Skip to main content

Abstract

Solitary plasmacytoma of bone is one of many existing types of bone tumors and is part of the plasma cell disorder spectrum. It is a local clonal plasma cell proliferation without evidence of symptomatic multiple myeloma. It occurs slightly more frequently in males with a median age at diagnosis of 55 years. The thoracic vertebrae are most frequently involved. The exact etiology is unknown, although a role for acquired B-cell defects is suggested. In children and young adults, preceding trauma might play a role in the development of solitary plasmacytoma of bone. Compared to extramedullary plasmacytoma, solitary plasmacytoma of bone has a significantly worse prognosis, progressing to symptomatic multiple myeloma in over 50% of cases. The survival rates are significantly worse in case of abnormal serum immunoglobulin free light chain ratio, in patients diagnosed after the age of 60 years and in female patients.

In one-third of presumed “solitary” plasmacytomas, an additional lesion is characterized with subsequent diagnostic imaging, marking the importance of further investigations when an apparent solitary plasmacytoma of bone is encountered. Conventional radiography plays a distinct role in the imaging and detection of solitary plasmacytoma of bone, mostly in the presence of clear clinical symptoms. It may show a “punched-out” lesion appearance with generally clear margins and normal surrounding bone. More advanced cases may be paired with marked erosion and cortical bone destruction, creating a “soap bubble” appearance. On CT, solitary plasmacytoma of bone presents as a uni- or multilocular lesion, causing focal trabecular destruction. A characteristic “mini brain” appearance may be observed. On conventional MRI, a plasmacytoma is iso- to hypointense on T1-weighted images and hyperintense on (fat-saturated) T2-weighted images compared to muscle and enhances homogeneously after gadolinium contrast administration. Specialized MRI techniques such as dynamic contrast-enhanced MRI and diffusion-weighted imaging also play an important role, especially in assessing disease extent and differentiation with multiple myeloma, where a focal solitary plasmacytoma of bone is accompanied by surrounding or distant bone marrow invasion. 18F-FDG PET/CT is useful in the evaluation and has a prognostic value both at diagnosis and in the evaluation of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Apparent diffusion coefficient

BM:

Bone marrow

BMI:

Body mass index

b-Value:

Diffusion-sensitizing gradient

CRAB:

Calcemia, renal failure, anemia, bone lesions

DCE-MRI:

Dynamic contrast-enhanced MRI

DD:

Differential diagnosis

DWI(BS):

Diffusion-weighted whole-body imaging with background body signal suppression

EBV:

Epstein-Barr virus

EMP:

Extramedullary plasmacytoma

FDG:

Fluorodeoxyglucose

FLC:

Free light chain

Gd:

Gadolinium

Hb:

Hemoglobin

HE:

Hematoxylin and eosin

(i)AUC:

Initial-area-under-curve

Ig:

Immunoglobulin

IMWG:

International Myeloma Working Group

MDE:

Myeloma-defining events

MGUS:

Monoclonal gammopathy of undetermined significance

MM:

Multiple myeloma

M-protein:

Monoclonal protein

MRD:

Minimal residual disease

MVD:

Microvessel density

MYRADS:

Myeloma response assessment and diagnosis system

OS:

Overall survival

PC(D):

Plasma cell (disorder)

PET:

Positron emission tomography

PFS:

Progression-free survival

ROI:

Region-of-interest

(s)FLC:

(serum) Free light chain

SI:

Signal intensity

SLIM:

Sixty, light chains, MRI

SMM:

Smoldering multiple myeloma

SNR:

Signal-to-noise ratio

SP(B):

Solitary plasmacytoma (of bone)

STIR:

Short tau inversion recovery

SUV:

Standardized uptake value

T1-WI:

T1-weighted imaging

T2FS-WI:

Fat-saturated T2-weighted imaging

TCC:

Time-concentration curve

TIC:

Time-intensity curve

TTP:

Time-to-peak

WBLDCT:

Whole-body low dose computed tomography

WBMRI:

Whole-body magnetic resonance imaging

WBXR:

Whole-body conventional radiography

References

  • Albano D, Tomasini D, Bonù M, Giubbini R, Bertagna F (2020) (18)F-FDG PET or PET/CT role in plasmacytoma: a systematic review. Rev Esp Med Nucl Imagen Mol (Engl Ed) 39(4):220–224

    CAS  PubMed  Google Scholar 

  • Biffar A, Baur-Melnyk A, Schmidt GP, Reiser MF, Dietrich O (2010a) Multiparameter MRI assessment of normal-appearing and diseased vertebral bone marrow. Eur Radiol 20(11):2679–2689

    PubMed  Google Scholar 

  • Biffar A, Dietrich O, Sourbron S, Duerr HR, Reiser MF, Baur-Melnyk A (2010b) Diffusion and perfusion imaging of bone marrow. Eur J Radiol 76(3):323–328

    PubMed  Google Scholar 

  • Caers J, Paiva B, Zamagni E, Leleu X, Bladé J, Kristinsson SY et al (2018) Diagnosis, treatment, and response assessment in solitary plasmacytoma: updated recommendations from a European Expert Panel. J Hematol Oncol 11(1):10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavo M, Terpos E, Nanni C, Moreau P, Lentzsch S, Zweegman S et al (2017) Role of (18)F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol 18(4):e206–e217

    PubMed  Google Scholar 

  • Chan JK (2014) The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology. Int J Surg Pathol 22(1):12–32

    PubMed  Google Scholar 

  • Choi YY, Kim JY, Yang SO (2014) PET/CT in benign and malignant musculoskeletal tumors and tumor-like conditions. Semin Musculoskelet Radiol 18(2):133–148

    PubMed  Google Scholar 

  • Cuenod CA, Balvay D (2013) Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI. Diagn Interv Imaging 94(12):1187–1204

    CAS  PubMed  Google Scholar 

  • Dammacco F, Rubini G, Ferrari C, Vacca A, Racanelli V (2015) 18F-FDG PET/CT: a review of diagnostic and prognostic features in multiple myeloma and related disorders. Clin Exp Med 15(1):1–18

    CAS  PubMed  Google Scholar 

  • de Waal EG, Leene M, Veeger N, Vos HJ, Ong F, Smit WG et al (2016) Progression of a solitary plasmacytoma to multiple myeloma. A population-based registry of the northern Netherlands. Br J Haematol 175(4):661–667

    PubMed  Google Scholar 

  • Delorme S, Baur-Melnyk A (2011) Imaging in multiple myeloma. Recent Results Cancer Res 183:133–147

    PubMed  Google Scholar 

  • Dharnidharka VR (2018) Comprehensive review of post-organ transplant hematologic cancers. Am J Transplant 18(3):537–549

    PubMed  Google Scholar 

  • Dietrich O, Biffar A, Baur-Melnyk A, Reiser MF (2010) Technical aspects of MR diffusion imaging of the body. Eur J Radiol 76(3):314–322

    PubMed  Google Scholar 

  • Dietrich O, Geith T, Reiser MF, Baur-Melnyk A (2017) Diffusion imaging of the vertebral bone marrow. NMR Biomed 30(3). https://doi.org/10.1002/nbm.3333

  • Dimopoulos MA, Moulopoulos LA, Maniatis A, Alexanian R (2000) Solitary plasmacytoma of bone and asymptomatic multiple myeloma. Blood 96(6):2037–2044

    CAS  PubMed  Google Scholar 

  • Dimopoulos MA, Hillengass J, Usmani S, Zamagni E, Lentzsch S, Davies FE et al (2015) Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol 33(6):657–664

    PubMed  Google Scholar 

  • Dingli D, Kyle RA, Rajkumar SV, Nowakowski GS, Larson DR, Bida JP et al (2006) Immunoglobulin free light chains and solitary plasmacytoma of bone. Blood 108(6):1979–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutoit JC, Verstraete KL (2017) Whole-body MRI, dynamic contrast-enhanced MRI, and diffusion-weighted imaging for the staging of multiple myeloma. Skelet Radiol 46(6):733–750

