6t(w) ~ W*(V-MR)W* for t = #(V-R) then L(G) is infinite, i.e. if L(G) 

is finite then 6t(w) ~ (MuMR)* for t = #(V-R). 0 

From the previous lemmas and the theorem we can derive some interesting corol- 

laries. 

Corollary I. L(G) is finite iff ~t(w) c (MuMR)* for all t ~ #(V-R). 

Corollary 2. A DOL language is finite iff all recursive letters which are accessible 

from the axiom (i.e. which occur in words in the language) are monorecursive. 

Since all letters which can be derived from a certain letter (or word) are de- 

rived within #W steps, it is easy to determine whether a letter is mortal, vital, re- 

cursive, monorecursive. The quickest way is to determine subsequently M, V, R and MR. 
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Corollary 3. There is an ~igorithm to determine whether the language generated by a 

DOL system is finite or not. (Hint: determine M,V,R and MR and apply theorem I or 

corollary 2.) 

Next we consider the membership problem: given a DOL system G = <W,6,w> and a 

word v £ W , decide whether or not v is in L(G). (Equivalently, is there an i such 

that ~i(w) = v). Now assume that L(G) is finite and 

J(v-m(w ) = vlaC¢2...h%vn+1, 

M W " where al,a2,...,a n ~ MR and v1,~,...,vn+ 1 ~ Assume further that v = a . a .... 
IJ 1 2J 2 

Ji 
...~ . where ~.. = ~ (a i) for some ji such that #M g J i < #M+ki' I g i g n. By 

nJ n zJ i 

• ~Ji' 
~Ji(a i) .' < #M+k. and all (4b) # v I (ai)v 2 for all ji,Ji' such that #M ~ Ji < Jl l 

W* Vl,V 2 £ , I s i ~ n. Therefore, the parse of v (if it exists) is unique and can be 

executed easily from left to right given 6t(ai ) for all t and i, #M ~ t < #M+ki, 

n. Since by (4a) ~t(ai) = ~t'(ai) for all t,t' ~ #M such that t ~ t' mod k. I g i 
1 

the problem can now be restated as follows: is there a positive integer u such that 

u z (ji-#M) mod ki, I ~ i s n. The solution is well known. 

Lemma 4. (Chinese remainder theorem I). Let kl,k2,...,k n be positive integers and let 

tl,t2,...,t n be any integers. There is exactly one integer u which satisfies the con- 

ditions 

0 ~ u < l.c.m. (kl,k2,...,kn) , 

u ~ t. mod k. (1~i~n) 
1 l 

iff t i~ tj mod (g.c.d. (ki,kj)) (1~i<j~n). 

There is no integer u ~ t i mod ki, (1~i~n), if not t.l z t.j mod (g.c.d. (ki,kj)) , 

( ~i<j~n). 

Therefore, if u exists then v = 6#(W-R)+U(w) and v # 6t(w) for all t ~ #(W-R) 

otherwise. If a parse of v as mentioned is not possible then by (5) v # ~t(w) for all 

t a #(W-R). Hence we have 

Theorem 2. There is aa algorithm which solves the membership problem for D0L lan- 

guages. 

Proof. The proof consists in giving an outline of the algorithm. 

(i) Determine whether L(G) is finite or not (corollary 3). If L(G) is infinite then 

generate successively w,6(w),62(w),.., and compare each 6i(w) with v. Is 

i See e.g. Knuth,D. Seminumerical algor~t~ns. Addison-Wesley, Reading (Mass.)(1969), 
256. 
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(ii) 

~i(w) # v for all i < t O and 6t0(w) contains more occurrences of vital letters 

than does v then v ~ L(G). By (I) t O ~ #V(lgv(V) - Igv(W) + I). 

