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i. Introduction. 

The determination of flows containing embedded shock waves over 

a wing in a stream moving at near sonic speed is an important engineer- 

ing problem. The economy of operation of a transport aircraft is 

generally improved by increasing its speed to the point at which the 

drag penalty due to the appearance of shock waves begins to over- 

balance the savings obtainable by flying faster. Thus the transonic 

regime is precisely the regime of greatest interest in the design of 

commercial aircraft. The calculation of transonic flows also poses a 

problem which is mathematically interesting,because the governing 

partial differential equation is nonlinear and of mixed type, and it 

is necessary to admit discontinuities in order to obtain a solution. 

The recent development of successful numerical methods for cal- 

culating two dimensional transonic flows around airfoils (Murman and 

Cole, 1971, Steger and Lomax 1972; Garabedian and Korn 1972; Jameson 

1971) encourages the belief that it should be possible to perform 

useful calculations of three dimensional flows with the existing 

generation of computers such as the CDC 6600 and 7600. The flow over 

an isolated yawed wing appears to be particularly suitable for a 

first attack. While the boundary shape is relatively simple, this 

configuration includes the full complexities of a three dimensional 

flow with oblique shock waves and a trailing vortex sheet. At the 

same time the use of a yawed wing has been seriously proposed for a 

transonic transport (Jones, 1972) because it can generate lift 

with less wave drag than an arrow wing, and detailed design studies 

and tests are presently being conducted. 

In setting up a mathematical model we are guided by the need to 

obtain equations which are simple enough for their solution to be 

feasible, while at the same time retaining the important characteris- 

tics of the real flow. In the case of flows around airfoils viscous 

effects take place in a much smaller length scale than the main flow. 

Accordingly they will be ignored except for their role in preventing 

flow around the sharp trailing edge, thus inducing circulation and 

lift. With this simplification the mathematical difficulties are 

principally caused by the mixed elliptic and hyperbolic type of the 

equations, and by the presence of shock waves. A satisfactory method 

should be capable of predicting the onset of wave drag if not its 
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exact magnitude. Since strong shock waves would lead to high drag, we 

may reasonably suppose that an efficient aerodynamic design would per- 

mit only the presence of quite weak shock waves, so that the error in 

ignoring variations in entropy and assuming an irrotational flow should 

be small. The proper treatment of strong shock waves would require 

a much more complicated model, allowing for the presence of regions 

of separated flow behind the shock waves. Thus we are led to use the 

potential equation for irrotational flow: 

(a2-u2)~xx + (a2-v2)~yy + (a2-w2)¢zz 

- 2UV%xy - 2VW~y z 2VWCxy = 0 (i) 

in which 9 is the velocity potential, u, v and w are the velocity 

components 

u = ~x ' v = Cy , w = Cz (2) 

and a is the local speed of sound. This is determined from the 

stagnation speed of sound a 0 by the energy relation 

2 2 ~ (u2+v2+w 2) (3) 
a = a0 - 2 

where y is d~e ratio of the specific heats. This equation is elliptic 

at subsonic points where 

2 2 v 2 2 a >u + +w 

and hyperbolic at supersonic points where 

2 u 2 v 2 2 a < + +w 

It is to be solved subject to the Neumann boundary condition 

= 0 (4) 

at the wing surface, where v is the normal direction° Since smooth 

transonic solutions are known not to exist except for special boundary 

shapes (Morawetz, 1956), it is necessary to admit weak solutions (Lax, 

1954). The appropriate jump conditions require conservation of the 

normal component of mass flow and the tangential component of velocity. 

Since the potential equation represents isentropic flow, the normal 

component of momentum is then not conserved, so that the jump carries 

a force which is balanced by an opposing force on the body~ Thus a 

drag force appears, providing an approximate reprsentation of wave 

drag. The method can therefore be used to predict drag rise due to 

the appearance of shock waves. 

The use of one dependent variable instead of the five required by 
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the full Euler equations (u, v, w, density and energy) is an impor- 

tant advantage for three dimensional calculations, which are 

generally restricted by limitations of machine memory. A further 

simplification can be obtained by using small disturbance theory, 

in which only the first term of an expansion in a thickness parameter 

is retained (Bailey and Ballhouse, 1972). Equation (i) is replaced by 

(l-~-(Y+i)~x)~xx + ~yy + ~zz = 0 (s) 

where M is the Mach number at infinity. The boundary condition is 

now applied at the plane z = 0, eliminating the need to satisfy a 

Neumann boundary condition at a curved surface. Such an expansion 

is not uniformly valid, however, failing near stagnation points on 

blunt leading edges. Since it is desired to resolve the effects of 

small changes in the shape of the wing section, which may be required 

to limit the strength of shock waves appearing in the flow or even to 

obtain shock-free flow (Bauer, Garabedian and Korn, 1972), it is 

preferred here to use the full potential flow equation (i). 

Solutions of the potential equation are invariant under a 

reversal of flow direction 

u =-$x ' v =-~y , w =-~z 

and in the absence of a directional condition corresponding to the 

condition that entropy can only increase, its solution in the tran- 

sonic regime is not unique. Solutions with expansion shocks are 

possible. To exclude these, and to ensure uniqueness, the direction- 

al property which was removed by eliminating entropy from the 

equations must be restored in the numerical scheme. This indicates 

the need to use biased differencing in the supersonic zone, corres- 

ponding to the upwind region of dependence of the flow. For 

the small disturbance equation (5) this can be achieved simply by 

using backward difference formulas in the x direction at all super- 

sonic points (Murman and Cole 197 ). At the point iAx, jAy, kAy, 

@xx is represented by 

$i,j,k - 2$i-l,~,k + $i-2,j,k 

Ax 2 
The dominant truncation error -AXSxxx arising from this expression 

then acts as an artificial viscosity, since the coefficient of @xx is 

negative in the supersonic zone. This ensures that only the proper 

jumps can occur. In fact, when the truncation error is included, 

equation (3) resembles the viscous transonic equatio~ which has been 
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used to simulate shock structure (Hayes, 1958). The difference equa- 

tions exhibit similar behaviour, automatically locating shock waves 

in the form of compression bands spread over a few mesh widths. 

The calculations to be described are based on a similar principle, 

but use a coordinate invariant difference scheme in which the retarded 

difference formulas are constructed to confol-m with the local flow 

direction. The resulting 'rotated' difference scheme allows complete 

flexibility in the choice of a coordinate system. Thus curvilinear 

coordinates may be used without restriction to improve the accuracy of 

the treatment of boundary conditions, and mesh points can be concen- 

trated in regions of rapid variation of the flow. The property of auto- 

matically locating shock waves is retained. This is a great advantage 

in treating flows which may contain a complex pattern of waves. 

The scheme has proved to be stable and convergent throughout the 

transonic range~ including the case of flight at Mach i. Calculations 

have been performed for Mach numbers up to 1.2 and yaw angles up to 

60 ° , covering the most likely operating range of a yawed wing trans- 

port designed to fly at slightly supersonic speeds. The calculations 

become progressively less accurate, however, towards the upper end of 

the range, because the difference scheme is first order accurate in the 

supersonic zone. Also the present scheme has the disadvantage that 

it is not written in conservative form (Lax, 1954), so that the 

correct jump conditions are not precisely enforced. The best way to 

improve the treatment of the jump conditions remains an open question. 

2. Formulation in Curvilinear Coordinates. 

The configuration to be considered is illustrated in Figure 1. 

An isolated wing is placed at an arbitrary yaw angle in a uniform free 

stream with prescribed Mach number at infinity. According to the Kutta 

condition the viscous effects cause the circulation at each span station 

to be such that the flow passes smoothly off the sharp trailing edge. The 

varying spanwise distribution of lift generates a vortex sheet which 

trails in the streamwise direction behind the trailing edge, and behind 

the side edge of the downstream tip. In practice the vortex sheet rolls 

up behind each tip and decays through viscous effects. A simplified 

model will be used in which convection and decay of the sheet are 

ignored. Then the jump F in potential should be constant along lines 

parallel to the free stream behind the wing. Also the normal compo- 

nent of velocity should be continuous through the sheet. At infinity 

the flow is undisturbed except in the Trefftz plane far downstream, 

where there will be a two dimensional flow induced by the vortex sheet. 
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Near the leading edge the boundary surface has a high curvature. 

In order to prevent a loss of accuracy in the numerical treatment of 

the boundary condition it is convenient to use curvilinear coordinates. 

Then by making the body coincide with a coordinate surface,we can 

avoid the need for complicated interpolation formulas, and maintain 

small truncation errors. For two dimensional calculations an effec- 

tive way to do this is to map the exterior of the profile onto a 

regular shape, such as a circle or half plane, by a conformal mapping 

(Sells, 1968; Garabedian and Korn, 1972; Jameson 1974). For three 

dimensional calculations no such simple method is available. The 

number of additional terms in the equations arising from coordinate 

transformations should be limited to avoid an excessive growth in the 

computer time required for a calculation. For this reason the use of 

a conformal transformation which varies in the spanwise direction is 

not attractive. 

A convenient coordinate system for treating wings with straight 

leading edges can be constructed in two stages. Let x, y and z be 

Cartesian coordinates with the x-y planes containing the wing sections, 

and the z axis parallel to the leading edge, as in Figure i. Then the 

wing is first 'unwrapped' by a square root transformation of the x-y 

planes, independent of z, 

1 2 
x + iy = ~ (Xl+iY I) , z = Z 1 (6) 

applied about a singular line just behind the leading edge, as in 

Figure 2. X 1 and Y1 represent parabolic coordinates in the x-y planes, 

which become half planes in X 1 and YI' while the wing surface is split 

open to form a bump on the boundary Y1 = 0. In terms of the transform- 

ed coordinates the surface can be represented as 

Y1 = S(XI'ZI) (7) 

In the second stage of the construction the bump is removed by a 

shearing transformation in which the coordinate surfaces are displaced 

until they become parallel to the wing surface: 

X = X 1 , . Y = Y-S(XI,ZI) , Z = Z 1 (8) 

The final coordinates X, Y and Z are slightly nonorthogonal. It is 

best to continue the sheared coordinate surfaces in the direction of 

the mean camber line off the trailing edge, so that there is no 

corner in the coordinate lines if the wing has a cusped trailing edge. 

The vortex sheet is assumed to lie in the surface Z = 0 so that it is 

~iso split by the transformation. A complication is caused by the 

continuation of the cut beyond the wing tips. Points on the two sides 
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of the cut map to the same point in the Cartesian system, and must be 

identified when writing difference formulas. While the leading edge 

is restricted to be straight, the wing section can be varied or twist- 

ed and the trailing edge can be tapered or curved in any desired 

manner. The yaw angle is introduced simply by rotating the flow at 

infinity. It is then necessary to track the edge of the vortex sheet 

in the streamwise direction. 

Since the potential approaches infinity in the far field, it is 

necessary to work with a reduced potential G, from which the singulax- 

ity at infinity has been removed. If 8 is the yaw angle, and ~ the 

angle of attack in the crossplane normal to the leading edge, we set 

~ = G + {I[X2-(y+s)2]cos ~ + X(Y+S)sin ~}cos 0 + Z sin a (9) 

Orthogonal velocity components in the X 1 'YI and Z 1 directions are then 

U = .~ Gx-SxGy+ [X cos ~ + (Y+S) sin a] cos 

V = h + [x sin a - (Y+S) cos a] cos 9 

W = G Z- SzG Y + sin 8 (I0) 

where h is the mapping modulus of the parabolic transformation given 

by 

h 2 = X 2 + (Y+S) 2 (ll) 

The local speed of sound now satisfies the relation 

2 2 y-i a = a0 - 2 (U2+V2+W2) (12) 

The potential equation becomes 

AGxx + BGyy + CGzz + DGx~ / + EGyz + FGxz = H (13a) 

where 
2 U 2 A = a - 

2 + h2S2z ) (V - US X h2WSz )2 B = a2(l + S X 

C = h 2 (a2-W 2) 

(13b) 
D : - 2a2Sx - 2 U(V - US X- h2WSz ) 

E = - h2a2Sz - 2h(V - US X- h2WSz)W 

F = - 2hUW 

and 

H = {(a2-U2)Sxx + h2(a2-W2)Szz - 2hL~Sxz}G Y 
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The boundary condition on the body takes the form 

(S cos ~-X sin e) cos 0+ UISx+ h2WISz 
Gy = - 

2 +h2S~ 1 + S X 

where 

(14a) 

U 1 = G x + (X cos ~ + S sin e) cos 8 
(14b) 

W 1 = G Z + sin 0 

An advantage of the parabolic transformation is that it collapses the 

height of the disturbance due to the vortex sheet to zero in the 

transformed coordinate system at points far downstream, where X 

approaches infinity. Thus the far field boundary condition is simply 

G = 0 (15) 

In order to obtain a finite region for computation the coordi- 

nates X, Y and Z may finally be replaced by stretched coordinates. 

For example one can set 

X - 
(i-~2) ~ 

where e is a positive index, so that X varies between -i and 1 as X 

varies between -~ and ~. 

3. Numerical Scheme. 

The success of the Murman difference scheme for the small distur- 

bance equation (5) is attributable to the fact that the use of 

retarded difference formulas in the supersonic zone leads to the 

correct region of dependence, and also introduces a truncation error 

which acts like viscosity. The artificial viscosity is added smoothly 

because the coefficient of ~xx is zero at the sonic line, where the 

switch in the difference scheme takes place. 

The 'rotated' difference scheme employed for the present calcula- 

tions is designed to introduce correctly oriented upwind difference 

formulas in a similar smooth manner when the flow direction is arbi- 

trary. With this end in view, the equation is rearranged as if it 

were locally expressed in a coordinate system aligned with the flow. 

Considering first the case of Cartesian coordinates, let s denote the 

stream direction. Then equation (i) can be written in the canonical 

form 

(a2-q2) ~ss + a2(~-~ss ) = 0 (16) 

where q is the stream speed determined from the formula 
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2 2 v 2 2 q = u + + w (17) 

and £9 denotes the Laplacian 

£~ : %xx + }yy + }zz (18) 

Since the direction cosines of the stream direction are u/q, v/qr and 

w/q, the streamwise second derivative can be expressed as 

%ss ~ (u2 ~xx 2 w 2 + (29) = + v ~yy + @zz + 2UV@xy + 2VW~yz 2UW~xz) 
q 

On substituting the expressions for @ss and A@, equation (16) reduces 

to the usual form (i). To carry out this rearrangement 9x ' %y and @z 

are first evaluated using central difference formulas. With the 

velocity components known, the local type of the flow is determined 
2 2 

from the sign of a -q . If the flow is locally subsonic all terms are 

represented by central difference formulas. If, on the other hand, it 

is locally supersonic, all second derivatives contributing to ¢ss in 

the first term are represented by retarded difference formulas of the 

form 

9 i , j ,  k - 2 @ i - l , ~ , k  + @ i - 2 , j , k  
~xx = Sx 2 

*i,j ,k_- * i - l , j ,k  -  i,j-l,k t * i - l , j - l ,k  
@xy : ax Ay- 

b i a s e d  i n  t h e  u p s t r e a m  d i r e c t i o n  i n  e a c h  c o o r d i n a t e ,  w h i l e  t h e  r e m a i n -  

i n g  t e r m s  a r e  r e p r e s e n t e d  b y  c e n t r a l  d i f f e r e n c e  f o r m u l a s .  T h e  s c h e m e  

a s s u m e s  a f o r m  s i m i l a r  t o  t h e  M u r m a n  s c h e m e  w h e n e v e r  t h e  v e l o c i t y  

c o i n c i d e s  w i t h  o n e  o f  t h e  c o o r d i n a t e  d i r e c t i o n s .  A t  s u b s o n i c  p o i n t s  

i t  i s  s e c o n d  o r d e r  a c c u r a t e .  A t  s u p e r s o n i c  p o i n t s  i t  i s  f i r s t  o r d e r  
2 2 

a c c u r a t e ,  i n t r o d u c i n g  a n  a r t i f i c i a l  v i s c o s i t y  p r o p o r t i o n a l  t o  q - a  

w h i c h  j u s t  v a n i s h e s  a t  t h e  s o n i c  l i n e ,  

When t h e  e q u a t i o n  i s  w r i t t e n  i n  c u r v i l i n e a r  c o o r d i n a t e s ,  o n l y  t h e  

p r i n c i p a l  p a r t ,  c o n s i s t i n g  o f  t h e  t e r m s  c o n t a i n i n g  t h e  s e c o n d  d e r i v a -  

t i v e s  o n  t h e  l e f t - h a n d  s i d e  o f  e q u a t i o n  ( 1 3 a ) ,  n e e d  b e  s p l i t  a n d  

r e a r r a n g e d  i n  t h i s  w a y ,  s i n c e  t h e  c h a r a c t e r i s t i c  d i r e c t i o n s  a n d  r e g i o n  

o f  d e p e n d e n c e  a r e  d e t e r m i n e d  b y  t h e  c o e f f i c i e n t s  o f  t h e  s e c o n d  d e r i v a -  

t i v e s .  A l s o  t h e  e x p r e s s i o n s  f o r  t h e  s e c o n d  d e r i v a t i v e s  d o m i n a t e  t h e  

f i n i t e  d i f f e r e n c e  e q u a t i o n s  w h e n  t h e  m e s h  w i d t h  i s  s m a l l .  A c c o r d i n g l y  

a l l  t e r m s  c o n t r i b u t i n g  t o  H o n  t h e  r i g h t  s i d e  o f  ( 1 3 a )  a r e  c a l c u l a t e d  

u s i n g  c e n t r a l  d i f f e r e n c e  f o r m u l a s  a . t  b o t h  s u p e r s o n i c  a n d  s u b s o n i c  

p o i n t s .  

I t  r e m a i n s  t o  d e v i s e  a s c h e m e  f o r  s o l v i n g  t h e  d i f f e r e n c e  e q u a -  

t i o n s .  T h e  p r e s e n c e  o f  d o w n s t r e a m  p o i n t s  i n  t h e  c e n t r a l  d i f f e r e n c e  
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formulas prevents the use of a simple marching procedure in either the 

supersonic or the subsonic zone. Thus we are led to use an iterative 

method. At each cycle the difference formulas are evaluated using old 

values of the potential, generated during the previous cycle, at 

points which have not yet been updated. While iterative methods are 

well established for elliptic equations, the use of such a method in 

the supersonic zone, where the equation is hyperbolic, requires 

analysis. For this purpose it is convenient to regard the iterations 

as steps in an artificial time coordinate, so that the solution proce- 

dure can be considered as a finite difference scheme for a time depen- 

dent equation. Provided that the iterative process is stable and 

consistent with a properly posed initial value problem, the time 

dependent equation will represent its behaviour in the limit as the 

mesh is refined. Thus we can infer the behaviour of the iterative 

process from the behaviour of the equivalent time dependent equation. 

If the process is to converge, the solution of the steady state equa- 

tion ought to be a stable equilibrium point of the time dependent 

equation, and the regions of dependence of the two equations should be 

compatible. 

Denoting updated values by a superscript +, representative 

central difference formulas for the second derivatives are 

G + - (I+rAX) G + - (l-rAx) + i-l,j ,k i,j ,k Gi,j ,k Gi+l, j ,k 
GXX = AX 2 

(20) 

_ G + G + Gi+l ,j+l,k i-l, j+l,k-Gi+l, j-l,k + i-l, j-l,k 
GXy .................. 4~XflY 

where old values of the potential are used on one side because the 

new values are not yet available, and a linear combination of old and 

new values is used at the center point. If At is the time step these 

formulas may be interpreted as representing 

At (Gxt + rGt) GXX - S--{ 
and 

1 At 
GXy - 2 A-~ Gyt 

Thus the presence of mixed space time derivatives cannot be avoided in 

the equivalent time dependent equation. This equation can therefore 

be written in the form 

(M2-1) Gss Gmm Gnn - - + 2~iGst + 2~2Gmt + 2~3Gnt = Q (21) 

where M is the local Mach n~mber, 
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q 
M - (22) 

a 

m and n are suitably scaled coordinates in the plane normal to the 

stream direction s, and Q contains all terms except the principal part. 

The coefficients ~i' e2 ~ and ~3 depend on the split between new and 

old values in the difference equations. Introducing a new time coor- 

dinate ~i s 

T = t + ~2 m + e3 n (23) 
M2-1 

equation (21) becomes 
2 

(M2_I)Gss [ ~i 2 2] 
Gmm - Gnn - M~_I ~2 - aS GTT = Q " (24) 

To avoid producing an uitrahyperbolic equation for which the initial 

data cannot in general be arbitrarily prescribed (Courant and Hilbert, 

1962), the difference formulas at supersonic points should be organiz- 

ed so that 
2 > (M2 i) 2 2 

~i (~2+~3) (25) 

Then the hyperbolic character is retained by the time dependent equa- 

tion, and s is the time like direction as in the steady state equation. 

If condition (25) is satisfied, the characteristic cone of the 

time dependent equation (21) is given by 

(~2s-~im) 2+ (~3s-~in) 2- (M2-1) (~3m-~2n) 2 

+(M2-1) (t2+2a2mt+2~3nt) - 2~ist = 0 

This is illustrated in Figure 3 for the two dimensional case. The 

region of dependence lies entirely behind the current time level 

except for the single characteristic direction 

~2 ~3 
t = 0 t m=--s , n =--s 

The difference equations will have the correct region of dependence 

provided that the points are ordered so that the backward half of 

this line lies in the updated region. The mechanism of convergence 

in the supersonic zone can also be inferred from the orientation of 

the characteristic cone. Since the region of dependence lies 

entirely on the upstream side, with advancing time it will eventually 

cease to intersect the initial time plane. Instead it will intersect 

a surface containing the Cauchy data of the steady state problem, and 

hence the solution will reach a steady state. The rate of convergence 

is maximized by minimizing the rearward inclination of the most 

retarded characteristic 
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2el e2 ~3 

M2_I . . . .  

t ....... s , m ~i s , n ~i s . 

Thus it is best to use the minimum value of al which allows condition 

(25) to be satisfied. 

Condition (25) generally requires the retarded difference 

formulas for Gss in the supersonic zone to be augmented by expressions 

contributing to the term in Gst. At the same time a local yon Neumann 

test (Jameson, 1974) indicates that at supersonic points the new and 

old values ought to be split so that the coefficient of %t in the 

equivalent time dependent equation is zero. For these reasons, and 

also to ensure the diagonal dominance of the equations for the new 

values on each line, Gss is calculated at supersonic points using 

formulas of the form 

2G ,j, k - Gi,j, k - 2G _l,j, k + Gi_2,j, k 
GXX = AX 2 

G~ . + + G + l,~,k - Si-l,j,k - Si,j-l,k + i-l,j-l,k 
GXy = AX AY 

(26) 

where the superscript + has again been used to denote new values. The 

first formula can be interpreted as representing 

At 
GXX + 2 ~x GXt " 

Its use together with the corresponding formulas for Gyy and GZZ thus 

results in the introduction of a term in Gst proportional to the 
2 2 

coefficient q -a of G To meet condition (25) near the sonic 
2 2 ss 

line, where q -a approaches zero, the coefficient of ¢st can be 

further augmented by adding a term 

At 
8 ~ (UGxt + VGyt + h2WGzt ) (27) 

with B an appropriately chosen positive parameter. The required 

mixed space time derivatives are represented by formulas of the form 

G~ - - G + 
1,j,k Gi, j,k iq!,j ,k + Gi-l,j ,k (28) £t 

A-~ GXt = £X 2 

The treatment of the principal part at supersonic points is c~leted by 

using central difference formulas of the form (20) to represent A~-~ss, 

with r set equal to zero to give a zero coefficient of ~t" 

In the subsonic zone formulas of the form (20) are used for all 

second derivatives. Convergence now depends on the damping provided 
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by %t (Garabedian, 1956). If ~ is the overrelaxation factor one takes 

2 
r Ax = -- 1 (29) 

w 

where ~ has a value slightly less than 2. In both the subsonic and 

the supersonic zones the velocities and all terms containing the 

first derivatives are evaluated by formulas of the form 

GX = Gi+I'j'k2Ax- Gi-l'j'k 

using values frozen from the previous cycle. 

The boundary condition at the body is satisfied by giving 

appropriate values to G at a row of dummy points behind the boundary. 

The standard difference equations are then used at the surface points, 

which are thus treated with similar truncation errors to the interior 

points. To treat lifting flows it is necessary to allow for a jump F 

in the potential between corresponding points in the plane Y = 0, 

representing the two sides of the vortex sheet. The jump should be 

constant along lines in the streamline direction. Difference formulas 

bridging the cut are evaluated using a value of F frozen from the 

previous cycle. At the end of the cycle F is then adjusted to the 

new value of the jump at the appropriate point on the trailing edge. 

The foregoing formulas represent a point relaxation algorithm. 

To increase the speed of convergence it is better to use a line 

relaxation algorithm in which all the points on a line are simultane- 

ously updated. If points on an X line are being updated, the only 

modification required is to replace the central difference formula 

(20) for GXX by a formula using all new values 

G + - 2G~ + + i - l , j , k  , , j ,k  ...... G i + l , j , k  
GXX = AX 2 

The resulting line equations are easily solved, since they are tri- 

diagonal and diagonally dominant in both the subsonic and the super- 

sonic zones. The lines to be updated can be in any coordinate 

direction. The only constraint is the need to march in a direction 

which is not opposed to the flow, in order to obtain a positive 

coefficient for Gst. It has been found best to divide each X-Y plane 

into three strips. Then one marches towards the surface in the 

central strip, and outwards with the flow in the left and right-hand 

strips. 
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4. Results. 

FORTRAN computer programs incorporating these principles have 

been used to make extensive numerical studies of both two and three 

dimensional transonic flows. To save computer time, calculations are 

performed on a sequence of meshes. The solution is first obtained on 

a coarse mesh. This is then interpolated to provide the starting 

point for a calculation in which the mesh size is halved in each 

coordinate direction. Using this procedure the lift can be approxi- 

mately determined on the coarse mesh at very low cost. Typically the 

lattice for the initial calculation contains 64 divisions in the chord- 

wise X direction, 8 divisions in the normal Y direction, and 16 

divisions in the spanwise Z direction, giving 8,192 cells. The refined 

mesh then has 65,536 cells. Generally 200 cycles on the coarse mesh 

followed by 100 cycles on the fine mesh are sufficient to reduce the 

largest residual to the order of 10 -5 . Such a calculation takes about 

30 minutes on a CDC 6600. To improve the resolution of the shocks on 

the wing surface, more divisions are sometimes used in the X coordinate, 

giving a refined mesh with 192×16×32 = 98,304 cells. In order to 

check the convergence of the method as the mesh size is reduced, a 

few calculations have been made on a sequence of three meshes, with 

192×32×64 = 393,216 cells on the third mesh. Such a calculation 

requires the use of the disc for storage, and is expensive. Each fine 

mesh cycle takes about 90 seconds, so that a complete calculation 

takes 3 or 4 hours. For engineering purposes the meshes with 65,536 

or 98,304 cells generally seem to give sufficient accuracy. 

A useful test of the accuracy of the three-dimensional difference 

scheme is provided by the case of an infinite yawed wing. The condi- 

tions for simple sweepback theory are then exactly satisfied, and the 

flow is effectively two-dimensional. If the yaw angle is varied to 

keep the velocity normal to the leading edge fixed as the Mach number 

is increased, the only change should be in the uniform spanwise 

component of the velocity. The flow in the planes containing the 

wing section should be independent of the yaw angle. It is treated 

differently by the difference scheme, however, because the size of 

the hyperbolic region increases as the Mach number and yaw angle are 

increased, so that retarded differencing is used at a larger number 

of points. Figure 4 shows a comparison of the computed pressure 

distribution over an infinite yawed wing at two corresponding condi- 

tions, Mach .65 with zero yaw, and Mach 1.02 with a yaw angle of 50.4 ° . 

The wing section was designed by Garabedian to produce very high lift 
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with shockfree flow (Bauer, Garabediant Jameson and Korn, 1974) v and 

the flow is very sensitive to small changes in the Mach number and 

angle of attack. The lift and drag coefficients obtained by 

integrating the surface pressure are also shown. For convenience all 

coefficients are referred to the velocity normal to the leading edge. 

It can be seen that the numerical results do have the expected 

invariance despite the change in the differencing. These calcula- 

tions were performed with a mesh containing 240 divisions in the X 

coordinate and 32 divisions in the Y coordinate. 

Figures 5, 6 and 7 show typical results of calculations for 

finite wings° The pressure distributions at successive span stations 

are plotted above each other at equal vertical intervals, with the 

leading tip at the bottom. In all cases the computed lift drag ratio 

includes an allowance for a skin friction coefficient of .010. At 

positive yaw angles the contribution of the spanwise force component 

has been ignored to avoid errors arising from poor resolution at the 

tips. Figures 5 and 6 display results of calculations using the very 

fine mesh with 393,216 cells. Figure 5 shows an example at Mach .75 

with zero yaw. The wing section is one used by R.T. Jones in tests of 

a model with yawed wing (Graham, Jones and Boltz, 1973). Two-dimen- 

sional calculations show that this section generates two shock waves 

at low lift which coalesce to a single shock wave at high lift. It is 

interesting that the three dimensional flow shows a transition from 

the single to the double shock pattern as the load falls off near 

the tips. Figure 6 shows an example for a wing with the same 

section at Mach .866 and a yaw angle of 30 ° • The angle of attack is 

the angle measured in the plane normal to the leading edge. Some 

twist was introduced, but not enough to equalize the load completely. 

At this yaw angle the shock waves are still quite well captured by 

the difference scheme, as can be seen. Figure 7 shows an example of 

a calculation on a mesh with 98,304 cells. The wing section was 

another airfoil designed by Garabedian. In two dimensional flow this 

airfoil should be shock free at a Mach number of .80 and a lift 

coefficient of .3, with supersonic zones on both upper and lower 

surfaces. The wing is shown at Mach .87 and a yaw angle of 15 ° . 

Shock waves can be clearly seen on both surfaces. The calculations 

indicate, however, that with this moderate amount of sweep, and 

some relief due to the three dimensional effects, drag rise is only 

just beginning to occur at this point. Since this airfoil is 

also 12 percent thick, it is an attractive candidate for a fast 

s~bsonic airplane such as an executive jet. 
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With a supersonic free stream and a large yaw angle, the flow is 

generally supersonic behind the oblique shock waves which appear on 

the wing surface. In this situation the computed shock waves are 

less well defined. Usually they are spread over 4 or 5 mesh widths. 

The calculations still appear, however, to provide a useful estimate 

of the lift drag ratio. Figure 8 shows some curves of the lift drag 

ratio for a partially tapered wing with Jones' section and an aspect 

ratio of ii.I. These were computed using a mesh with 65,536 cells. 

The amount of twist was generally not correctly chosen to equalize 

the load across the span. The curves are, however, quite consistent 

with the results of Jones' tests of a yawed wing with the same section 

and an elliptic planform of aspect ratio 12.7. 

5. Conclusion 

The results support the belief that with the speed and capacity 

of the computers now in prospect it will be possible to use the 

computer as a 'numerical wind tunnel'. The use of an artificial time 

dependent equation results in rapid convergence, in contrast to 

methods in which the physical time dependent equation is integrated 

until it reaches a steady state (Magnus and Yoshihara, 1970). The 

consistency of the results also provides a numerical confirmation of 

the uniqueness of weak solutions of the potential equation, provided 

that the correct entropy inequality is enforced. 

Much remains to be done to improve the accuracy and range of the 

calculations. In order to improve the treatment of the shock waves 

it would be better to write the equations in conservative form. This 

requires only a small modification of the small disturbance equation 
Dr 

(5). The first term is expressed in the form ~-~ where 

2 
r = (l-Mi)~+ ~ ~x 

Artificial viscosity should then be introduced in a conservative form. 

This can be done by subtracting the term 

Pi,j,k - Pi-l,j,k 

where 

Pi,j ,k 

0 

ri+l,j,k-ri_z-l,j,k 
2AX 

at subsonic points 

at supersonic points 
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This results in an artificial viscosity proportional to ~2r/~x2 in 

the supersonic zone. At the sonic line it is equivalent to the use 

of Murman's new shock point operator (Murman, 1973). 

The appropriate conservation law for the full potential equation 

expresses conservation of mass 

~-~ {pu) + ~ (pv) + ~-{ (pw) = 0 

where the density p is given by the formula 

p = {i + ~ M2(l-u2-v2-w2)} 1/(Y-I) 

The analogue of the Murman scheme introduces a truncation error 

proportional to (~2/~x2) (pu) in the supersonic zone by retarded 

differencing. N~merical tests of such a scheme have shown it to be 

~ess accurate than the simple retarded scheme for the potential 

equation, because of the additional errors arising from this term. 

Shock waves standing above the surface in a two dimenaional flow must 

be normal because the flow turns smoothly. Thus they can be located 

at points of transition to subsonic flow. An approximation to the 

jump conditions could then be directly imposed. This approach is 

less promising for three dimensional calculations, because it is not 

so simple to locate the shock waves. 

Another shortcoming of the present scheme is its use of first 

order accurate difference equations at supersonic points. Conse- 

quently, if the supersonic zone is large, a very fine mesh is needed 

to obtain an accurate answer. One line of investigation is the addi- 

tion of an explicit term in ~tt to the artificial time dependent 

equation. This would rotate the characteristic cone back from the 

current time level, allowing more latitude for the construction of 

a higher order scheme. The resulting second order equation can also 

be reduced to a first order system of equations in a form amenable 

to standard differencing procedures. 

The treatment of more complicated configurations such as wing- 

body combinations will require extensive investigations of the best 

way to set up a coordinate system. It may prove most economical to 

patch together separate regions, each using its own coordinate system 

suited to the local flow pattern. 
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CONSTRUCTION OF COORDINATE SYSTEM 
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FIGURE 3 

CHARACTERISTIC CONE OF EQUIVALENT TIME DEPENDENT EQUATION 

FOR TWO DIMENSIONAL FLOW 
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Figure 5(a), View of Wing 
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Figure 7(a) 
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Figure 7(b). Upper Surface 
Pressure. 

Figure 7(c) . Lower Surface 
Pressure. 
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