    Google Scholar 

  • Dutoit JC, Vanderkerken MA, Verstraete KL (2013) Value of whole body MRI and dynamic contrast enhanced MRI in the diagnosis, follow-up and evaluation of disease activity and extent in multiple myeloma. Eur J Radiol 82(9):1444–1452

    PubMed  Google Scholar 

  • Dutoit JC, Vanderkerken MA, Anthonissen J, Dochy F, Verstraete KL (2014) The diagnostic value of SE MRI and DWI of the spine in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma. Eur Radiol 24(11):2754–2765

    PubMed  Google Scholar 

  • Dutoit JC, Claus E, Offner F, Noens L, Delanghe J, Verstraete KL (2016) Combined evaluation of conventional MRI, dynamic contrast-enhanced MRI and diffusion weighted imaging for response evaluation of patients with multiple myeloma. Eur J Radiol 85(2):373–382

    PubMed  Google Scholar 

  • Finsinger P, Grammatico S, Chisini M, Piciocchi A, Foà R, Petrucci MT (2016) Clinical features and prognostic factors in solitary plasmacytoma. Br J Haematol 172(4):554–560

    PubMed  Google Scholar 

  • García-Figueiras R, Padhani AR, Beer AJ, Baleato-González S, Vilanova JC, Luna A et al (2015) Imaging of tumor angiogenesis for radiologists—part 1: biological and technical basis. Curr Probl Diagn Radiol 44(5):407–424

    PubMed  Google Scholar 

  • Gariani J, Westerland O, Natas S, Verma H, Cook G, Goh V (2018) Comparison of whole body magnetic resonance imaging (WBMRI) to whole body computed tomography (WBCT) or (18)F-fluorodeoxyglucose positron emission tomography/CT ((18)F-FDG PET/CT) in patients with myeloma: systematic review of diagnostic performance. Crit Rev Oncol Hematol 124:66–72

    PubMed  Google Scholar 

  • Hansford BG, Hanrahan CJ, Girard N, Silbermann R, Morag Y (2020) Untreated plasmacytoma of bone containing macroscopic intralesional fat and mimicking intraosseous lipoma: a case report and review of the literature. Clin Imaging 64:18–23

    PubMed  Google Scholar 

  • Herrmann J, Krstin N, Schoennagel BP, Sornsakrin M, Derlin T, Busch JD et al (2012) Age-related distribution of vertebral bone-marrow diffusivity. Eur J Radiol 81(12):4046–4049

    PubMed  Google Scholar 

  • Hillengass J, Zechmann C, Bäuerle T, Wagner-Gund B, Heiss C, Benner A et al (2009) Dynamic contrast-enhanced magnetic resonance imaging identifies a subgroup of patients with asymptomatic monoclonal plasma cell disease and pathologic microcirculation. Clin Cancer Res 15(9):3118–3125

    PubMed  Google Scholar 

  • Hillengass J, Fechtner K, Weber MA, Bäuerle T, Ayyaz S, Heiss C et al (2010) Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 28(9):1606–1610

    PubMed  Google Scholar 

  • Hillengass J, Weber MA, Kilk K, Listl K, Wagner-Gund B, Hillengass M et al (2014) Prognostic significance of whole-body MRI in patients with monoclonal gammopathy of undetermined significance. Leukemia 28(1):174–178

    CAS  PubMed  Google Scholar 

  • Hillengass J, Ritsch J, Merz M, Wagner B, Kunz C, Hielscher T et al (2016) Increased microcirculation detected by dynamic contrast-enhanced magnetic resonance imaging is of prognostic significance in asymptomatic myeloma. Br J Haematol 174(1):127–135

    PubMed  Google Scholar 

  • Horger M, Weisel K, Horger W, Mroue A, Fenchel M, Lichy M (2011) Whole-body diffusion-weighted MRI with apparent diffusion coefficient mapping for early response monitoring in multiple myeloma: preliminary results. AJR Am J Roentgenol 196(6):W790–W795

    PubMed  Google Scholar 

  • Hwang H, Lee SK, Kim JY (2021) Comparison of conventional magnetic resonance imaging and diffusion-weighted imaging in the differentiation of bone plasmacytoma from bone metastasis in the extremities. Diagn Interv Imaging 102(10):611–618

    PubMed  Google Scholar 

  • Jamet B, Bailly C, Carlier T, Touzeau C, Nanni C, Zamagni E et al (2019) Interest of pet imaging in multiple myeloma. Front Med 6:69

    Google Scholar 

  • Jawad MU, Scully SP (2009) Skeletal plasmacytoma: progression of disease and impact of local treatment; an analysis of SEER database. J Hematol Oncol 2:41

    PubMed  PubMed Central  Google Scholar 

  • Kelley SP, Ashford RU, Rao AS, Dickson RA (2007) Primary bone tumours of the spine: a 42-year survey from the Leeds Regional Bone Tumour Registry. Eur Spine J 16(3):405–409

    PubMed  Google Scholar 

  • Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skelet Radiol 40(6):665–681

    Google Scholar 

  • Kilciksiz S, Celik OK, Pak Y, Demiral AN, Pehlivan M, Orhan O et al (2008) Clinical and prognostic features of plasmacytomas: a multicenter study of Turkish Oncology Group-Sarcoma Working Party. Am J Hematol 83(9):702–707

    PubMed  Google Scholar 

  • Kilciksiz S, Karakoyun-Celik O, Agaoglu FY, Haydaroglu A (2012) A review for solitary plasmacytoma of bone and extramedullary plasmacytoma. ScientificWorldJournal 2012:895765

    PubMed  PubMed Central  Google Scholar 

  • Kim PJ, Hicks RJ, Wirth A, Ryan G, Seymour JF, Prince HM et al (2009) Impact of 18F-fluorodeoxyglucose positron emission tomography before and after definitive radiation therapy in patients with apparently solitary plasmacytoma. Int J Radiat Oncol Biol Phys 74(3):740–746

    CAS  PubMed  Google Scholar 

  • Koutoulidis V, Papanikolaou N, Moulopoulos LA (2018) Functional and molecular MRI of the bone marrow in multiple myeloma. Br J Radiol 91(1088):20170389

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Wellik L et al (2003) Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood 101(5):1715–1717

    CAS  PubMed  Google Scholar 

  • Lavini C, de Jonge MC, van de Sande MG, Tak PP, Nederveen AJ, Maas M (2007) Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging 25(5):604–612

    PubMed  Google Scholar 

  • Lecouvet FE (2016) Whole-body MR imaging: musculoskeletal applications. Radiology 279(2):345–365

    PubMed  Google Scholar 

  • Lecouvet FE, Vekemans MC, Van Den Berghe T, Verstraete K, Kirchgesner T et al (2022) Imaging of treatment response and minimal residual disease in multiple myeloma: state of the art WB-MRI and PET/CT. Skeletal Radiol. 51(1):59–80. Published online 2021 Aug 7. https://doi.org/10.1007/s00256-021-03841-5. PMCID: PMC8626399. PMID: 34363522.

  • Lee K, Park HY, Kim KW, Lee AJ, Yoon MA, Chae EJ et al (2019) Advances in whole body MRI for musculoskeletal imaging: diffusion-weighted imaging. J Clin Orthop Trauma 10(4):680–686

    PubMed  PubMed Central  Google Scholar 

  • Li QW, Niu SQ, Wang HY, Wen G, Li YY, Xia YF et al (2015) Radiotherapy alone is associated with improved outcomes over surgery in the management of solitary plasmacytoma. Asian Pac J Cancer Prev 16(9):3741–3745

    PubMed  Google Scholar 

  • Lin C, Luciani A, Belhadj K, Maison P, Vignaud A, Deux JF et al (2009) Patients with plasma cell disorders examined at whole-body dynamic contrast-enhanced MR imaging: initial experience. Radiology 250(3):905–915

    PubMed  Google Scholar 

  • Martí-Bonmatí L, Ramirez-Fuentes C, Alberich-Bayarri Á, Ruiz-Llorca C (2015) State-of-the-art of bone marrow imaging in multiple myeloma. Curr Opin Oncol 27(6):540–550

    PubMed  Google Scholar 

  • Mena E, Choyke P, Tan E, Landgren O, Kurdziel K (2011) Molecular imaging in myeloma precursor disease. Semin Hematol 48(1):22–31

    PubMed  PubMed Central  Google Scholar 

  • Mena E, Turkbey EB, Lindenberg L (2022) Modern radiographic imaging in multiple myeloma, what is the minimum requirement? Semin Oncol 49(1):86–93

    PubMed  PubMed Central  Google Scholar 

  • Merz M, Hielscher T, Wagner B, Sauer S, Shah S, Raab MS et al (2014) Predictive value of longitudinal whole-body magnetic resonance imaging in patients with smoldering multiple myeloma. Leukemia 28(9):1902–1908

    CAS  PubMed  Google Scholar 

  • Merz M, Ritsch J, Kunz C, Wagner B, Sauer S, Hose D et al (2015) Dynamic contrast-enhanced magnetic resonance imaging for assessment of antiangiogenic treatment effects in multiple myeloma. Clin Cancer Res 21(1):106–112

    CAS  PubMed  Google Scholar 

  • Merz M, Moehler TM, Ritsch J, Bäuerle T, Zechmann CM, Wagner B et al (2016) Prognostic significance of increased bone marrow microcirculation in newly diagnosed multiple myeloma: results of a prospective DCE-MRI study. Eur Radiol 26(5):1404–1411

    PubMed  Google Scholar 

  • Messiou C, Kaiser M (2015) Whole body diffusion weighted MRI—a new view of myeloma. Br J Haematol 171(1):29–37

    PubMed  PubMed Central  Google Scholar 

  • Morales KA, Arevalo-Perez J, Peck KK, Holodny AI, Lis E, Karimi S (2018) Differentiating atypical hemangiomas and metastatic vertebral lesions: the role of T1-weighted dynamic contrast-enhanced MRI. AJNR Am J Neuroradiol 39(5):968–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanni C, Rubello D, Zamagni E, Castellucci P, Ambrosini V, Montini G et al (2008) 18F-FDG PET/CT in myeloma with presumed solitary plasmacytoma of bone. In Vivo 22(4):513–517

    PubMed  Google Scholar 

  • Nguyen TT, Thelen JC, Bhatt AA (2020) Bone up on spinal osseous lesions: a case review series. Insights Imaging 11(1):80

    PubMed  PubMed Central  Google Scholar 

  • Nosàs-Garcia S, Moehler T, Wasser K, Kiessling F, Bartl R, Zuna I et al (2005) Dynamic contrast-enhanced MRI for assessing the disease activity of multiple myeloma: a comparative study with histology and clinical markers. J Magn Reson Imaging 22(1):154–162

    PubMed  Google Scholar 

  • Ohana N, Rouvio O, Nalbandyan K, Sheinis D, Benharroch D (2018) Classification of solitary plasmacytoma, is it more intricate than presently suggested? A commentary. J Cancer 9(21):3894–3897

    PubMed  PubMed Central  Google Scholar 

  • Padhani AR, van Ree K, Collins DJ, D’Sa S, Makris A (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol 200(1):163–170

    PubMed  Google Scholar 

  • Pasch W, Zhao X, Rezk SA (2012) Solitary plasmacytoma of the bone involving young individuals, is there a role for preceding trauma? Int J Clin Exp Pathol 5(5):463–467