L(G) is finite. Generate successively w,~(w),...,J(W-R)(w) and compare each 

6i(w) with v. Is 8i(w) ¢ v for all i such that 0 ~ i ~ #(W-R) then try to parse 

v as discussed above. Is the parse successful then apply the Chinese remainder 

theorem. Depending on whether or not sm. integer u, as stated in the theorem, 

exists v does or does not belong to L(G). If the parse is not successful then 

v @ L(G). D 

The decision procedure for the membership problem for DOL languages we gave a- 

bove is unusual under mathematical decision procedures in that it is feasible, i.e. 

gives answers to reasonable questions within a reasonable time 2, as testified by an 

ALGOL 60 implementation, Vit~nyi [114]. Of course, if L(G) is finite we can test for 

membership by generating the whole of L(G). But as will appear from the next corol- 

lary and the asymptotic approximations in section 4, even for a modest alphabet of, 

say, a hundred letters, this may turn out not to be feasible. 

By the inequality (7) we can easily determine the cardinality of a finite DOL 

language. 

Example. Let G = <{a,al,a2,a3,bl,b2,Cl,C2,C3}, {6(a) = ClalblC 3, 6(a I) = cla 2, 

= c c a , ~(bl) = elb2Cl 6(b 2) = C2blC I 6(e I) = ~(c 2) = 6(a2) c2a3' 6(a3) = 3 3 1 ' ' c2c3' 

= c3, ~(c 3) = h}, clac3alb2C2>. 

Then: M = {ci,C2,C3}, 

V = (a,al,a2,a3,bl,b2}, 

R = MR = (al,a2,a3,bl,b2}. 

Since a does not occUr in a value of 6, ~@(V-R)(clac3alb2C 2) ~ (MuMR)*: L(G) is fin- 

ite. The different per~ods kl,k 2 are 2 and 3. Therefore, by (7) 

or 

Z.c.m. (2,3) -< #L(a) ~ l.c.m. (2,3) + 9-5, 

6 ~ #L(G) ~ I0. 

By writing out L(G) we see that #L(G) = 10. 

From the inequality (7) we obtain the following corollary (see also []141) which 

forms the basis of the sequel. 

See e.g. Parikh, R. Ex~Jstence and feasibility in arithmetic, J.SFmb.Logic. 3_44 

(1971), 494 - 508. 
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Corollary 4. (i) Let P: • + • be defined as follows. P(m) is the largest natural 

number n which is the least common multiple of kl,k2,...,kq, for all possible parti- 

tions of m into q = 1,2,...,m positive integral summands, plus the number of snmmands 

equal to I. By (7) P(m) is the maximum eardinality of a finite D0L language over an 

alphabet of m letters. 

(ii) Let S: ~ + ~ be defined as follows. S(n) is the smallest natural number m such 

that there exists a partition of m into positive integral summands kl,k2,...,kq, 

q ~ m, and l.c.m. (kl,k2,...,kq) + #{ilki=1} = n. By (7) S(n) is the minimum cardin- 

ality of an alphabet over which there is a D0L language of cardinality n. 

The remainder of the paper will be concerned with the investigation of the num- 

ber theoretic functions S, P and some variants. Thus we derive lower bounds on the 

size of the alphabet as a function S of the size of a finite D0L language over such 

an alphabet, and upper bounds on the size of a finite DOL language as a function P of 

the size of the alphabet. 

3. FUNCTIONS WHICH RELATE SIZE OF LANGUAGE WITH SIZE OF ALPHABET 

The number theoretic functions S and P of corollary 4 have a much broader set- 

ting than just their connection with DOL systems. Imagine a process which starts by 

counting until some number d and then initializes some number q of periodic counters. 

