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Introduction 

The concept of an L system was first introduced by Lindenmayer 

[59, 60] as "a theoretical framework within which intercellular 

relationships can be discussed, computed, and compared". The concept 

has proved to be a fruitful one, and has opened up a new area of 

interdisciplinary research. Much of the work to date on L systems 

is reported in Herman and Rozenberg [45]. The motivation for the 

present paper is the thought that, since L systems are proving so 

useful as a framework for studying biological growth and development, 

perhaps they can also be used to study the ways in which organisms 

achieve and maintain relatively stable adult states. Thus while the 

emphasis in work on L systems to date has been on all the strings 

derivable from an initial string, we shall focus in this paper on 

just ~%ose strings which renew themselves dynamically once they have 

been derived. 

Notation 

We write l for the empty string, lul for the length of a 

string a (e.g. Ill = 0), and #V for the number of elements in a 

set V. If u is a string we write the set of symbols occurring in 

a as sym ~, e.g. sym abbac = {a, b, c}. If L is a set of strings 

we write sym L for ~ sym u. We write the number of occurrences of 

the symbol a in a string ~ as #a(U), e.g. #a(abbac) = 2. 
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We abbreviate context free grammar, context sensitive grammar, 

linear bounded automaton, and Turing machine as CFG, CSG, LBA and TM 

respectively. We require that if e + 6 is a production of a CSG 

then l el <_ 161- We write the classes of context free, context sen- 

sitive languages not containing l, and recursively enumerable lan- 

guages as L(CF), L(CS) and L(RE) respectively. Otherwise we use the 

notation of Hopcroft and Ullman % for phrase structure grammars. 

If 6 is a mapping from a set of strings into a set of sets 

of strings, we say that 60(e) = {~}, and for each i > 0 

6 i+l(~) = 66 i(~). We say that 6"(~) = 0 6 i(~). 
i=0 

Definitions 

A 0L system is a 3-tuple H = <V, 6, S> where V is an alpha- 

bet, S e V and 6 is a mapping from V into the finite subsets of 

V defined as follows. There is a table Q of productions 

Q ~V x V such that for each b e V there is a 6 e V such that 

<b, 6> e Q. 6(I) = {I} and for ~ = al...a n, 6(e) = Q(a I) ...Q(an). 

If for each production <b, 8> e Q 6 ~ i we say that H is a 

propagating 0L system, or P0L system for short. 

A 2L system is a 4-tuple H = <V, 6, g, S> where V and S 

are as in a 0L system, g is a symbol not in V, and 6 is a mapping 

from V into the finite subsets of V defined as follows. There 

VgVVg , = is a table Q of productions Q C x V where Vg V U {g} 

such that for each abc e V VV there is a 6 ~ V such that 
g g 

<abc, 6> e Q. 6(1) = {l}, and for ~ = al...an, 6(~) = Q(a0ala2 ) ... 

Q(a4_la4a4+ l ) J  J J ... Q(an_lanan+ I) where a 0 and an+ 1 stand for g. 

% Hopcroft, J. E., J. D. Ullman, Formal Languages and their 
Relation to Automata, Addison-Wesley, Reading,Mass., 1969. From now 
on we refer to this book simply as H & U. 
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If for each production <abc, 8> e Q 8 @ I we say that H is a 

P2L system. 

If H is an L system with mapping 6 and initial symbol S, 

. 

we define the adu!t language of H as A(H) = {e e 6 (S) 1 6(e) = {e}}. 

Phrase Structure Grammars 

We now summarize some results about phrase structure grammars 

which we shall need later. 

We follow Aho and Ullman + in saying that a CFG 

G = <VN, V T, P, S> is Proper if 

(i) for each A e V N it is not the case that A ~> A, 

(ii) either P has no productions of the form A ~ I, or 

S ÷ i is the only such production and S never appears on the right 

of a production, and 

(iii) for each B e V N there exist ~, 8, 7 £ V T such that 
• , 

S => ~By => e~y. 

The following result is obtainable by algorithms 2.8-2.11 of Aho and 

Ullman % . 

Lemma 1 There exists an algorithm which takes as input any 

CFG G and produces as output a proper CFG G' such that 

L(G) = L(G'). 

Lemma 2 There exists an algorithm which takes as input any 

grammar G and produces as output a grammar G' such that 

(i) if ~'+ B' is a production of G' then I 'I e {i, 2}, 

(ii) if U' + I is a production of G', then Ie'l = i, 

% Aho, A. V., J. D. Ullman, The Theor[ of Parsing, Translating and 
Compilin_gg, volume I, Prentice Hall, Englewood Cliffs, 1972. 
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(iii) if G is a CSG then so is G' and 

(iv) L(G) = L(G'). 

Proof Let G = <VN, V T, P, S> be a grammar. It is easy to 

see that we lose no generality by assuming that if e ~ I then 

I~I = i. Then to construct G' = <V~, VT, Q, S>, place each produc- 

tion in P having a left side of length i or 2 directly in Q. 

For each production AI...A m ~ BI...B n where Ai, Bj e (V N ~ V T) 

and m ~ 3, Q contains AIA 2 ÷ BIC2, Z + I, and in addition 

(i) CiAi+ 1 ÷ BiCi+ 1 (2 ~ i ~ m - 2) and 

Cm_IA m ÷ Bm_l...Bn, if m ~ n; 

(ii) CiAi+ 1 ÷ BiCi+ 1 (2 ~ i ~ n - i) and 

CnA m ÷ BnZ, if m = n + i; 

(iii)CiAi+ 1 + BiCi+ 1 (2 ~ i ! n), 

CiAi+ 1 ÷ ZCi+ 1 (n < i ~ m - 2), and 

Cm_iAm ÷ Z, if m ~ n + 2. 

In this construction the Ci's are new symbols, and if productions 

.'s in PI' P2 e P give rise to subsets QI' Q2 of Q, then the C z 

Q1 and Q2 are distinct. 

It is straightforward to check that our construction has the 

required properties. 

Adult Languages of 0L Systems 

In order to characterize the adult languages of 0L systems, 

we first derive a property of the productions which must hold in 

order for a string to map only into itself. Note that it is not 

necessarily the case that a ~ a for each letter in such a string• 

e.g. if a + ab, b ~ c and c ÷ ~, then ~(abc) = {abc}. (When 

6(~) = {B} we shall write simply 6(~) = B.) 
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Lemma 3 If H = <V, 6, S> is a 0L system, Z = sym A(H), and 

e 
m = #7., then for each a e 7. there is a unique 8 e 7. such that 

6*6m(a)  = g .  

Proof 

i. For each a ~ Z, #6 (a) = 1 and 6 (a) c Z : if a E 

then there exist el' ~2 e Z such that 6(elae 2) = elaa2 = 

6 (~i) 8 (a) 8 (~2) . 

2. If a e Z then #a6(a) e {0, i}: if a ~ Z then there 

exist el' ~2 e Z such that 6(~la~ 2) = ulae2 = 8(~I)8(a)6(~2). 

6i(elae2 ) > k i for each i > 0 Since Hence if #a ~(a) = k then #a - - " 
* 

6 (~lau2) = alau2 and #a(elae2) < lulau21 it is obvious that we 

must have k < i. 

3. If a e Z and #aS(a) = 0 then ~m(a) = l: suppose that 

for all i > 0, 6 i(a) # I. Since a e x we have a ¢ sym T for some 

7 such that 6(y) = Y. Since #a 6 (a) = 0, we can write either 
* 

(i) Y = u6(a) v a w for some u, v, w ¢ Z , or (ii) Y = uavS(a)w 
* 

for some u, v, w £ 7. . Hence,since 6 (Y) = Y we can show that 

16i(T) I >_ 160(a)...6i(a)l for each i >_ 0. But then 161YI (y) I >_ 

160(a) ---61YI (a) l > IYI, a contradiction since 6 IYI (7) = Y. So it 

must be the case that for some i > 0, 8i(a) = ~. From this it is 

easy to show by path length arguments that 6m(a) = ~. 