    PubMed  PubMed Central  Google Scholar 

  • Paternain A, García-Velloso MJ, Rosales JJ, Ezponda A, Soriano I, Elorz M et al (2020) The utility of ADC value in diffusion-weighted whole-body MRI in the follow-up of patients with multiple myeloma. Correlation study with (18)F-FDG PET-CT. Eur J Radiol 133:109403

    PubMed  Google Scholar 

  • Patnaik S, Jyotsnarani Y, Uppin SG, Susarla R (2016) Imaging features of primary tumors of the spine: a pictorial essay. Indian J Radiol Imaging 26(2):279–289

    PubMed  PubMed Central  Google Scholar 

  • Peker D, Wei S, Siegal GP (2019) Bone pathology for hematopathologists. Surg Pathol Clin 12(3):831–847

    PubMed  Google Scholar 

  • Pingali SR, Haddad RY, Saad A (2012) Current concepts of clinical management of multiple myeloma. Dis Mon 58(4):195–207

    PubMed  Google Scholar 

  • Pinter NK, Pfiffner TJ, Mechtler LL (2016) Neuroimaging of spine tumors. Handb Clin Neurol 136:689–706

    PubMed  Google Scholar 

  • Rajkumar SV (2016a) Updated diagnostic criteria and staging system for multiple myeloma. Am Soc Clin Oncol Educ Book 35:e418–e423

    PubMed  Google Scholar 

  • Rajkumar SV (2016b) Myeloma today: disease definitions and treatment advances. Am J Hematol 91(1):90–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ et al (2000) Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 6(8):3111–3116

    CAS  PubMed  Google Scholar 

  • Rana C, Sharma S, Agrawal V, Singh U (2010) Bone marrow angiogenesis in multiple myeloma and its correlation with clinicopathological factors. Ann Hematol 89(8):789–794

    PubMed  Google Scholar 

  • Reed V, Shah J, Medeiros LJ, Ha CS, Mazloom A, Weber DM et al (2011) Solitary plasmacytomas: outcome and prognostic factors after definitive radiation therapy. Cancer 117(19):4468–4474

    PubMed  Google Scholar 

  • Rodallec MH, Feydy A, Larousserie F, Anract P, Campagna R, Babinet A et al (2008) Diagnostic imaging of solitary tumors of the spine: what to do and say. Radiographics 28(4):1019–1041

    PubMed  Google Scholar 

  • Salaun PY, Gastinne T, Frampas E, Bodet-Milin C, Moreau P, Bodéré-Kraeber F (2008) FDG-positron-emission tomography for staging and therapeutic assessment in patients with plasmacytoma. Haematologica 93(8):1269–1271

    PubMed  Google Scholar 

  • Schirrmeister H, Buck AK, Bergmann L, Reske SN, Bommer M (2003) Positron emission tomography (PET) for staging of solitary plasmacytoma. Cancer Biother Radiopharm 18(5):841–845

    PubMed  Google Scholar 

  • Schmidt GP, Reiser MF, Baur-Melnyk A (2007) Whole-body imaging of the musculoskeletal system: the value of MR imaging. Skelet Radiol 36(12):1109–1119

    Google Scholar 

  • Shen X, Liu S, Wu C, Wang J, Li J, Chen L (2021) Survival trends and prognostic factors in patients with solitary plasmacytoma of bone: a population-based study. Cancer Med 10(2):462–470

    CAS  PubMed  Google Scholar 

  • Silva JR Jr, Hayashi D, Yonenaga T, Fukuda K, Genant HK, Lin C et al (2013) MRI of bone marrow abnormalities in hematological malignancies. Diagn Interv Radiol 19(5):393–399

    PubMed  Google Scholar 

  • Sommer G, Klarhöfer M, Lenz C, Scheffler K, Bongartz G, Winter L (2011) Signal characteristics of focal bone marrow lesions in patients with multiple myeloma using whole body T1w-TSE, T2w-STIR and diffusion-weighted imaging with background suppression. Eur Radiol 21(4):857–862