Then S(n) and P(m) have a natural interpretation as the smallest number of states 

needed to generate a prescribed number n of distinguishable configurations and the 

largest number of distinguishable configurations which can be generated by using a 

prescribed number m different states, respectively. If we have the additional restric- 

tion d = 0 then, in the latter case, we ask in effect for the maximum order of a per- 

mutation of the m-th degree. (The order of a permutation of the m-th degree is the 

exponent of the smallest power of a permutation on m elements which is equal to the 

identity permutation. ) Already Landau 3 investigated the maximum order f(m) of a per- 

mutation of a given degree m. I.e. f: IN + I{ where f(m) is defined as the maximum of 

the least common multiple of k I,k2,.. . ,kq for all possible partitions of m into q = 

= I ,2,... ,m positive integral summands. We shall return to this connection with Lan- 

dau's work in section 4. 

According to corollary 4, 

q 

(8) S(n) = min{ i=1 ~ k.l + d I l.c.m. (kl,k 2 ..... kq) + d = n} 

3 Landau, E. ~er die Maximalordnun¢ der Pernr~tationen gegebenen @ra~e8, Archly der 
Math. und Phys., Dritte Reihe, 5~1903), 92- 103. 
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q 

P(n) = max{l.c.m. (kl,k 2 .... ,kq) + d I [ k. + d = n}. 
i=I l 

For the smallest values of n we find: 

n I 2 3 4 5 6 7 8 9 10 11 12 13 14 

S(n) I 2 3 4 5 5 6 7 8 7 8 7 8 9 

P(n) I 2 3 4 6 7 12 15 20 30 31 60 61 84 

For instance, 

S(14) = 2+7 = 4+3+2 : 9 

P(14) = 2*2*3*7 = 4*3*7 = 84 

since 14 = 2*7 = 4*3 + 2. 

since 14 = 2+2+3+7 = 4+3+7. 

Then 

~i = ki1*ki2' kil > I, ki2 > I. 

ki - (ki1+ki2) = kil*ki2 - (ki1+~i2) = (ki1-1)(ki2-1) - I Z 0. 

Therefore, it suffices to look for kl,k2,...,k ~ which are powers of distinct primes. 

Hence we replace (8) and (9) by 

(I0) S(n) = mn(Ep ~ + d I nP ~ + d = n}, 

(11) P(n) = max{Up s + d I ZP ~ + d = n}, 

where p denotes some prime. To obtain a canonical representation for S(n) and P(n) 

we take the representation with the smallest d for which the extrema are reached. By 

the unique factorization property of the natural numbers this representation will be 

unique. Additionally we define 

(12) S'(n) = + d I nP + d ~ n} 

(13) P'(n) = max{Np ~ + d I ~P~ + d g n}. 

(Then S'(n) is the number of letters in the smallest alphabet over which there is a 

Hence, the corresponding representations of S(n) and P(n) in kl,k2,...,kq,d are not 

"&uique. Clearly, in (8) and (9) the k1~k 2, .... k~ for which the extrema are reached 

for a given n will be relatively prime. Suppose we can factorize a ki' I ~ i ~ q, 

into two relatively prime factors kil and ki2: 
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finite DOL language of at least cardinality n and P'(n) is the cardinality of the 

largest finite DOL language over an alphabet of at most n letters.) It is convenient 

to introduce also 

(14) s(n,d) = Zp~ + d such that Up ~ = n-d, 

since by the unique factorization property s(n,d) is found immediately; and we see 

that 

S(n) = min(s(n,d) I 0 ~ d ~ n}. 

The first 2000 values of S(n) were determined by computer and showed a quite erratic 

behavior. E.g. S(1971) = 61~ 8(1972) = 50, S(1973) = 51 and S(2000) = 39. (~sterby 4 
11 

contains a detailed computer analysis of S(n) for I ~ n ~ 5.10 . Furthermore, S'(n) 

and P(n) are computed for a large number of values. He considers e.g. the question in 

how many different ways S(n) can be obtained from n.) 

Now let us take a closer look at the general behavior and interrelations of our 

functions. It is at once apparent that, since P(n+1) ~ P(n)+1 for all n, P is strict- 

ly increasing and therefore P' = P. S(n+1) ~ S(n)+1 and S(8) = S(I0) = 7 while S(9) = 

= 8. Therefore, S is not monotonic. By its definition S' is monotonic increasing and 

S'(n) ~ S(n) for all n. A crude approximation gives us (for n > I): 

(16a) P(n) < nn; 

(16b) S(n) S(n) > n; 

(16c) S'(n) S'(n) > n. 

From (16b) and (16c) it follows that S(n) + ~ and S'(n) ÷ ~ for n + ~. In section 4 

we shall derive asymptotic approximations for F, S' and inf S; it will appear that 

these functions are intimately related to the distribution of the prime numbers. We 

use the notation f(x) - g(x) for f(x) is asymptotic to g(x) i.e. lim f(x)/g(x) = I 
' X ~  ° 

It is well known 5 that the number of primes ~(x) not exceeding x is asymptotic to 

x/log x: ~(x) ~ x/log x. Furthermore, the i-th prime p. is asymptotic to 
i logP(n) < n log 

i log i: Pi - i log i. It then follows from (16a) that e - e n and there- 

fore log P(n) ~ n log n ~ Pn' Since S'(n) S'(n) ~ n, similarly log n ~ S'(n) log S'(n). 

4 ~sterby, 0. Prime decompositions with minimum sums. Univ. of Aarhus, Comp. Sci. 
Dept. Tech. Rept. DAIMI-PB 19 (1973). 

5 
Hardy, G.H. & Wright, E.M. An introduction to the theory of numbers, Oxford Univer- 
sity Press (1945), 9 - 10. 
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By noting 6 that x/log x is asymptotic to the function inverse of x log x we have that 

S'(n) > g(n) for some function g(n) ~ log n ~ w(log n). Therefore, S(n) > g(n) 
- log log n - 

also. 

Since P is strictly increasing and P(6) = 7, P(7) = 12: P: ~ ÷ ~ is an injec- 

tion but no surjection; since S(n+1) ~ S(n)+1 and S'(n+1) g S'(n)+1 for all n, 

S(n) ÷ ~ and S'(n) ÷ ~ for n + ~, S(5) = S'(5) = S(6) = S'(6) = 5: S,S': ~ ÷ ~ are 

surjections but no injections. From the definitions we would expect S and S' to be 

some kind of an inverse of P. Since P is the maximum size language over an alphabet 

of n letters, and since P is strictly increasing, an alphabet of size n is the mini- 

mum size alphabet over which there is a language of (at least) size P(n). Therefore, 

if we denote the set of values of P by A = {P(i) I i e 0} we obtain S(P(n)) = 

= S'(P(n)) = n for all n E ~. Hence the restrictions of S and S' to A are the in- 

verse of P: 

= =p-1. 
(17) S/A S'/A 

From the definitions we also see that between two consecutive values of P, S' is con- 

stant (S' is monotonic, S'(P(n)) = n for all n, S'(P(n)+I) = n+1 for all n) and 

therefore: 

(18) S'(m) = P-1(n) for all m, P(P-I(n)-I) < m ~ n, 

where n ~ A. Since S'(n) < S(n) for all n we have therefore by (17) 

(19) S(n) : S'(n) -- P-I(n) and S(m) -> P-I(n), 

for all n £ A and all m > P(P-I(n)-I). 

Therefore, S' is a stepfunction where every step of I takes place at a value of 

P. Furthermore, S' is the greatest monotonic increasing function which is a lower 

bound on S. 

In looking at the function S and trying to distinguish its features we readily 

notice that if n is a prime or the power of a prime then S(n) = S(n-1)+1. The way 

S is defined, however, does not give us a general method, to find the value of S for 

a certain argument, better than by trial and error. The following theorem is one of 

the main results of this section and provides an inductive definition of S. 

Theorem 3. In for n = 0,1,2,3,4,5. 

S(n) -- 

min{S(n-1)+1, s(n,0)} for n > 5. 

6 
Hardy & Wright. Op. cit. 9-10. 



88 

Proof. By induction on n. The theorem holds for n = 0,I,2,3,4,5. Suppose the theorem 

is true for all n g m. Since 

and 

S(m+1) = min{s(m+1,d) ] 0 g d g m+1}, 

s(m'+~,d') = s(m',d'-1)+1 , 

for all m' and all d' such that 0 < d' ~ m'+1, we have 

S(m+1) = min{S(m)+1, s(m+1,0)}. 

The following corollary of theorem 3 is also stated by ~sterby 7 and gives a re- 

cursive definition of S(n). By theorem 3 we have for all n: 

S(n) = min{s(n,O), s(n-1,0)+1 ..... s(1,0)+n-1, n}. 

Since for all k such that n ~ k > S(n) holds S(n) < s(n-k,0)+k, we have: 

Corollary 5. S(n) = min{s(n,O), s(n-1,0)+1 ..... s(n-S(n),0)+S(n)}. 

Hence we only have to compute s(n,d), i.e. the sum of the highest powers of 

primes in the factorization of n-d, ford=0,1,...,k 0 where k 0 is the minimum of the 

previously computed values of s(n,d)+d. 

The analogue of theorem 3 for P is 

P(n) = I n for n = 0,1,2,3,4 

L max{P(n-1)+1, max{m I s(m,0) = n}} for n > 4. 

This does not help us very much, essentially because although the factorization of a 

natural number is unique, a partition is not. If we assume that the following conjec- 

ture by Landau 8 is true, viz. P(E~=iPi) = ~i=]p i for all k, then since P is strictly 

increasing we can slightly limit the number of m's which have to be investigated: 

P(n) = { 
n for n = 0,],2,3,4 

k k+1 
max~(n-1)+l,max{m I s(m,0) = n and H p. < m ~ U p.}} 

i=I i i=I i 

7 
~sterby, Op. cir. 

8 
Landau, Op. Oit. 

k k+ I 
for _ ~ Pi < n -< Pi' 

i=I i=I 
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where we denote by Pi the i-th prime and Pl = 2. 

4. ASYMPTOTIC APPROXIMATIONS 

In this section we investigate the asymptotic behavior of our functions. Landa~ 

proves that for f(n) = max{Up s I EP ~ ~ n}: 

(20) log f(n) ~ ~n log n . 

Theorem 4. log P(n) ~ Vn log n . 

Proof. By (20) log f(n) ~ Vn log n , i.e. 

lim log f(n) = I 

n+~ ~n log n 

Also, 

lim log (f(n)+n) = I + lim lo~ (1+n/f(n) = I. 

n+~ Vn log n n÷~ Vn log n 

Since by (11) and the definition of f(n) we have: 

f(n) ~ P(n) < f(n)+n, i.e., log f(n) g log P(n) < log (f(n)+n), 

and we proved above that 

log f(n) ~ log (f(n)+n) ~ Vn log n , 

we have 

log P(n) ~ Vn log n . D 

Corqllary 6. log P(n) ~ PV~n , where Pn 

Theorem 5. S'(n) ~ lo~ 2 n 
log log 2 n 

Proof. If log y = Vx log x , then log 2 

is the n-th prime. 

y = x log x and 

log log 2 y = log x + log log x ~ log x. 

Landau, Op. cit. 
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Since 

X = 
l°g2 Y we have x ~ l°g2 y 
log x log log 2 

By this argument and since log P(m) ~ ~m log m it follows: 

m ~ lo~ 2 P(m) 

log log 2 P(m) 

or 

p - l ( n  ) ~ io~ 2 n {P(i) I i > O} 2 for n • _ . 
log log n 

Denote log 2 n/log log 2 n by h(n). By (18) S'(n) ~ h(n) for n in the range of P. This 

cannot tell us anything about the sup S'(n) since the restriction to special values 

of n can only yield a lower bound but not an upper bound. According to (18), however, 

we have for all pairs of consecutive values of P, say n I ,n2: 

S'(n 1) -< S'(m) -< S'(n 2) = S'(nl)+1 , n I < m -< n 2, 

Since h is strictly increasing, 

lim S'(m)/h(m) 
m+~ 

Analogous we prove that lim S' 

m c ~. Q m+~ 

lim S' (m)/h(n 2) 
m+oo 

-> lim (S'(n2)-1)/h(n 2) 
m+= 

-- lim (S'(n2)/h(n2) - I/h(n2)) 

n2÷~ 
r 

= I - lim I/h(n 2) = I. 
n2-~o 

(m)/h(m) <- I, and therefore S'(m) ~ h(m) for all 

Corollary 7. S'(n) ~ W(log 2 n). 

The greatest monotonic increasing function which is a lower bound on S is 

S'(n) ~ h(n). Therefore: 

C o r o l l a r ~  8 .  inf S(n) ~ 1°~2 ~ . 
log log 2 n 

Because of theorem 3 inf S(n) ~ inf s(n,O) and we have: 
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Corollary 9" The greatest monotonic increasing function which is a lower bound on the 

sum of the greatest powers of primes in the factorization of n, i.e. s(n,0), is asymp- 

totic to h(n). Hence: 

inf s(n,O) ~ lo52 n 
log log 2 n 

As is to be expected, this lower bound is reached for the special sequence of values 

n = ~i Pi' k s ~. 

k lo52 k 
Lemma 5. ~ Pi ~ n , where n = ~ Pi and k E ~. 

i=I log log 2 n i=I 

Proof. The number of factors in a factorization of a natural number n is denoted by 

m(n). According to Hardy & Wright I0 

~(n) ~ lo 5 n 
log log n 

Therefore, Z k ~(~)i i. Bounding this discrete summation on both sides by i=1Pi ~ g = log 

an integral we obtain: 

~(n) ~(n) i~<n)+1 
i log i di ~ ~ i log i ~ i log i di, 

~I i=I ~2 

all['2 ]~(n) ~(n) 2~.2 2 ,]~(n)+1 
~i I log i - i2/2 -< ~ i log i -< l log i - i /212 

i=I 

½(~(n)2( l °g ~(n) -  7) 2 ) -< X 
i=1 

I + )2(log(~(n)+1)-~) 4 log 2 + 2). ± log i ~ ~((~(n) I 

Hence if n+~ through this particular series of values we have 

k 
][ Pi ~ ½ (~(n)2 Log ~(n) - ~(n)2/2) 

i=1 
I 2 

~ ~(n) 10g w(n) 

log2(n) (log log n , log log log n) 

2 (log log n) 2 

lo52 n = lo62 n 

2 log log n log log 2 

10 
Hardy & Wright, 0p. sit., 355. 
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A numerical verification shows: 

(2+3+5)/(iog 2 (2,3-5)/iog log 2 (2*3*5)) ~ 0.47 

(2+3+...+17)/(iog 2 (2,3,...,17)/iog log 2 (2-3,...,17)) ~ 0.58 

(2+3+...+97)/(iog 2 (2"3"...'97)/iog log 2 (2*3*...*97)) ~ 0.75 

(2+3+...+~73)/(iog 2 (2,3-...,173)/iog log 2 (2-3-...'173)) ~ 0.79. 

Resuming the results of this section we have: 

log P(n) ~ @n log n ~ PV~n ; 

S'(n) ~ inf S(n) ~ inf s(n,0) ~ 
io~ 2 n 

loglog 2 
~ ~(log 2 n); 

n 

and, furthermore, 

s(n,O) ~ io~ 2 n , 

log log 2 n 

for n+~ through the particular series of values n -- U k i= I Pi' 

Acknqwled~ement. I thank O. ~sterby and D. Wood for critical comments. 


