
ADULT LANGUAGES OF L SYSTEMS AND

THE CHOMSKY HIERARCHY

Adrian Walker

Department of Computer Science

State University of New York at Buffalo

Introduction

The concept of an L system was first introduced by Lindenmayer

[59, 60] as "a theoretical framework within which intercellular

relationships can be discussed, computed, and compared". The concept

has proved to be a fruitful one, and has opened up a new area of

interdisciplinary research. Much of the work to date on L systems

is reported in Herman and Rozenberg [45]. The motivation for the

present paper is the thought that, since L systems are proving so

useful as a framework for studying biological growth and development,

perhaps they can also be used to study the ways in which organisms

achieve and maintain relatively stable adult states. Thus while the

emphasis in work on L systems to date has been on all the strings

derivable from an initial string, we shall focus in this paper on

just ~%ose strings which renew themselves dynamically once they have

been derived.

Notation

We write l for the empty string, lul for the length of a

string a (e.g. Ill = 0), and #V for the number of elements in a

set V. If u is a string we write the set of symbols occurring in

a as sym ~, e.g. sym abbac = {a, b, c}. If L is a set of strings

we write sym L for ~ sym u. We write the number of occurrences of

the symbol a in a string ~ as #a(U), e.g. #a(abbac) = 2.

202

We abbreviate context free grammar, context sensitive grammar,

linear bounded automaton, and Turing machine as CFG, CSG, LBA and TM

respectively. We require that if e + 6 is a production of a CSG

then l el <_ 161- We write the classes of context free, context sen-

sitive languages not containing l, and recursively enumerable lan-

guages as L(CF), L(CS) and L(RE) respectively. Otherwise we use the

notation of Hopcroft and Ullman % for phrase structure grammars.

If 6 is a mapping from a set of strings into a set of sets

of strings, we say that 60(e) = {~}, and for each i > 0

6 i+l(~) = 66 i(~). We say that 6"(~) = 0 6 i(~).
i=0

Definitions

A 0L system is a 3-tuple H = <V, 6, S> where V is an alpha-

bet, S e V and 6 is a mapping from V into the finite subsets of

V defined as follows. There is a table Q of productions

Q ~V x V such that for each b e V there is a 6 e V such that

<b, 6> e Q. 6(I) = {I} and for ~ = al...a n, 6(e) = Q(a I) ...Q(an).

If for each production <b, 8> e Q 6 ~ i we say that H is a

propagating 0L system, or P0L system for short.

A 2L system is a 4-tuple H = <V, 6, g, S> where V and S

are as in a 0L system, g is a symbol not in V, and 6 is a mapping

from V into the finite subsets of V defined as follows. There

VgVVg , = is a table Q of productions Q C x V where Vg V U {g}

such that for each abc e V VV there is a 6 ~ V such that
g g

<abc, 6> e Q. 6(1) = {l}, and for ~ = al...an, 6(~) = Q(a0ala2) ...

Q(a4_la4a4+ l) J J J ... Q(an_lanan+ I) where a 0 and an+ 1 stand for g.

% Hopcroft, J. E., J. D. Ullman, Formal Languages and their
Relation to Automata, Addison-Wesley, Reading,Mass., 1969. From now
on we refer to this book simply as H & U.

203

If for each production <abc, 8> e Q 8 @ I we say that H is a

P2L system.

If H is an L system with mapping 6 and initial symbol S,

.

we define the adu!t language of H as A(H) = {e e 6 (S) 1 6(e) = {e}}.

Phrase Structure Grammars

We now summarize some results about phrase structure grammars

which we shall need later.

We follow Aho and Ullman + in saying that a CFG

G = <VN, V T, P, S> is Proper if

(i) for each A e V N it is not the case that A ~> A,

(ii) either P has no productions of the form A ~ I, or

S ÷ i is the only such production and S never appears on the right

of a production, and

(iii) for each B e V N there exist ~, 8, 7 £ V T such that
• ,

S => ~By => e~y.

The following result is obtainable by algorithms 2.8-2.11 of Aho and

Ullman % .

Lemma 1 There exists an algorithm which takes as input any

CFG G and produces as output a proper CFG G' such that

L(G) = L(G').

Lemma 2 There exists an algorithm which takes as input any

grammar G and produces as output a grammar G' such that

(i) if ~'+ B' is a production of G' then I 'I e {i, 2},

(ii) if U' + I is a production of G', then Ie'l = i,

% Aho, A. V., J. D. Ullman, The Theor[of Parsing, Translating and
Compilin_gg, volume I, Prentice Hall, Englewood Cliffs, 1972.

204

(iii) if G is a CSG then so is G' and

(iv) L(G) = L(G').

Proof Let G = <VN, V T, P, S> be a grammar. It is easy to

see that we lose no generality by assuming that if e ~ I then

I~I = i. Then to construct G' = <V~, VT, Q, S>, place each produc-

tion in P having a left side of length i or 2 directly in Q.

For each production AI...A m ~ BI...B n where Ai, Bj e (V N ~ V T)

and m ~ 3, Q contains AIA 2 ÷ BIC2, Z + I, and in addition

(i) CiAi+ 1 ÷ BiCi+ 1 (2 ~ i ~ m - 2) and

Cm_IA m ÷ Bm_l...Bn, if m ~ n;

(ii) CiAi+ 1 ÷ BiCi+ 1 (2 ~ i ~ n - i) and

CnA m ÷ BnZ, if m = n + i;

(iii)CiAi+ 1 + BiCi+ 1 (2 ~ i ! n),

CiAi+ 1 ÷ ZCi+ 1 (n < i ~ m - 2), and

Cm_iAm ÷ Z, if m ~ n + 2.

In this construction the Ci's are new symbols, and if productions

.'s in PI' P2 e P give rise to subsets QI' Q2 of Q, then the C z

Q1 and Q2 are distinct.

It is straightforward to check that our construction has the

required properties.

Adult Languages of 0L Systems

In order to characterize the adult languages of 0L systems,

we first derive a property of the productions which must hold in

order for a string to map only into itself. Note that it is not

necessarily the case that a ~ a for each letter in such a string•

e.g. if a + ab, b ~ c and c ÷ ~, then ~(abc) = {abc}. (When

6(~) = {B} we shall write simply 6(~) = B.)

205

Lemma 3 If H = <V, 6, S> is a 0L system, Z = sym A(H), and

e
m = #7., then for each a e 7. there is a unique 8 e 7. such that

6*6m(a) = g .

Proof

i. For each a ~ Z, #6 (a) = 1 and 6 (a) c Z : if a E

then there exist el' ~2 e Z such that 6(elae 2) = elaa2 =

6 (~i) 8 (a) 8 (~2) .

2. If a e Z then #a6(a) e {0, i}: if a ~ Z then there

exist el' ~2 e Z such that 6(~la~ 2) = ulae2 = 8(~I)8(a)6(~2).

6i(elae2) > k i for each i > 0 Since Hence if #a ~(a) = k then #a - - "
*

6 (~lau2) = alau2 and #a(elae2) < lulau21 it is obvious that we

must have k < i.

3. If a e Z and #aS(a) = 0 then ~m(a) = l: suppose that

for all i > 0, 6 i(a) # I. Since a e x we have a ¢ sym T for some

7 such that 6(y) = Y. Since #a 6 (a) = 0, we can write either
*

(i) Y = u6(a) v a w for some u, v, w ¢ Z , or (ii) Y = uavS(a)w
*

for some u, v, w £ 7. . Hence,since 6 (Y) = Y we can show that

16i(T) I >_ 160(a)...6i(a)l for each i >_ 0. But then 161YI (y) I >_

160(a) ---61YI (a) l > IYI, a contradiction since 6 IYI (7) = Y. So it

must be the case that for some i > 0, 8i(a) = ~. From this it is

easy to show by path length arguments that 6m(a) = ~.

4. For each a e 7 such that #aS(a) = i, there is a unique

7.+ 8 e such that 6*6m(a) = ~: since #a6(a) = 1 we can write

8(a) = ~a~ for some ~, ~ e (~ - {a})* If 6i(a~) ~ ~ for all

i > 0 then it is easy to see that for any £ there exists a j such

that 16J(a) I > £, which is impossible since a occurs in a string

y such that 6(y) = 7. So there is an i such that ~i(u~) = X,

and hence by 3. we have that ~m(u~) = ~. Let r, s be the greatest

integers less than or equal m such that ~r(u) ~ ~, 6r+l(~) = ~,

206

6s(~) # A, and 6 s+l(~) = ~. Then it is easy to see that if we write

8 = 6r(~) ... 60(~)a~0(~) ... 6s(~) then 6*~m(a) = B. The lemma

now follows from 2, 3, and 4. •

We shall need to know how to find sym A(H) for any 0L system H.

Lemma 4 There exists an algorithm which takes as input any

0L system H and produces as output the set sym A(H).

Proof Let H = <V, 8, S> be a 0L system, and let

= sym A(H), m = #Z, and n = #V. Let L = {~ e 6i(s) I i ~ 2n+ m,

6(~) = ~}. We claim that ~ = sym L.

Obviously sym L C Z. Suppose b E Z. Then there is an

£ A(H) such that b e sym u. So e e ~ (S) ~ {u I 6(u) = u}.

Hence there exists an i > 0 such that u e ~i(s) and u E 6i+m(S).

But it is easy to check that if ~ ~ ~i(s), there exists an

~ ~2n(s) such that sym e = sym ~. Hence by Lemma 3 there exists

an ~ e 6m(~) such that sym ~ = sym u and 6(~) = ~. So ~ e L

and hence b £ sym L. •

We can use the last two lemmas to put any 0L system in a form

in which 6(a) = a for each letter a which occurs in the adult

language.

Lemma 5 There exists an algorithm which takes as input any

0L system G and produces as output a 0L system H such that

A(G) = A(H) and for each a ~ sym A(H), ~H(a) = a.

Proof Let G = <V, 6 G, S> be a 0L system. Let

7 G = sym A(G) , and let m = #ZG"

207

If Z G = @ then we are done, so suppose 7 G # ~. Let

H = <V, ~H' S> be a 0L system constructed from G as follows.
*

Define a mapping 0: V ÷ V by

[a, if a e V - Z G
%(a) [

6G(a), if a £ ZG,

extend 0 to domain V by e(X) = I and 0(as) = 0(a)8(u), and
*

further to domain 2 v in the obvious manner. Then define

6H: V * 2 v by
t

186G(a), if a £ V - 7 G

6H(a) [a, if a e Z G.

By lemmas 3 and 4, H is well-defined. We claim that A(G) = A(H).

i. For every t > 0 and 8 e V , 8 £ ~ (S) iff there

• t
exists an a £ V such that u e 6G(S) and 0(a) = 8: this is

straightforward to prove by induction on t.

2. A(G) C A(H): Let ~ = a l...a n e A(G). Then aj c Z G.

Let 6G(a.) = ~m+l 3 v G (aj) = 8j. Since 6G(~) = e, we have BI...8 n = ~,
*

and so 0(~) = 81...8 n = a. Since e e 6G(S) we have from i. that
• * *

0(~) e 6H(S). But 0(u) = ~, so u e 6H(S). Also, since ~ ~ 7 G it

follows from the construction of 6 H that 6H(U) = ~. Hence

e A(H).
*

3. A(H) C A(G): Let 8 e A(H). Then 8 e 6H(S). So it fol-
*

lows from I. that there exists an u such that ~ e ~G(S) and

8(u) = 8. Let a = U0Alel...~n_iAnen, where uj £ ZG' Aj e (V - 7~ G),

and n >_ 0. Since ~j £ Z G it follows from Lemma 3 that there is a

• m ~m+l
8j £ 7 G such that 6G(aj) = -G (ej) = 8j. It follows from this and

the ~efinition of 0 that 8(a) = 80AlSl...Sn_iAn8 n. Since
*

89 e ZG' we have from the construction of 6H that 6H(8 j) = 8j.

Since 8 e A(H), we have 6H(8) = 8- Since 6H(8) = 8 and 6H(8 j) =

89 it is clear that 6H(A j) = Aj. Since Aj ~ ZG' if yj e 6G(A 9)

208

then 8(yj) E 6H(Aj), and so 8(yj) = Aj. But this is only possible

if yj = Aj. Hence 6G(A j) = Aj. Now since 6G(8 j) = 8j and

8 = 8(a) = 8oAlSl...Sn_iAn8 n, we have ~G(8) = 8. Moreover, since

m
6~(~j) = Sj and 6G(Aj) = Aj, we have 6 (~) = 8. Hence 8 = 6G(8)

6 (~) c 6G(S), and so 8 e A(G).

2. and 3. together establish our claim that A(H) = A(G). []

we shall use Lemmas 4 and 5 to characterize the class A(0L) of

adult languages of 0L systems. First we need the following notation.

If G = <VN, V T, P, S> is a CFG with V N U V T = V we define a

mapping ~G: V ÷ 2 v by
t

I a, if a e V T

~G (a) [{8 1 a ~ 8} if a e V N,

and we extend ~G to domain V by ~G(1) = i and ~G(a~)=

~G(a)~G(~). It is easy to check that L(G) = ~G(S) ~V T.

Lemma 6 There exists an algorithm which takes as input any

0L system H and produces as output a CFG G such that A(H) = L(G).

Proof Let H = <V, 6H, S> be a 0L system, let Z = sym A(H),

and assume without loss of generality that S £ V - Z. By Lemma 5 we

may also assume that for each a e ~, 6H(a) = a. Let G = <V - Z, 7.,

P, S> be a CFG constructed from H, where P = {A + ~ I A e V - Z and

E 6H(A)}. By Lemma 4 we can compute Z from H, so our construc-

tion is effective.

Now it is easy to check from our construction that for each

i G * * * * i >_ 0, 6H(S) = ~ (S). Hence 6H(S) = ~G(S). So 6H(S) ~ ~ =

~G(S) /~ 7 . But since 6H(a) = a for each a e Z, it is easy to see

that A(H) = 6H(S) ~ Z , and it is a property of our notation ~G that

L(G) = ~G(S) ~ 7 , hence A(H) = L(G). []

209

We can prove the converse of Lemma 6.

Lemma 7 There exists an algorithm which takes as input any

CFG G and produces as output a 0L system H such that L(G) = A(H).

Proof

assume that G

Let G = <VN, VT, P, S> be a CFG. By Lemma 1 we may

is proper. Let H = <V, 6H; S> be constructed from

G by V = V N U V T, and

{ {~ I a ~ ~ }, if a ~ V N

6H(a) =
a, if a e V T

Clearly the construction is effective, and since G

6: V ~ 2 v is everywhere defined, so H is a 0L system.

is proper

It follows from our construction that for each i > 0,

i * *
(S) = 6H(S). Hence ~G(S) = 6H(S). Now it follows from the fact

that G is proper that ~G(~) = e iff ~ e V T. Hence from our

construction, 6H(~) = ~ iff e e V T. So A(H) = {~ e 6H(S) I 6H(~) =

~} = 6H(S) ~ V T. Hence from the property L(G) = ~G(S) ~ V T of

our notation ~G' we have A(H) = L(G). •

We can now characterize the class A(0L) of adult languages of

0L systems in terms of the class L(CF) of context free languages.

Theorem 1 A(0L) = L(CF).

Proof Immediate from Lemmas 6 and 7. •

Let us say of two classes Ll and i 2 of languages that

Ll ~ L2 if {L U {~} I L £ i I} = {L U (%} I L ~ L2}. Then we have

the following result for propagating 0L systems.

210

Theorem 2 A(POL) ~ L(CF).

Proof By Lemma 6, we have A(POL) C L(CF). Suppose L C L(CF).

Then there is a proper CFG such that L = L(G). It follows from

Lemma 7 and the construction in its proof that we can construct a P0L

system H such that (L - {~}) = A(H), i.e. such that L = L(G) =

A(H) U {4}. •

Thus we have effective constructions which take us from any 0L

system to a corresponding CFG, and vice versa. We have also shown

that the propagating restriction makes little difference for adult

languages of 0L systems, i.e. A(0L) ~ A(POL). We shall see however

that the propagating restriction is very important in 2L systems.

Adult Langua@es of 2L Systems

We now look at adult languages of 2L systems with and without

the propagating restriction, and their relationship to the phrase

structure languages of the Chomsky hierarchy.

Lemma 8 There exists an algorithm which takes as input any

grammar G and produces as output a 2L system H such that

L(G) = A(H). Moreover if G is a CSG, then H is a P2L system.

Proof Let G = <V N, V T, P, S> be a grammar. By Lamina 2

we may assume without loss of generality that if ~ ~ 8 then

lel c {i, 2} and that if a ~ i then lel = i. We shall show how

to construct from G a 2L system H such that A(H) = L(G). The

idea behind the construction is as follows.

Our construction will be such that if S ~> y, where

. ~ is derivable y = CIC 2. .C n and Y ~ L(G), then a string ClC2...C n

211

in H. The ÷ will then move to the right along the string, allowing

local rewriting according to the productions of P which have a

single symbol on the left. When ÷ reaches the right end of the

string, it changes to ÷. The ~ then moves to the left along the

string, allowing local rewriting according to the productions of P

which have two symbols on the left. When ÷ reaches the left end of

the string, it changes to ÷ or to =>. If the change is to ~, then

the above process is repeated. If the change is to => then two

+ then => moves all the things can happen. If the string is in VT,

way to the right and vanishes, yielding a string in A(H). If the

string contains a symbol from VN, then => moves as far as that

symbol F then changes to ÷, and rewriting continues as above.

Formally, our construction of a 2L system H from the

grammar G = <VN, V T, P, S> is as follows.

A) V = V N V V T t) {X}, where X is a symbol not in V N t2 V T-

V = V U {g}, where g is a symbol not in V. g
^

B) ~, ~, ~> and V are mutually disjoint sets, which are

individually disjoint from V t) {g}, defined by

-- {I J A ~ v}

V>= {X>i A ~ v}
^

V = { [C7] I AB ~ C7 where A, B, C e V and
*

7~v}

c) w:vu~u~u~>u$

W = W U {g}. g
*

D) Q1 = {LAB ÷ 7 A, B C V, L £ Vg, 7 e V , and A ~ 7 }
*

Q2 = {LAg + ~y I A, B, C E V, y E V , and A ~ C7}

Q3 = {LAg + X L e Vg, A e V, A ~ I}

Q4 = {L~R ÷ I L, R e Vg}

212

Q5 = {LAB + [Cy] I A, B, C E V, L e Vg, y e V and

AB ~ Cy}

Q6 = {L[Cy]B ÷ ~ i B, C, e V, L e Vg, and [Cy] e V}

Q7 = { [Cy]BR ÷ 7 I B, C e V, R e Vg, and [Cy] e V}

Q8 = {ABR ~ B I A, B e V and R e Vg}

Q9 = {LAB ÷ A I L E Vg and A, B e V}

QI0 = {LBg +

QII = {LAB ~ I

QI2 = {ABR ~ B

QI3 = {gIR ~ ~>

QI4 = {gIR + I

QI5 = {L~ + A

016 = {X~R ÷ B>

QI7 = {X~R +

QI8 = {LAR ÷ A

E) Q =

yeW
18

U o k
k = l

L £ Vg and B c V N}

L £ V and A, B e V} g

A, B ~ V and R e Vg}

A e V T and R e Vg}

A e V and R e Vg}

L, R e V and A E V} g

A, B e V T and R E Vg}

A £ V, B e V N and R e Vg}

L, R e Wg, A £ W, and there is no
17

such that (LAR ÷ y) e k~__ I= Qk }

F) H = <W, 6, g, S>, where 6 is defined by Q.

H is a 2L system, since our construction is such that for each

LAR e WgWWg there exists a 7 e W such that LAR ~ Y.

From the construction it is straightforward to write out a

detailed proof that L(G) = A(H). (A full proof is given in Walker%).

It remains to be shown that if G is a CSG then H is propa-

gating. Suppose G is a CSG. If Q contains a production of the

form LAR + I, then by inspection this production is in Q1 U Q4 U

Q~. But then it follows from the construction that there is a

T Walker, A. D., Formal Grammars and the Stability of Biological
Organisms, Ph.D. thesis, Department of Computer Science, State Univer-
sity of New York at Buffalo, 1974.

213

production (* ~ 8 for which lul > 161, a contradiction. •

In the next lemmas we shall use the following notation. If

M is an LBA we denote the language accepted by M as L(M), and if

T is a TM we denote the language accepted by T as L(T).

Lemma 9 There exists an algorithm which takes as input any

P2L system H and produces as output an LBA M such that

A(H) = L(M).

Proof Let H = <V, 6, g, S> be a P2L system. Let M be

an LBA constructed from H to operate as follows.

The tape of M has three tracks. If a string e is placed

on the top track of the tape, M decides whether or not ~ £ L(M) in

the following way.

(i) M tests whether or not 6(~) = e. If so, M does (ii)

below. If not, M rejects e and halts.

(ii) M writes S in the middle track and proceeds, nondeter-

ministically, to see if e E ~ (S), using the lower track as work-
,

space. If M discovers that ~ c 6 (S), then M accepts ~ and

halts. If, in simulating a derivation S = ~0~ el' "''' ek where

~k e 6k(s) M finds that lekl > I~I, M rejects ~ and halts.

From the above description it is a straightforward task to

write down formally an algorithm which constructs M from H, and

to show that L(M) = A(H). •

Lemma 10 There exists an algorithm which takes as input any

2L system H and produces as output a Turing machine T such that

A(H) = L(T).

214

Proof is similar to that of Lemma 9, except that in step (ii)

there is no limit on the length of an intermediate string o k. Hence

not every computation by T terminates. However, because of the

way in which L(T) is defined for a Turing machine T, it is the

case that A(H) = L(T).

We can now characterize the classes A(P2L) of adult languages

of P2L systems and A(2L) of adult languages of 2L systems in

terms of the classes L(CS) of context sensitive languages and L(RE)

of recursively enumerable languages.

Theorem 3 A(P2L) = L(CS).

Proof That A(P2L) C L(CS) follows from Lemma 9 and the fact

that for each LBA M there is a CSG G such that L(M) = L(G); see

e.g. H & U, Theorem 8.2. It is immediate from Lemma 8 that

L(CS) C A(P2L).

Theorem 4 A(2L) = L(RE).

Proof That A(2L) C L(RE) follows from Lemma i0 and the fact

that for each TM T there is a grammar G such that L(T) = L(G);

see e.g. H & U, Theorem 7.4. It is immediate from Lemma 8 that

L(RE) C A(2L). g

This completes our characterization of 2L systems. We note

that while the propagating restriction made little difference for 0L

systems, in the sense that A(0L) ~ A(POL), it makes a fundamental

difference for 2L systems, since A(P2L) C A(2L).

2t5

Conclusions

Theom~ms 1 - 4 give us a satisfactory analysis of L systems

from the point of view of the adult languages they generate, for

they establish direct correspondences with three of the four main

classes of languages in the Chomsky hierarchy. The remaining class

is that of the regular languages, and it is an easy exercise to

restrict the form of the productions of a 0L system to ensure that

its adult language is regular. In Walker % it is shown that the

result for 2L systems can be extended to <k, £>L systems (see

Herman and ~3zenberg [45] for the definition of such systems) with

k + £ ~ l, and that the result for P2L systems can be extended to

P<k, £>L systems with k, £ > i.

From the point of view of formal language theory, we have

given a new characterization, by totally parallel grammars, of each

of the classes of languages in the Chomsky hierarchy. From the point

of view of biological model building, we have gained access to many

of the established results of formal language theory.

Acknowledgements

The author wishes to thank Professors G. T. Herman, A.

Lindenmayer, and G. Rozenberg for their help and encouragement. This

work is supported by NSF Grant GJ 998 and NATO Research Grant 574.

% Walker, A. D., Formal Grammars and the Stability of Biological
Organisms, Ph.D. thesis, Department of Computer Science, state Univer-
sity of New York at Buffalo, 1974.