    PubMed  Google Scholar 

  • Suh YG, Suh CO, Kim JS, Kim SJ, Pyun HO, Cho J (2012) Radiotherapy for solitary plasmacytoma of bone and soft tissue: outcomes and prognostic factors. Ann Hematol 91(11):1785–1793

    CAS  PubMed  Google Scholar 

  • Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW (2018) ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis. Eur Radiol 28(7):2890–2902

    PubMed  Google Scholar 

  • Terpos E, Dimopoulos MA, Moulopoulos LA (2016) The role of imaging in the treatment of patients with multiple myeloma in 2016. Am Soc Clin Oncol Educ Book 35:e407–e417

    PubMed  Google Scholar 

  • Terpos E, Matsaridis D, Koutoulidis V, Zagouri F, Christoulas D, Fontara S et al (2017) Dynamic contrast-enhanced magnetic resonance imaging parameters correlate with advanced revised-ISS and angiopoietin-1/angiopoietin-2 ratio in patients with multiple myeloma. Ann Hematol 96(10):1707–1714

    CAS  PubMed  Google Scholar 

  • Ulaner GA, Landgren CO (2020) Current and potential applications of positron emission tomography for multiple myeloma and plasma cell disorders. Best Pract Res Clin Haematol 33(1):101148

    PubMed  PubMed Central  Google Scholar 

  • Van Den Berghe T, Verstraete KL, Lecouvet FE, Lejoly M, Dutoit J (2022) Review of diffusion-weighted imaging and dynamic contrast-enhanced MRI for multiple myeloma and its precursors (monoclonal gammopathy of undetermined significance and smouldering myeloma). Skelet Radiol 51(1):101–122

    Google Scholar 

  • Verstraete KL, Van der Woude HJ, Hogendoorn PC, De-Deene Y, Kunnen M, Bloem JL (1996) Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging 6(2):311–321

    CAS  PubMed  Google Scholar 

  • Warsame R, Gertz MA, Lacy MQ, Kyle RA, Buadi F, Dingli D et al (2012) Trends and outcomes of modern staging of solitary plasmacytoma of bone. Am J Hematol 87(7):647–651

    PubMed  PubMed Central  Google Scholar 

  • Wilder RB, Ha CS, Cox JD, Weber D, Delasalle K, Alexanian R (2002) Persistence of myeloma protein for more than one year after radiotherapy is an adverse prognostic factor in solitary plasmacytoma of bone. Cancer 94(5):1532–1537

    CAS  PubMed  Google Scholar 

  • Xie L, Wang H, Jiang J (2020) Does radiotherapy with surgery improve survival and decrease progression to multiple myeloma in patients with solitary Plasmacytoma of bone of the spine? World Neurosurg 134:e790–e798

    PubMed  Google Scholar 

  • Yurac R, Silva A, Delgado M, Nuñez M, Lopez J, Marre B (2021) Pathological axis fracture secondary to a solitary bone plasmacytoma: two cases and a literature review. Surg Neurol Int 12:165

    PubMed  PubMed Central  Google Scholar 

  • Zha Y, Li M, Yang J (2010) Dynamic contrast enhanced magnetic resonance imaging of diffuse spinal bone marrow infiltration in patients with hematological malignancies. Korean J Radiol 11(2):187–194

    PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Meng Q, Gao Z, Ma L (2009) MR imaging features of solitary plasmacytoma of the spine. Clin Oncol Cancer Res 6:241–244

    Google Scholar 

  • Zhang J, Chen Y, Zhang Y, Zhang E, Yu HJ, Yuan H et al (2020) Diagnosis of spinal lesions using perfusion parameters measured by DCE-MRI and metabolism parameters measured by PET/CT. Eur Spine J 29(5):1061–1070

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Van Den Berghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Den Berghe, T. et al. (2023). Plasmacytoma. In: Ladeb, M.F., Vanhoenacker, F. (eds) Imaging of Primary Tumors of the Osseous Spine. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2023_452

Download citation

  • DOI: https://doi.org/10.1007/174_2023_452

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56885-5

  • Online ISBN: 978-3-031-56886-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics