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INTRODUCTION 

In a classic paper~ Taylor and Green (1937) considered the 

dynamical evolution of a model three-dimensional vortex field in 

order to clarify the dynamics of turbulence. The Taylor-Green vortex 

illustrates in a relatively simple flow the basic turbulence decay 

mechanisms of the production of small eddies and the enhancement of 

dissipation by the stretching of vortex lines. It has also proved 

exceedingly useful for testing numerical and perturbation methods, 

as discussed later in this paper. 

In the Taylor-Green vortex, the initial physical-space velocity 

field is 

Vl(Xl~X2,X3) = cos x I sin x 2 cos x 3 

v2(xl,x2~x 3) = - sin x I cos x 2 cos x 3 

v3(xl,x2rx 3) = 0 , 

(la) 

(ib) 

(ic) 

1 
where we have shifted the origin of x 3 by ~ ~ from the initial 

conditions chosen by Taylor and Green for convenience in developing 

a numerical method (see below). The initial vorticity field 

~ = x v is 

~l(Xl~X2,X3) = - sin x I cos x 2 sin x 3 (2a) 

~2(Xl:X2rX3) = - cos x I sin x 2 sin x 3 (2b) 

~3(Xl~X2,X3) = - 2cos x I cos x 2 cos x 3 (2c) 

Although the streamlines of the initial velocity field (1) are the 

planar curves cos x I cos x 2 = const in the planes x 3 = const, the 

flow that develops from (i) is three-dimensional. The initial vortex 
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lines are the curves sin Xl/sin x 2 = const, sin2xl cos x 3 = const 

so they are twisted and may induce a velocity field to stretch 

themselves. In fact, since ~.~v is initially nonzero such 

stretching does take place. Also, since the initial value of 

(~ × ~)3 is nonzero, a nonzero component v 3 develops after the 

initial instant and the field becomes truly three dimensional. The 

Taylor-Green vortex is perhaps the simplest example of self-induced 

vortex stretching by a three-dimensional velocity field. 

The dynamical problem is to solve the Navier-Stokes equations 

for incompressible flow 

(x, t) ÷ 
, = - (x,t) ~ v v~x,t) (3) ~t + v(x,t).~(~ t) ~p ÷ + 1 _2+.+ 

~.~ (x,t) = 0 , (4) 

where p(x,t) is the pressure (normalized by the density) and R is 

the Reynolds number, subject to the (incompressible) initial 

conditions (i). The boundary conditions on v(x,t) are implicitly 

taken to be periodic, v(x+2~n,t) = (x,t) where ~ has integral 

components, because these are maintained in time evolution by (3), 

(4). The pressure field in (3) is effectively a 'Lagrange multiplier' 

that ensures compliance with the incompressibility constraint (4); 

the pressure may be eliminated from (3) by taking its divergence 

and applying (4). 

Taylor and Green (1937) investigated the evolution of their 

vortex by developing a perturbation solution to (3), (4) in powers 

of the time t. They found that the mean-square vorticity 

~(t) = e , where the overbar indicates an average over a 

periodicity cube, is given by 

t 3 ~(t) = ~ [i - 6t 5 18)t2 5 36) 
~-- + (~-~ + R2 - (~ + R 2 R-- 

(5) 

50 1835 54)t4 
+ (99-gUV~+ + + ...] 9.16R 2 j 
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The dynamical significance of ~(t) is that, with periodic boundary 

conditions~ ~(t) is related to the rate of kinetic energy decay 

(t) by ~ (t) = d 1 2 i 
- d-~ 2 v = ~ ~ (t). It is clear that finite-order 

truncations of the series (5) cannot remain valid as t ~ ~ (since 

+ 0 as t ÷ ~). Examination of (5) suggests that, as R + ~, the 

perturbation series in powers of t diverges for t > 3. 

Goldstein (1940) investigated the evolution of the Taylor- 

Green vortex by developing a perturbation series in powers of the 

Reynolds number R. He found 

~(t) = ~ [e -6t/R R2 (e -6t/R - 20e -12t/R + 35e -14t/R - 16e -16t/R) 
4 384 

_4. 4105 -6t/R 
+ i ~63583-6-272 e + ...) + ...] (6) 

Notice that (6) is a more inclusive series than (5) in the sense that 

each term of (6) is a resummation of an infinite number of partial 

terms of (5); on the other hand, each term of (5) derives from only 

a finite number of terms of (6). Also, notice that finite order 

truncations of (6) do not have the secular behavior exhibited by 

truncations of (5) as t +~. However, examination of the displayea 

terms of (6) suggests that for t/R ~ i, perturbation series in 

powers of R diverges for R > 20. 

Neither perturbation series in powers of t nor R can 

describe the evolution of the flow field for large t or R. In 

this paper, we study the Taylor-Green vortex by numerical solution 

of the Navier-Stokes equations. In addition to the fundamental fluid 

dynamical interest in the development of the Taylor-Green vortex, 

the flow is a most convenient one on which to debug anu perform tests 

of sophisticated three-dimensional numerical hydrodynamics simulation 

codes. The present results were obtained by a very efficient and 

accurate method that is highly specialized to the Taylor-Green vortex 

and so not generalizable to a wide variety of flows. Nevertheless, 
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the present results have proved most useful in validation tests of 

a variety of more general simulation codes(Orszag and Patterson 1972). 

NUMERICAL METHOD 

The Navier-Stokes equations (3), (4) are solved by finite 

differences in t (using a second-order Adams-Bashforth scheme on 

the advective terms and Crank-Nicolson implicit differencing on the 

viscous terms) and a spectral (Fourier expansion) method in space. 

Because of spatial periodicity, the velocity field is expansible as 

~(~,t) = ~ ~(~,t)e i~'~ (7) 

where ~ has integral components. The flow that develops from the 

initial conditions (i) has several symmetries and invariances that 

may be used to reduce the number of independent components in (7). 

These symmetries and invariances are 

~(~) = -~(-~) (8a) 

vi(xl,x2,x 3) = rivi(xl,x2,-x 3) (8b) 

v2(xl,x2,x 3) = Vl(X2,-Xl,X3), v3(xl,x2,x 3) = v3(x2,-Xl,X 3) (8c) 

vi(xl,x2,x 3) = tivi(x I + 7, ~ - x2, x 3 + 7) (8d) 

where repeated latin indices are not summed, r I = r 2 = t I = t 3 = i, 

r 3 = t 2 = -I, and 

~(~) = 0 (8e) 

unless k I £ k 2 ~ k 3 (mod 2). These relations are not all 

independent. For example, (8c), which states invariance of the 

flow under 90 ° rotations about the x3-axis, applied twice gives 

v3(-Xl,-X2,X 3) = v3(xl,x2,x 3) which also follows from (8a) and (8b). 

The properties (8) imply that the velocity field of the Taylor-Green 

vortex is representable as 
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V I (Xl ~X2 ~X3) 1 

v 2 (Xl~X 2,x3) [ 

V 3 (x I ,x 2 ,X 3 ) J 

Z f 
m=0 n=0 p=0 

~a (I) cos[ (2m+l)Xl]sin[ (2n+l)x2)cos[ (2p+l)x3] nu%p 
(2) 

a sin [ (2re+l) x I] cos [ {2n+l) x2] cos [ (2p+l) x3] mnp 

a(3) sin[ (2m+l)Xl]sin[ (2n+l)x 2]sin[ (2p+l)x 3] mnp 

b (I) 
mnp 

+ b (2) 
mnp 

b (3) 
mnp 

sin [2rex I] cos [2nx2]cos [2px 3] 

cos [2rex I] sin [2nx2] cos [2px 3] 

cos [2rex I] cos [2nx 2] sin [2px 3] 

(9) 

In order to obtain a finite approximation to v, we truncate 

t h e  s e r i e s  (7)  t o  t h e  r e g i o n  -K < k < K, ~ = 1 , 2 , 3  d e n o t e d  b y  

I I~II < K, and apply the Galerkin procedure to get the equations 

(Orszag 1971) 

k 2 
[~ + ~-]u (~,t) = -ik8(6 y 

k k 
7) (÷ 

k~ Z U B p, t) Uy 

l J il,11 i L<K 

(~,t) (IO) 

where repeated Greek indices are summed and the pressure has been 

eliminated by means of the incompressibility constraint. 

An efficient algorithm for computing the right-hand side of 

(I0) has been devised (Orszag 1971) o It involves 12 real or 

conjugate sy~Imetric discrete Fourier transforms on K × K × K points; 

the Fourier transforms are performed by the fast Fourier transform 

algorithm in order K31og2 K arithmetic operations. This transform 

method for the Taylor-Green vortex makes essential use of all the 

symmetries (8); without (8), the most efficient transform method 

for evaluation of the right-hand side of (I0), which is the 
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pseudospectral method (Orszag 1971), would require 9 real or 

conjugate-symmetric discrete Fourier transforms on 2K x 2K x 2K 

points or roughly a factor 6 more work than involved in the Taylor- 

Green vortex. Another advantage of the spectral method just 

described for the Taylor-Green vortex is that it allows great re- 

ductions in the amount of computer storage necessary with a given 

spectral cutoff or spatial resolution Ax = ~/K. In fact, the 

property (8e) alone gives a factor four reduction in the necessary 

storage space. Details on all the transform methods mentioned above 

are given elsewhere (Orszag 1971). 

The spectral method discussed here has several important 

advantages over more conventional finite difference techniques 

(Orszag and Israeli 1974). For the Taylor-Green vortex, the spectral 

results are infinite-order accurate, i.e. errors go to zero faster 

than any finite power of I/K as K ÷ ~, in contrast to the finite 

order accuracy of difference schemes. The rapid convergence of the 

spectral results translates into more accurate simulations at finite 

resolution. In the 5-10% error range, spectral simulations require 

roughly a factor two less resolution in each space direction than 

finite-difference approximations or a factor eight fewer degrees of 

freedom [even without the symmetries (8)] in three dimensions. At 

higher accuracy, the advantages of spectral schemes are more 

pronounced. ~ith K = 16 or 32,768 Fourier modes to represent each 

component of the velocity field, the present spectral method requires 

0.6s per time step on a CDC 7600 computer. 

RESULTS 

In Fig. i, we plot the evolution of ~(t) at R = 200 

determined by perturbation series in t truncated at t 5 (curve i), 

perturbation series in R truncated at R 4 (curve 2), and numerical 
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simulation with spectral cutoff K = 16 (curve 3). in the absence 

of the nonlinear terms of the Navier-Stokes equations ~(t) < ~(0), 

so that the enhancement of mean square vorticity observed in Fig. 1 

is a measure of the strength of the nonlinearity. In Fig. 2, a 

similar plot is made for R = 300. Additional tests and comparisons 

between runs of varying spatial resolution indicate that the numerical 

simulation results should be accurate to within 2% at R = 200 and 

5% at R ~ 300. An indication of the magnitude of the Reynolds 

number R is given by the relation R 1 = .372 R at t = 0, where 

R 1 is the Reynolds number based on the Taylor microscale (Datchelor 

1953). Thus, at R = 200, R 1 = 74 at t = 0 and R 1 = 26 at 

t = 6, while at R = 300, R 1 = 112 at t = 0 and R 1 = 37 at 

t = 6. These values of R 1 should be compared with laboratory wind- 

tunnel experiments on grid-generated turbulence which are generally 

performed in the range R 1 = 25-50. 

It is apparent from Figs. 1 and 2 that perturbation expansion 

in powers of t is at least as good as that in powers of R at 

these Reynolds numbers, despite the more inclusive nature of the R 

expansion. Nevertheless, both expansions are woefully inadequate 

to describe either the large t behavior or even the variation of 

the maximum of ~(t) with Reynolds number. 

The variation of ~(t) with Reynolds number relates indirectly 

to the effect of Reynolds number on large scale structures in the 

1 
flow since ~(t) : ~ ~(t). If ~(t) is asymptotically proportional 

to R (for t beyond some initial relaxation period) then e(t) is 

Reynolds number independent. Some support for this behavior is 

given by the results shown in Fig. 3. Here e(t) is plotted as a 

function of t for R = 100-400, the simulation with R = 400 

being only moderately accurate. 

It appears that, as R + ~ s(t) approaches a finite limiting 

function ¢,(t) [probably with the property that s,(t) = 0 for 
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Fig. 1 Enhancement of mean-square vorticity R(t)/~(0) 
versus t at R = 200. 
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Fig. 2 Enhancement of mean-square vorticity ~(t)/D(0) 

versus t at R = 300. 
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t < t,, [where t, is the time at which ~(t) becomes infinite at 

R = ~] ~ This result is extremely important as it demonstrates a 

large scale feature of the flow that is asymptotically Reynolds 

number independent. If all large scale features of turbulent flows 

are Reynolds number independent then it is possible to simulate large 

scale flow features of very high Reynolds number turbulence when the 

Reynolds number of the simulation (and, hence, the required resolution) 

is quite modest (cf. Orszag and Israeli 1974). 

In Figs. 4 and 5, we show contour plots of v I and v3, 

respectively~ at t = 3.5r R = I00. These plots illustrate the 

character of the flow that develops from the initial conditions (1), 

In Fig. 6, we show the evolution at R = 200 of 

D3/Di = [k21u3(~) [2/ [k21Ul(~)12 (lla) 

E3/EI = ~iu3(k) 12/~lUl(k)I 2 , (lib) 

which are~ respectively, measures of the anisotropy of energy 

dissipation and energy. It is apparent that energy dissipation 

approaches a state of near isotropy for t = 4-16, while the kinetic 

energy itself is always far from isotropy. This result is consistent 

with ideas of turbulence theory on local equilibrium of small-scale 

eddies. As first proposed by Kolmogorov (Batchelor 1953), small 

eddies [which dominate dissipation because of the factors k 2 in 

(lla)] should approach isotropy and equilibrium in a time much 

shorter than the overall decay time of the turbulence. On the other 

hand, large eddies [which dominate the kinetic energy] evolve in %he 

same time scale as the overall decay proceeds and no strong tendency 

to isotropy should be observed. 

Finally, we remark that, as t + ~, the flow decays to a form 

proportional to the initial conditions (i) which is very anisotropic. 

At late times, R 1 is very small and viscous dissipation dominates 

the nonlinear terms in (3) so that the modes in (9) with the 
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Fig. 4 Contour plot of v I at t = 3.5, R = 100 in the plane 

x 3 = ~/4. The contour labels are 100v I. 
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Fig. 5 Contour plot of v 3 at t = 3.5, R = i00 in the plane 

x 3 = 7/4. The contour labels are 100v 3. 
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versus t at R = 200. 
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smallest wavenumberj and hence smallest rate of viscous dissipation, 

dominate the flow. The smallest wavevectors allowed to have nonzero 

amplitude by the selection rules (8) are ~ = (±I, ±l, ±i). The 

symmetry condition (8c) applied to the terms due to these ~ in the 

expansions (9) implies that ~ is proportional to its initial value 

(I) as t + ~. The net effect of nonlinearity in the Navier-Stokes 

equations is to speed the decay of (I); in the absence of nonlinearity; 

would be forever proportional to (i) with amplitude e -3t/R 

[giving the R 0 term in the Reynolds expansion (6)]. 
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