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Summary
The use of nonterminals versus the use of codings in variations of OL -sys~

tems is studied. It is shown that the use of nonterminals produces a comparatively
low generative capacity in deterministic systems while it produces a comparatively
high generative capacity in nondeterministic systems.

Finally it is proved that the family of context~free languages is contained in
the family generated by codings on propagating OL -systems with a finite set of
axioms, which was one of the open problems in [10]. All the results in this paper
can be found in [71] and [72].

1. Definitions

By definition, an EOL.-system is a quadruple G =<Z, P, w, A>, where LI
and A are alphabets with Ac L, P is a finite set of context~free productions con-
taining at least one production for every letter of L, and w € E+. The direct yield
relation = on the set Z* |s defined as follows: x= y holds iff there is an integer

kz 1, letters a; and words o, 1 £i 2 n, such that
X=ag...a, y=0...a,

and a; o, is a production in P, for each i =1,...,n. The relation =¥ is the re-

flexive transitive closure of =. The language L(G) generated by G is defined by
LG)=f{wea | wF wi.

The EOL.-system is an Ol -system iff A=2Z. It is deterministic (abbreviated: D) iff
there is exactly one production for every letter of I, It is propagating (abbrevia-
ted: P) iff the right side of every productions is distinct from the empty word X.
We may also combine these notions and speak, for instance, of PDOL~ or EPOL. -
systems.

We alsc consider generalizations of the sysiems defined above obtained by
replacing the axiom @ by a finite set {} of axioms. The language generated by such
a system consists of the (finite} union of the languages generated by the systems ob—
tained by choosing each element w € { to be the axiom. This generalization is de~

noted by the letter F. Thus, we may speak of EPDFOL ~systems.



245

For any class of systems, we use the same notation for the family of lan-
guages generated by these systems. E.g., EPDOL denotes the family of languages
generated by EPDOL -systems.

By a coding we mean a length-preserving homomorphism {often also calied a
literal homomorphism). The prefix C attached to the name of a language family indi-

cates that we are considering codings of the languages in the family.

2. Deterministic systems

We start by examining the relation between the use of nonterminals and co-

dings in deterministic systems.

Theorem 2.1
EDOL ¢ CDOL and EPDOL ¢ CPDOL..

Proof

We will only prove the first inclusion. The second one is proved in the same
way.

Now let G =<Z, P, w, A> be an EDOL ~system. The following describes the
construction of a DOL-system G =<Z!, P!, W', Z'> and a coding h from I' into
A such that L(G) = h(L.(G')). For a word x, min{x) denotes the set of letters occur-
ring in x..

Consider the sequence of words from ¥ generatéd by Gyw=wy, Wy, Wapenen -
There exist natural numbers n and m such that min(wm) = min(wm+n), which im-
plies that for any iz 0 and any j, 0<j< n:

).

(1) min(wm+j) = min(wm+ni+j

Let d_ denote the cardinality of min(a)k), 1 € k < m+n. Define

Np= {kEN] 1S k< mn, minw ) s A}.
For any k € NA introduce new symbols not in T
= <
I i 3 | I_JSdki,
and define isomorphism f,_mapping min(wk} onto %, , where

_ . . o .
fk(a) ay iff a is the j'th symbol of mm(wk), k € NA

Note that the fk's are defined for some fixed enumerations of the sets min(wk). ! is

going to be the union of the above defined Ek‘s:
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kENA

Define k, and kz as the minimal and maximal elements of N

1 A

For any of the letters a where k ¥ kz define production in P':

ki
akj -+ fk,(a)

where k! is the smallest element in NA greater than k and a is the string de-
rived from f (a ) in {k'-k} steps in G.

it follows from (1) that L(G} is finite if k, < m. If this is the case then define
forany j, 1 =)= dy production in P':
2

akej.

Otherwise, let ks denote the minimal element in NA greater than or equal to m,

k, ? for which fke( Ky i

and define productions in P! forany j, 1 £j=d .) derives

some string & € A% in (n-k, + k3) steps in G:
a, jo»f (&),
ey ] k3( )

Note that the use of f is well defined since min{u, = min(wk } {(from
3

i+t ey )

the fact that k; = m and (1} above). Finally define the coding h from Z! into A in
-1
1. =
the way that for every A NN h(akj) fk (akj)' Then

L(G) = h(L(c')

where G!'=<Z!, P!, f Ky * {wk IR Z >, and this proves the inclusion of the theorem.
The inclusion is proper because ] n=1} € COOL\EDOL.