4. For each a e 7 such that #aS(a) = i, there is a unique 

7.+ 8 e such that 6*6m(a) = ~: since #a6(a) = 1 we can write 

8(a) = ~a~ for some ~, ~ e (~ - {a})* If 6i(a~) ~ ~ for all 

i > 0 then it is easy to see that for any £ there exists a j such 

that 16J(a) I > £, which is impossible since a occurs in a string 

y such that 6(y) = 7. So there is an i such that ~i(u~) = X, 

and hence by 3. we have that ~m(u~) = ~. Let r, s be the greatest 

integers less than or equal m such that ~r(u) ~ ~, 6r+l(~) = ~, 
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6s(~) # A, and 6 s+l(~) = ~. Then it is easy to see that if we write 

8 = 6r(~) ... 60(~)a~0(~) ... 6s(~) then 6*~m(a) = B. The lemma 

now follows from 2, 3, and 4. • 

We shall need to know how to find sym A(H) for any 0L system H. 

Lemma 4 There exists an algorithm which takes as input any 

0L system H and produces as output the set sym A(H). 

Proof Let H = <V, 8, S> be a 0L system, and let 

= sym A(H), m = #Z, and n = #V. Let L = {~ e 6i(s) I i ~ 2n+ m, 

6(~) = ~}. We claim that ~ = sym L. 

Obviously sym L C Z. Suppose b E Z. Then there is an 

£ A(H) such that b e sym u. So e e ~ (S) ~ {u I 6(u) = u}. 

Hence there exists an i > 0 such that u e ~i(s) and u E 6i+m(S). 

But it is easy to check that if ~ ~ ~i(s), there exists an 

~ ~2n(s) such that sym e = sym ~. Hence by Lemma 3 there exists 

an ~ e 6m(~) such that sym ~ = sym u and 6(~) = ~. So ~ e L 

and hence b £ sym L. • 

We can use the last two lemmas to put any 0L system in a form 

in which 6(a) = a for each letter a which occurs in the adult 

language. 

Lemma 5 There exists an algorithm which takes as input any 

0L system G and produces as output a 0L system H such that 

A(G) = A(H) and for each a ~ sym A(H), ~H(a) = a. 

Proof Let G = <V, 6 G, S> be a 0L system. Let 

7 G = sym A(G) , and let m = #ZG" 
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If Z G = @ then we are done, so suppose 7 G # ~. Let 

H = <V, ~H' S> be a 0L system constructed from G as follows. 
* 

Define a mapping 0: V ÷ V by 

[ a, if a e V - Z G 
%(a) [ 

6G(a), if a £ ZG, 

extend 0 to domain V by e(X) = I and 0(as) = 0(a)8(u), and 
* 

further to domain 2 v in the obvious manner. Then define 

6H: V * 2 v by 
t 

186G(a), if a £ V - 7 G 

6H(a) [ a, if a e Z G. 

By lemmas 3 and 4, H is well-defined. We claim that A(G) = A(H). 

i. For every t > 0 and 8 e V , 8 £ ~ (S) iff there 

• t 
exists an a £ V such that u e 6G(S) and 0(a) = 8: this is 

straightforward to prove by induction on t. 

2. A(G) C A(H): Let ~ = a l...a n e A(G). Then aj c Z G. 

Let 6G(a. ) = ~m+l 3 v G (aj) = 8j. Since 6G(~) = e, we have BI...8 n = ~, 
* 

and so 0(~) = 81...8 n = a. Since e e 6G(S) we have from i. that 
• * * 

0(~) e 6H(S). But 0(u) = ~, so u e 6H(S). Also, since ~ ~ 7 G it 

follows from the construction of 6 H that 6H(U) = ~. Hence 

e A(H). 
* 

3. A(H) C A(G): Let 8 e A(H). Then 8 e 6H(S). So it fol- 
* 

lows from I. that there exists an u such that ~ e ~G(S) and 

8(u) = 8. Let a = U0Alel...~n_iAnen, where uj £ ZG' Aj e (V - 7~ G), 

and n >_ 0. Since ~j £ Z G it follows from Lemma 3 that there is a 

• m ~m+l 
8j £ 7 G such that 6G(aj ) = -G (ej) = 8j. It follows from this and 

the ~efinition of 0 that 8(a) = 80AlSl...Sn_iAn8 n. Since 
* 

89 e ZG' we have from the construction of 6H that 6H(8 j) = 8j. 

Since 8 e A(H), we have 6H(8) = 8- Since 6H(8) = 8 and 6H(8 j) = 

89 it is clear that 6H(A j) = Aj. Since Aj ~ ZG' if yj e 6G(A 9) 
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then 8(yj) E 6H(Aj), and so 8(yj) = Aj. But this is only possible 

if yj = Aj. Hence 6G(A j) = Aj. Now since 6G(8 j) = 8j and 

8 = 8(a) = 8oAlSl...Sn_iAn8 n, we have ~G(8) = 8. Moreover, since 

m 
6~(~j) = Sj and 6G(Aj) = Aj, we have 6 (~) = 8. Hence 8 = 6G(8) 

6 (~) c 6G(S), and so 8 e A(G). 

2. and 3. together establish our claim that A(H) = A(G). [] 

we shall use Lemmas 4 and 5 to characterize the class A(0L) of 

adult languages of 0L systems. First we need the following notation. 

If G = <VN, V T, P, S> is a CFG with V N U V T = V we define a 

mapping ~G: V ÷ 2 v by 
t 

I a, if a e V T 

~G (a) [ {8 1 a ~ 8} if a e V N, 

and we extend ~G to domain V by ~G(1) = i and ~G(a~)= 

~G(a)~G(~). It is easy to check that L(G) = ~G(S) ~V T. 

Lemma 6 There exists an algorithm which takes as input any 

0L system H and produces as output a CFG G such that A(H) = L(G). 

Proof Let H = <V, 6H, S> be a 0L system, let Z = sym A(H), 

and assume without loss of generality that S £ V - Z. By Lemma 5 we 

may also assume that for each a e ~, 6H(a) = a. Let G = <V - Z, 7., 

P, S> be a CFG constructed from H, where P = {A + ~ I A e V - Z and 

E 6H(A)}. By Lemma 4 we can compute Z from H, so our construc- 

tion is effective. 

Now it is easy to check from our construction that for each 

i G * * * * i >_ 0, 6H(S) = ~ (S). Hence 6H(S) = ~G(S). So 6H(S) ~ ~ = 

~G(S) /~ 7 . But since 6H(a) = a for each a e Z, it is easy to see 

that A(H) = 6H(S) ~ Z , and it is a property of our notation ~G that 

L(G) = ~G(S) ~ 7 , hence A(H) = L(G). [] 
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We can prove the converse of Lemma 6. 

Lemma 7 There exists an algorithm which takes as input any 

CFG G and produces as output a 0L system H such that L(G) = A(H). 

Proof 

assume that G 

Let G = <VN, VT, P, S> be a CFG. By Lemma 1 we may 

is proper. Let H = <V, 6H; S> be constructed from 

G by V = V N U V T, and 

{ {~ I a ~ ~ }, if a ~ V N 

6H(a) = 
a, if a e V T 

Clearly the construction is effective, and since G 

6: V ~ 2 v is everywhere defined, so H is a 0L system. 

is proper 

It follows from our construction that for each i > 0, 

i * * 
(S) = 6H(S). Hence ~G(S) = 6H(S). Now it follows from the fact 

that G is proper that ~G(~) = e iff ~ e V T. Hence from our 

construction, 6H(~) = ~ iff e e V T. So A(H) = {~ e 6H(S) I 6H(~) = 

~} = 6H(S) ~ V T. Hence from the property L(G) = ~G(S) ~ V T of 

our notation ~G' we have A(H) = L(G). • 

We can now characterize the class A(0L) of adult languages of 

0L systems in terms of the class L(CF) of context free languages. 

Theorem 1 A(0L) = L(CF). 

Proof Immediate from Lemmas 6 and 7. • 

Let us say of two classes Ll and i 2 of languages that 

Ll ~ L2 if {L U {~} I L £ i I} = {L U (%} I L ~ L2}. Then we have 

the following result for propagating 0L systems. 
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Theorem 2 A(POL) ~ L(CF). 

Proof By Lemma 6, we have A(POL) C L(CF). Suppose L C L(CF). 

Then there is a proper CFG such that L = L(G). It follows from 

Lemma 7 and the construction in its proof that we can construct a P0L 

system H such that (L - {~}) = A(H), i.e. such that L = L(G) = 

A(H) U {4}. • 

Thus we have effective constructions which take us from any 0L 

system to a corresponding CFG, and vice versa. We have also shown 

that the propagating restriction makes little difference for adult 

languages of 0L systems, i.e. A(0L) ~ A(POL). We shall see however 

that the propagating restriction is very important in 2L systems. 

Adult Langua@es of 2L Systems 

We now look at adult languages of 2L systems with and without 

the propagating restriction, and their relationship to the phrase 

structure languages of the Chomsky hierarchy. 

Lemma 8 There exists an algorithm which takes as input any 

grammar G and produces as output a 2L system H such that 

L(G) = A(H). Moreover if G is a CSG, then H is a P2L system. 

Proof Let G = <V N, V T, P, S> be a grammar. By Lamina 2 

we may assume without loss of generality that if ~ ~ 8 then 

lel c {i, 2} and that if a ~ i then lel = i. We shall show how 

to construct from G a 2L system H such that A(H) = L(G). The 

idea behind the construction is as follows. 

Our construction will be such that if S ~> y, where 

. ~ is derivable y = CIC 2. .C n and Y ~ L(G), then a string ClC2...C n 
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in H. The ÷ will then move to the right along the string, allowing 

local rewriting according to the productions of P which have a 

single symbol on the left. When ÷ reaches the right end of the 

string, it changes to ÷. The ~ then moves to the left along the 

string, allowing local rewriting according to the productions of P 

which have two symbols on the left. When ÷ reaches the left end of 

the string, it changes to ÷ or to =>. If the change is to ~, then 

the above process is repeated. If the change is to => then two 

+ then => moves all the things can happen. If the string is in VT, 

way to the right and vanishes, yielding a string in A(H). If the 

string contains a symbol from VN, then => moves as far as that 

symbol F then changes to ÷, and rewriting continues as above. 

Formally, our construction of a 2L system H from the 

grammar G = <VN, V T, P, S> is as follows. 

A) V = V N V V T t) {X}, where X is a symbol not in V N t2 V T- 

V = V U {g}, where g is a symbol not in V. g 
^ 

B) ~, ~, ~> and V are mutually disjoint sets, which are 

individually disjoint from V t) {g}, defined by 

-- {I J A ~ v} 

V>= {X>i A ~ v} 
^ 

V = { [C7] I AB ~ C7 where A, B, C e V and 
* 

7~v} 

c) w:vu~u~u~>u$ 

W = W U {g}. g 
* 

D) Q1 = {LAB ÷ 7 A, B C V, L £ Vg, 7 e V , and A ~ 7 } 
* 

Q2 = {LAg + ~y I A, B, C E V, y E V , and A ~ C7} 

Q3 = {LAg + X L e Vg, A e V, A ~ I} 

Q4 = {L~R ÷ I L, R e Vg} 
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Q5 = {LAB + [Cy] I A, B, C E V, L e Vg, y e V and 

AB ~ Cy} 

Q6 = {L[Cy]B ÷ ~ i B, C, e V, L e Vg, and [Cy] e V} 

Q7 = { [Cy]BR ÷ 7 I B, C e V, R e Vg, and [Cy] e V} 

Q8 = {ABR ~ B I A, B e V and R e Vg} 

Q9 = {LAB ÷ A I L E Vg and A, B e V} 

QI0 = {LBg + 

QII = {LAB ~ I 

QI2 = {ABR ~ B 

QI3 = {gIR ~ ~> 

QI4 = {gIR + I 

QI5 = {L~ + A 

016 = {X~R ÷ B> 

QI7 = {X~R + 

QI8 = {LAR ÷ A 

E) Q = 

yeW 
18 

U o k 
k = l  

L £ Vg and B c V N} 

L £ V and A, B e V} g 

A, B ~ V and R e Vg} 

A e V T and R e Vg} 

A e V and R e Vg} 

L, R e V and A E V} g 

A, B e V T and R E Vg} 

A £ V, B e V N and R e Vg} 

L, R e Wg, A £ W, and there is no 
17 

such that (LAR ÷ y) e k~__ I= Qk } 

F) H = <W, 6, g, S>, where 6 is defined by Q. 

H is a 2L system, since our construction is such that for each 

LAR e WgWWg there exists a 7 e W such that LAR ~ Y. 

From the construction it is straightforward to write out a 

detailed proof that L(G) = A(H). (A full proof is given in Walker%). 

It remains to be shown that if G is a CSG then H is propa- 

gating. Suppose G is a CSG. If Q contains a production of the 

form LAR + I, then by inspection this production is in Q1 U Q4 U 

Q~. But then it follows from the construction that there is a 

T Walker, A. D., Formal Grammars and the Stability of Biological 
Organisms, Ph.D. thesis, Department of Computer Science, State Univer- 
sity of New York at Buffalo, 1974. 
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production (* ~ 8 for which lul > 161, a contradiction. • 

In the next lemmas we shall use the following notation. If 

M is an LBA we denote the language accepted by M as L(M), and if 

T is a TM we denote the language accepted by T as L(T). 

Lemma 9 There exists an algorithm which takes as input any 

P2L system H and produces as output an LBA M such that 

A(H) = L(M). 

Proof Let H = <V, 6, g, S> be a P2L system. Let M be 

an LBA constructed from H to operate as follows. 

The tape of M has three tracks. If a string e is placed 

on the top track of the tape, M decides whether or not ~ £ L(M) in 

the following way. 

(i) M tests whether or not 6(~) = e. If so, M does (ii) 

below. If not, M rejects e and halts. 

(ii) M writes S in the middle track and proceeds, nondeter- 

ministically, to see if e E ~ (S), using the lower track as work- 
, 

space. If M discovers that ~ c 6 (S), then M accepts ~ and 

halts. If, in simulating a derivation S = ~0~ el' "''' ek where 

~k e 6k(s) M finds that lekl > I~I, M rejects ~ and halts. 

From the above description it is a straightforward task to 

write down formally an algorithm which constructs M from H, and 

to show that L(M) = A(H). • 

Lemma 10 There exists an algorithm which takes as input any 

2L system H and produces as output a Turing machine T such that 

A(H) = L(T). 
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Proof is similar to that of Lemma 9, except that in step (ii) 

there is no limit on the length of an intermediate string o k. Hence 

not every computation by T terminates. However, because of the 

way in which L(T) is defined for a Turing machine T, it is the 

case that A(H) = L(T). 

We can now characterize the classes A(P2L) of adult languages 

of P2L systems and A(2L) of adult languages of 2L systems in 

terms of the classes L(CS) of context sensitive languages and L(RE) 

of recursively enumerable languages. 

Theorem 3 A(P2L) = L(CS). 

Proof That A(P2L) C L(CS) follows from Lemma 9 and the fact 

that for each LBA M there is a CSG G such that L(M) = L(G); see 

e.g. H & U, Theorem 8.2. It is immediate from Lemma 8 that 

L(CS) C A(P2L). 

Theorem 4 A(2L) = L(RE). 

Proof That A(2L) C L(RE) follows from Lemma i0 and the fact 

that for each TM T there is a grammar G such that L(T) = L(G); 

see e.g. H & U, Theorem 7.4. It is immediate from Lemma 8 that 

L(RE) C A(2L). g 

This completes our characterization of 2L systems. We note 

that while the propagating restriction made little difference for 0L 

systems, in the sense that A(0L) ~ A(POL), it makes a fundamental 

difference for 2L systems, since A(P2L) C A(2L). 
# 
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Conclusions 

Theom~ms 1 - 4 give us a satisfactory analysis of L systems 

from the point of view of the adult languages they generate, for 

they establish direct correspondences with three of the four main 

classes of languages in the Chomsky hierarchy. The remaining class 

is that of the regular languages, and it is an easy exercise to 

restrict the form of the productions of a 0L system to ensure that 

its adult language is regular. In Walker % it is shown that the 

result for 2L systems can be extended to <k, £>L systems (see 

Herman and ~3zenberg [45] for the definition of such systems) with 

k + £ ~ l, and that the result for P2L systems can be extended to 

P<k, £>L systems with k, £ > i. 

From the point of view of formal language theory, we have 

given a new characterization, by totally parallel grammars, of each 

of the classes of languages in the Chomsky hierarchy. From the point 

of view of biological model building, we have gained access to many 

of the established results of formal language theory. 
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