We have the following theorem as an immediate consequence of theorem 2.1.

Theorem 2,2
EDFOL. ¢ CDFOL and EPDFOL. § CPDFOL.

3. Nondeterministic systems

We will now examine the relations between the nondeterministic families,
corresponding to those occurring in Theorems 2.1 and 2. 2.

The following two theorems correspond to Theorem 2.1. The proof of the
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first one can be found in [20].

Theorem 3.1
COL = EOL.,

Theorem 3,2
CPOL. ¢ EPOL..

Proof
The inclusion is easily checked. The inclusion is proper because the

n
tanguage L = {a"b"c"” Inz1}u {d3

[ n=1 | belongs to EPOL., but is does not
belong to CPOL.. The proof for the later statement can be found in [10].

Notice here that while the generating capacity due to the use of nonterminais
was weaker than the generating capacity due to codings in deterministic propaga-
ting OL~-systems, the converse is true if you are dealing with nondeterministic pro-

pagating OL.-systems.
The following theorem corresponds to Theorem 2, 2. The proof can be found in [72].

Theorem 3.3
CFOL. = EFOL. and CPFOL <€ EPFOL..

It is an open problem whether or not the inclusion CPFOL € EPFOL is proper.

A somewhat related problem is whether or not the family of contexi-free languages

is included in the family CPFOL. Indeed we have the following theorem.

Theorem 3.4
The family of context—free languages is properly incliuded in the family
CPFOL.

Proof
Let G =<V, L, P, S> be a cf-grammar of a language not containing X in

Greibach-normal form {i. e., the productions are of the form A+ a or A~ aA1 .. .An).
Suppose there are no useless symbols in V.

For each A€V we choose

WAE fweZ* | A gw, | w| mintmal}.

w, will, in the rest of the proof, be fixed for every letter A€ V.

A

Define k:V -+ N by k(A) = IWAI , and furthermore
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s(A) = { xw EZk(A)V* ! A=>* xw_, | x| =k{A)} and
x left

m(A) = 1><€Zk(A) |3 weve :xwe s(A)

Since the grammar was in Greibach normal form, s(A) and m{A) are finite sets of

strings.
Letn: V+ N be defined as n{A) = { number of sirings in m{A}} .
We will use m{A) as an ordered set.

Now we can construct a PFOL.-system H and a coding h such that h{L(G}) = L(G}):

. j 1.1 1 2.2 2
H:<ZU Ak} Al, P, 1SSy S\ (5)SSg - Spg)r
eV
1<i<k({A)
' n{S)n(S) n{S)
1<i<n(A) S, 8, “‘Sk(s)f >

P! is defined as follows:

1) For all a€ZXZ, a»a isin P'.,
2) Forall A€V, 1<j<n(A), andléisk(A)-—1,AJi~b aJi is in P!,

where aJi is the i'th terminal in the j'th string in m(A).
3) For all A€V and! = j= n(A)
k Kk k kz kZ kz

J J 1 1 1
Aka) ™ Ak(aBr Brz - Bre, )P Baa -+ Ba(s,) "

kq kq kq
'Bq1 qu v .qu(Bq)
is in P' for all B,,By;... ,Bq and 1 < k; = n(B;) where
xB,B,.. .Bq € S{A) and x is the j'th string in m{AL

The coding h is defined by h{a) =a for all a€Z, and

I Al i = < i<
h(AIAZ’"Ak(A)} W s for all A€V and1 =] =< n{A).
We prove that L{G) € h{L{H}). The other inclusion is shown in the same way.

Let w € L{G).

There exists a derivation of w in G such that
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1 x!ALA "'An
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1
=5 x{xz 21...8 sz

1 it
=4 x x,, 21 xzqzx:sx:,’1

where x; € m(Ai) for all

It suffices then to show that there exists an axiom S'S

|

S5, - Si(s)
k. k K Kk, k
2, K2 2 3

{

X1 Agr Agg AZk(A YA AgyT

and

kK k

Aj AJZ ‘ k (A)

297383178
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i
3q3' .. annf e Bﬂqn

x'3' eXE X XL =W
az" " "n"n nq

1<i<nlA) andBij; xilfor 2= i<nand 1 << q.

I I
155+ Sk(S)

k k k k
A0
3k(A }° nl! nZ2 "°° r‘ck(An)

= x w for all 2 =< j < n but that is exactly how H is constructed.

in H such that:



