Skip to main content

Heavy Particles in Non-small Cell Lung Cancer: Carbon Ions

  • Chapter
  • First Online:
Advances in Radiation Oncology in Lung Cancer

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 348 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akino Y, Teshima T, Kihara A, Kodera-Suzumoto Y, Inaoka M, Higashiyama S, Furusawa Y, Matsuura N (2009) Carbon-ion beam irradiation effectively suppresses migration and invasion of human non-small-cell lung cancer cells. Int J Radiat Oncol Biol Phys 75(2):475–481. https://doi.org/10.1016/j.ijrobp.2008.12.090

    Article  Google Scholar 

  • Anzai M, Yamamoto N, Hayashi K, Nakajima M, Nomoto A, Ogawa K, Tsuji H (2020) Safety and efficacy of carbon-ion radiotherapy alone for stage III non-small cell lung cancer. Anticancer Res 40(1):379–386. https://doi.org/10.21873/anticanres

    Article  Google Scholar 

  • Bert C, Durante M (2011) Motion in radiotherapy: particle therapy. Phys Med Biol 56(16):R113–R144. https://doi.org/10.1088/0031-9155/56/16/R01. Epub 2011 Jul 20

    Article  Google Scholar 

  • Ceberg S, Falk M, Af Rosenschöld PM et al (2010) Tumor-tracking radiotherapy of moving targets; verification using 3D polymer gel, 2D ion-chamber array and biplanar diode array. J Phys Conf Ser 250:012051

    Google Scholar 

  • Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ et al (2013) Acquisition of epithelial-mesenchymal transition and cancer stem cell phenotypes is associated with activation of the PI3K/Akt/mTOR pathway in prostate cancer radioresistance. Cell Death Dis 4:e875

    Google Scholar 

  • Cheng JC, Chou CH, Kuo ML, Hsieh CY (2006) Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression throughPI3K/Akt/NF-kappa B signal transduction pathway. Oncogene 25:7009–7018

    Google Scholar 

  • de Cos JS, Miravet L, Abal J et al (2008) Lung cancer survival in Spain and prognostic factors: a prospective, multiregional study. Lung Cancer 59:246–254

    Google Scholar 

  • Demaria S, Formenti S (2013) Radiotherapy effects on anti-tumor immunity: implications for cancer treatment. Front Oncol 3:128. https://doi.org/10.3389/fonc.2013.00128

    Article  Google Scholar 

  • Dillman RO, Zusman DR, McClure SE (2009) Surgical resection and long-term survival for octogenarians who undergo surgery for non-small-cell lung cancer. Clin Lung Cancer 10:130–134

    Google Scholar 

  • Dowdell S, Grassberger C, Sharp GC, Paganetti H (2013) Interplay effects in proton scanning for lung: a 4D Monte Carlo study assessing the impact of tumor and beam delivery parameters. Phys Med Biol 58(12):4137–4156. https://doi.org/10.1088/0031-9155/58/12/4137. Epub 2013 May 20

    Article  Google Scholar 

  • Ebner DK, Tsuji H, Yasuda S, Yamamoto N, Mori S, Kamada T (2017) Respiration-gated fast-rescanning carbon-ion radiotherapy. Jpn J Clin Oncol 47(1):80–83. https://doi.org/10.1093/jjco/hyw144. Epub 2016 Sep 27

    Article  Google Scholar 

  • Eschmann SM, Paulsen F, Reimold M et al (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46:253–260

    Google Scholar 

  • Ezhil M, Vedam S, Balter P et al (2009) Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography. Radiat Oncol 4:4

    Google Scholar 

  • Fiorina E, Ferrero V, Pennazio F et al (2018) Monte Carlo simulation tool for online treatment monitoring in hadron therapy with in-beam PET: a patient study. Phys Med 51:71–80. https://doi.org/10.1016/j.ejmp.2018.05.002

    Article  Google Scholar 

  • Fossati P, Molinelli S, Matsufuji N et al (2012) Dose prescription in carbon ion radiotherapy: a planning study to compare NIRS and LEM approaches with a clinically-oriented strategy. Phys Med Biol 57(22):7543–7554. https://doi.org/10.1088/0031-9155/57/22/7543

    Article  Google Scholar 

  • Fredriksson A, Forsgren A, Hårdemark B (2011) Minimax optimization for handling range and setup uncertainties in proton therapy. Med Phys 38(3):1672–1684. https://doi.org/10.1118/1.3556559

    Article  Google Scholar 

  • Free CM, Ellis M, Beggs D et al (2007) Lung cancer outcomes at a UK cancer unit between 1998-2001. Lung Cancer 57:222–228

    Google Scholar 

  • Fujita M, Otsuka Y, Yamada S, Iwakawa M, Imai T (2011) X-ray irradiation and Rho-kinase inhibitor additively induce invasiveness of the cells of the pancreatic cancer line, MIAPaCa-2, which exhibits mesenchymal and amoeboid motility. Cancer Sci 102:792–798

    Google Scholar 

  • Fujita M, Yamadab S, Imaia T (2015) Irradiation induces diverse changes in invasive potential in cancer cell lines. Semin Cancer Biol 35:45–52. https://doi.org/10.1016/j.semcancer.2015.09.003

    Article  Google Scholar 

  • Furmanova-Hollenstein P, Broggini-Tenzer A, Eggel M, Millard AL, Pruschy M (2013) The microtubule stabilizer patupilone counteracts ionizing radiation-induced matrix metalloproteinase activity and tumor cell invasion. Radiat Oncol 8:105

    Google Scholar 

  • Furukawa T, Hara Y, Mizushima K, Saotome N, Tansho R, Saraya Y, Inaniwa T, Mori S, Iwata Y, Shirai T et al (2017) Development of NIRS pencil beam scanning system for carbon ion radiotherapy. Nucl Instrum Methods Phys Res B 406:361–367

    Google Scholar 

  • Furusawa Y, Fukutsu K, Aoki M et al (2000) Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiat Res 154(5):485–496. https://doi.org/10.1667/0033-7587(2000)154[0485:ioaahc]2.0.co;2

    Article  Google Scholar 

  • Gallamini A, Zwarthoed C, Borra A (2014) Positron emission tomography (PET) in oncology. Cancers (Basel) 6(4):1821–1889. https://doi.org/10.3390/cancers6041821

    Article  Google Scholar 

  • Gandalovičová A, Vomastek T, Rosel D, Brábek J (2016) Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget 7(18):25022–25049. https://doi.org/10.18632/oncotarget.7214

    Article  Google Scholar 

  • Garg AD, Dudek-Peric A, Romano E et al (2015) Immunogenic cell death. Int J Dev Biol 59:131–140. https://doi.org/10.1387/ijdb.150061pa

    Article  Google Scholar 

  • Ghosh S, Kumar A, Tripathi RP, Chandna S (2014) Connexin-43 regulatesp38-mediated cell migration and invasion induced selectively in tumour cells by low doses of gamma-radiation in an ERK-1/2-independent manner. Carcinogenesis 35:383–395

    Google Scholar 

  • Goetze K, Scholz M, Taucher-Scholz G, Mueller-Klieser W (2007) The impact of conventional and heavy ion irradiation on tumor cell migration in vitro. Int J Radiat Biol 83(11–12):889–896. https://doi.org/10.1080/09553000701753826

    Article  Google Scholar 

  • Goldstraw P, Chansky K, Crowley J et al (2016) The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol 11:39–51

    Google Scholar 

  • Gray LH (1961) Radiobiologic basis of oxygen as a modifying factor in radiation therapy. Am J Roentgenol Radium Ther Nucl Med 85:803–815

    Google Scholar 

  • Haberer T, Becher W, Schardt D, Kraft G (1993) Magnetic scanning system for heavy ion therapy. Nucl Instrum Methods Phys Res A 330:296–305

    Google Scholar 

  • Hall E, Giaccia A (2006) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hanahan D, Weinberg RA, Adams JM et al (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Google Scholar 

  • Hayashi K, Yamamoto N, Karube M, Nakajima M, Tsuji H, Ogawa K, Kamada T (2018) Feasibility of carbon-ion radiotherapy for re-irradiation of locoregionally recurrent, metastatic, or secondary lung tumors. Cancer Sci 109(5):1562–1569. https://doi.org/10.1111/cas.13555

    Article  Google Scholar 

  • Hayashi K, Yamamoto N, Nakajima M, Nomoto A, Tsuji H, Ogawa K, Kamada T (2019) Clinical outcomes of CIRT for locally advanced NSCLC. Cancer Sci 110(2):734–741

    Google Scholar 

  • Hayashi K, Yamamoto N, Nakajima M, Nomoto A, Ishikawa H, Ogawa K, Tsuji H (2021) Carbon-ion radiotherapy for octogenarians with locally advanced non-small-cell lung cancer. Jpn J Radiol 39:703. https://doi.org/10.1007/s11604-021-01101-z

    Article  Google Scholar 

  • Hofmann T, Pinto M, Mohammadi A et al (2019) Dose reconstruction from PET images in carbon ion therapy: a deconvolution approach. Phys Med Biol 64(2):025011. https://doi.org/10.1088/1361-6560/aaf676

    Article  Google Scholar 

  • Horst F, Adi W, Aricò G et al (2019) Measurement of PET isotope production cross sections for protons and carbon ions on carbon and oxygen targets for applications in particle therapy range verification. Phys Med Biol 64(20):205012. https://doi.org/10.1088/1361-6560/ab4511

    Article  Google Scholar 

  • Huang Y, Dong Y, Zhao J, Zhang L, Kong L, Lu JJ (2019) Comparison of the effects of photon, proton and carbon-ion radiation on the ecto-calreticulin exposure in various tumor cell lines. Ann Transl Med 7(20):542. https://doi.org/10.21037/atm.2019.09.128

    Article  Google Scholar 

  • Huang Y, Huang Q, Zhao J, Dong Y, Zhang L, Fang X, Sun P, Kong L, Lu JJ (2020) The impacts of different types of radiation on the CRT and PDL1 expression in tumor cells under normoxia and hypoxia. Front Oncol 10:1610. https://doi.org/10.3389/fonc.2020.01610

    Article  Google Scholar 

  • ICRU (2016) ICRU Report 93. J ICRU2 16(1–2):3–211. https://academic.oup.com/jicru/issue/16/1-2

  • Inaniwa T, Kanematsu N, Matsufuji N et al (2015) Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys Med Biol 60(8):3271–3286. https://doi.org/10.1088/0031-9155/60/8/3271

    Article  Google Scholar 

  • Jäkel O, Schulz-Ertner D, Debus J (2007) Specifying carbon ion doses for radiotherapy: the Heidelberg approach. J Radiat Res 48(Suppl A):A87–A95. https://doi.org/10.1269/jrr.48.a87

    Article  Google Scholar 

  • Jeremic B, Classen J, Bamberg M (2002) Radiotherapy alone technically operable, medically inoperable, early-stage (I/II) non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 54:119–130

    Google Scholar 

  • Kanai T, Furusawa Y, Fukutsu K et al (1997) Irradiation of mixed beam and design of spread out Bragg peak for heavy-ion radiotherapy. Radiat Res 147:78–85

    Google Scholar 

  • Kanai T, Endo M, Minohara S, Miyahara N, Koyama-ito H, Tomura H, Matsufuji N, Futami Y, Fukumura A, Hiraoka T, Furusawa Y, Ando K, Suzuki M, Soga F, Kawachi K (1999) Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int J Radiat Oncol Biol Phys 44(1):201–210. https://doi.org/10.1016/s0360-3016(98)00544-6

    Article  Google Scholar 

  • Kanai T, Matsufuji N, Miyamoto T et al (2006) Examination of GyE system for HIMAC carbon therapy. Int J Radiat Oncol 64(2):650–656. https://doi.org/10.1016/j.ijrobp.2005.09.043

    Article  Google Scholar 

  • Kanai T, Paz A, Furuichi W, Liu CS, He P, Mori S (2020) Four-dimensional carbon-ion pencil beam treatment planning comparison between robust optimization and range-adapted internal target volume for respiratory-gated liver and lung treatment. Phys Med 80:277–287. https://doi.org/10.1016/j.ejmp.2020.11.009

    Article  Google Scholar 

  • Karger CP, Schulz-Ertner D, Didinger BH, Debus J, Jäkel O (2003) Influence of setup errors on spinal cord dose and treatment plan quality for cervical spine tumours: a phantom study for photon IMRT and heavy charged particle radiotherapy. Phys Med Biol 48(19):3171–3189. https://doi.org/10.1088/0031-9155/48/19/006

    Article  Google Scholar 

  • Karube M, Mori S, Tsuji H, Yamamoto N, Nakajima M, Nakagawa K, Kamada T (2016) Carbon-ion pencil beam scanning for thoracic treatment—initiation report and dose metrics evaluation. J Radiat Res 57:576–581

    Google Scholar 

  • Kawamoto A, Yokoe T, Tanaka K, Saigusa S, Toiyama Y, Yasuda H et al (2012) Radiation induces epithelial-mesenchymal transition in colorectal cancer cells. Oncol Rep 27:51–57

    Google Scholar 

  • Kim H, Yoo H, Pyo H et al (2019) Impact of underlying pulmonary diseases on treatment outcomes in early-stage non-small cell lung cancer treated with definitive radiotherapy. Int J Chron Obstruct Pulmon Dis 14:2273–2281

    Google Scholar 

  • Kim J, Park JM, Wu H (2020) Carbon ion therapy: a review of an advanced technology. Progress Med Phys 31:71–80. https://doi.org/10.14316/pmp.2020.31.3.71

    Article  Google Scholar 

  • Klein C, Dokic I, Mairani A et al (2017) Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation. Radiat Oncol 12:208. https://doi.org/10.1186/s13014-017-0939-0

    Article  Google Scholar 

  • Knopf AC, Boye D, Lomax A, Mori S (2013) Adequate margin definition for scanned particle therapy in the incidence of intrafractional motion. Phys Med Biol 58:6079–6094

    Google Scholar 

  • Koyi H, Hillerdal G, Brandén E (2002) A prospective study of a total material of lung cancer from a county in Sweden 1997-1999: gender, symptoms, type, stage, and smoking habits. Lung Cancer 36:9–14

    Google Scholar 

  • Krämer M, Scholz M (2000) Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose. Phys Med Biol 45(11):3319–3330. https://doi.org/10.1088/0031-9155/45/11/314

    Article  Google Scholar 

  • Krämer M, Jäkel O, Haberer T, Kraft G, Schardt D, Weber U (2000) Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. Phys Med Biol 45(11):3299–3317. https://doi.org/10.1088/0031-9155/45/11/313

    Article  Google Scholar 

  • Kubiak T (2016) Particle therapy of moving targets-the strategies for tumour motion monitoring and moving targets irradiation. Br J Radiol 89(1066):20150275. https://doi.org/10.1259/bjr.20150275. Epub 2016 Jul 19

    Article  Google Scholar 

  • Kubo N, Saitoh JI, Shimada H, Shirai K, Kawamura H, Ohno T et al (2016) Dosimetric comparison of carbon ion and X-ray radiotherapy for stage IIIA non-small cell lung cancer. J Radiat Res 57:548–554. https://doi.org/10.1093/jrr/rrw041

    Article  Google Scholar 

  • Little AG, Rusch VW, Bonner JA et al (2005) Patterns of surgical care of lung cancer patients. Ann Thorac Surg 80:2051–2056; discussion 2056

    Google Scholar 

  • Mampuya WA, Matsuo Y, Ueki N et al (2014) The impact of abdominal compression on outcome in patients treated with stereotactic body radiotherapy for primary lung cancer. J Radiat Res 55(5):934–939

    Google Scholar 

  • Matsufuji N, Kanai T, Kanematsu N, Miyamoto T, Baba M, Kamada T, Kato H, Yamada S, Mizoe JE, Tsujii H (2007) Specification of carbon ion dose at the National Institute of Radiological Sciences (NIRS). J Radiat Res 48(Suppl A):A81–A86. https://doi.org/10.1269/jrr.48.a81

    Article  Google Scholar 

  • Matsunaga A, Ueda Y, Yamada S, Harada Y, Shimada H, Hasegawa M, Tsujii H, Ochiai T, Yonemitsu Y (2010) Carbon-ion beam treatment induces systemic antitumor immunity against murine squamous cell carcinoma. Cancer 116(15):3740–3748. https://doi.org/10.1002/cncr.25134

    Article  Google Scholar 

  • Mehlen P, Puisieux A (2006) Metastasis: a question of life or death. Nat Rev Cancer 6:449–458

    Google Scholar 

  • Minohara S, Kanai T, Endo M, Noda K, Kanazawa M (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47:1097–1103

    Google Scholar 

  • Miyamoto T, Yamamoto N, Nishimura H, Koto M, Tsujii H, Mizoe J, Kamada T, Kato H, Yamada S, Morita S, Yoshikawa K, Kandatsu S, Fujisawa T (2003) Carbon ion radiotherapy for stage I non-small cell lung cancer. Radiother Oncol 66:127–140

    Google Scholar 

  • Miyamoto T, Baba M, Yamamoto N, Koto M, Sugawara T, Yashiro T, Kadono K, Ezawa H, Tsujii H, Mizoe J, Kamada T, Kato H, Yamada S, Morita S, Yoshikawa K, Kandatsu S, Fujisawa T (2007a) Curative treatment of stage I non-small-cell lung cancer with carbon ion beams using a hypofractionated regimen. Int J Radiat Oncol Biol Phys 67(3):750–758

    Google Scholar 

  • Miyamoto T, Baba M, Sugane T, Nakajima M, Yashiro T, Kagei K, Hirasawa N, Sugawara T, Yamamoto N, Koto M, Ezawa H, Kadono K, Tsujii H, Mizoe J, Yoshikawa K, Kandatsu S, Fujisawa T (2007b) Carbon ion radiotherapy for stage I non-small-cell lung cancer using a regimen of four fractions during 1 week. J Thorac Oncol 2(10):916–926

    Google Scholar 

  • Miyasaka Y, Komatsu S, Abe T, Kubo N, Okano N, Shibuya K, Shirai K, Kawamura H, Saitoh JI, Ebara T, Ohno T (2021) Comparison of oncologic outcomes between carbon ion radiotherapy and stereotactic body radiotherapy for early-stage non-small cell lung cancer. Cancers (Basel) 13(2):176. https://doi.org/10.3390/cancers13020176

    Article  Google Scholar 

  • Mohamad O, Makishima H, Kamada T (2018) Evolution of carbon ion radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers (Basel) 10(3):66. https://doi.org/10.3390/cancers10030066

    Article  Google Scholar 

  • Molinelli S, Magro G, Mairani A et al (2016) Dose prescription in carbon ion radiotherapy: how to compare two different RBE-weighted dose calculation systems. Radiother Oncol 120(2):307–312. https://doi.org/10.1016/j.radonc.2016.05.031

    Article  Google Scholar 

  • Molitoris JK, Diwanji T, Snider JW 3rd, Mossahebi S, Samanta S, Badiyan SN, Simone CB 2nd, Mohindra P (2018) Advances in the use of motion management and image guidance in radiation therapy treatment for lung cancer. J Thorac Dis 10(Suppl 21):S2437–S2450. https://doi.org/10.21037/jtd.2018.01.155

    Article  Google Scholar 

  • Moncharmont C, Levy A, Guy JB, Falk AT, Guilbert M, Trone JC et al (2014) Radiation-enhanced cell migration/invasion process: a review. Crit RevOncol Hematol 92:133–142

    Google Scholar 

  • Mori S (2017) Deep architecture neural network-based real-time image processing for image-guided radiotherapy. Phys Med 40:79–87. https://doi.org/10.1016/j.ejmp.2017.07.013. Epub 2017 Jul 23

    Article  Google Scholar 

  • Mori S, Zenklusen S, Inaniwa T, Furukawa T, Imada H, Shirai T, Noda K, Yasuda S (2014a) Conformity and robustness of gated rescanned carbon ion pencil beam scanning of liver tumors at NIRS. Radiother Oncol 111(3):431–436. https://doi.org/10.1016/j.radonc.2014.03.009. Epub 2014 Apr 28

    Article  Google Scholar 

  • Mori S, Inaniwa T, Miki K, Shirai T, Noda K (2014b) Implementation of a target volume design function for intrafractional range variation in a particle beam treatment planning system. Br J Radiol 87:20140233

    Google Scholar 

  • Mori S, Karube M, Shirai T, Tajiri M, Takekoshi T, Miki K, Shiraishi Y, Tanimoto K, Shibayama K, Yasuda S et al (2016) Carbon-ion pencil beam scanning treatment with gated markerless tumor tracking: an analysis of positional accuracy. Int J Radiat Oncol Biol Phys 95:258–266

    Google Scholar 

  • Mori S, Knopf AC, Umegaki K (2018) Motion management in particle therapy. Med Phys 45(11):e994–e1010. https://doi.org/10.1002/mp.12679

    Article  Google Scholar 

  • Mori S, Sakata Y, Hirai R, Furuichi W, Shimabukuro K, Kohno R, Koom WS, Kasai S, Okaya K, Iseki Y (2019) Commissioning of a fluoroscopic-based real-time markerless tumor tracking system in a superconducting rotating gantry for carbon-ion pencil beam scanning treatment. Med Phys 46(4):1561–1574. https://doi.org/10.1002/mp.13403

    Article  Google Scholar 

  • Mountain CF (1997) Revisions in the international system for staging lung cancer. Chest 111:1710–1717

    Google Scholar 

  • Murphy MJ, Martin D, Whyte R, Hai J, Ozhasoglu C, Le QT (2002) The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery. Int J Radiat Oncol Biol Phys 53(2):475–482

    Google Scholar 

  • Nakajima M, Yamamoto N, Hayashi K, Karube M, Ebner D, Takahashi W, Anzai M, Tsushima K, Tada Y, Tatsumi K, Miyamoto T, Tsuji H, Fujisawa T, Kamada T (2017) Carbon-ion radiotherapy for non-small cell lung cancer with interstitial lung disease: a retrospective analysis. Radiat Oncol 12(1):144

    Google Scholar 

  • Naruke T, Tsuchiya R, Kondo H et al (2001) Prognosis and survival after resection for bronchogenic carcinoma based on the 1997 TNM-staging classification: the Japanese experience. Ann Thorac Surg 71:1759–1764

    Google Scholar 

  • Neicu T, Berbeco R, Wolfgang J, Jiang SB (2006) Synchronized moving aperture radiation therapy (SMART): improvement of breathing pattern reproducibility using respiratory coaching. Phys Med Biol 51:617–636

    Google Scholar 

  • Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61. https://doi.org/10.1038/nm1523

    Article  Google Scholar 

  • Ogata T, Teshima T, Kagawa K, Hishikawa Y, Takahashi Y, Kawaguchi A, Suzumoto Y, Nojima K, Furusawa Y, Matsuura N (2005) Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res 65(1):113–120

    Google Scholar 

  • Ohkubo Y, Iwakawa M, Seino K, Nakawatari M, Wada H, Kamijuku H, Nakamura E, Nakano T, Imai T (2010) Combining carbon ion radiotherapy and local injection of α-galactosyl ceramide-pulsed dendritic cells inhibits lung metastases in an in vivo murine model. Int J Radiat Oncol Biol Phys 78(5):1524–1531. https://doi.org/10.1016/j.ijrobp.2010.06.048

    Article  Google Scholar 

  • Ono T, Yamamoto N, Nomoto A, Nakajima M, Isozaki Y, Kasuya G, Ishikawa H, Nemoto K, Tsuji H (2020) Long term results of single-fraction carbon-ion radiotherapy for non-small cell lung cancer. Cancers (Basel) 13(1):112. https://doi.org/10.3390/cancers13010112

    Article  Google Scholar 

  • Panaretakis T, Kepp O, Brockmeier U et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28:578–590. https://doi.org/10.1038/emboj.2009.1

    Article  Google Scholar 

  • Parodi K, Polf JC (2018) In vivo range verification in particle therapy. Med Phys 45:e1037–e1050

    Google Scholar 

  • Pedroni E, Bearpark R, Böhringer T, Coray A, Duppich J, Forss S, George D, Grossmann M, Goitein G, Hilbes C, Jermann M, Lin S, Lomax A, Negrazus M, Schippers M, Kotle G (2004) The PSI gantry 2: a second generation proton scanning gantry. Z Med Phys 14(1):25–34. https://doi.org/10.1078/0939-3889-00194

    Article  Google Scholar 

  • Pickhard AC, Margraf J, Knopf A, Stark T, Piontek G, Beck C et al (2011) Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways. BMC Cancer 11:388

    Google Scholar 

  • Qian LW, Mizumoto K, Urashima T et al (2002) Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res 8:1223–1227

    Google Scholar 

  • Quintiliani M (1979) Modification of radiation sensitivity: the oxygen effect. Int J Radiat Oncol Biol Phys 5(7):1069–1076. https://doi.org/10.1016/0360-3016(79)90621-7

    Article  Google Scholar 

  • Rieken S, Habermehl D, Wuerth L, Brons S, Mohr A, Lindel K, Weber K, Haberer T, Debus J, Combs SE (2012) Carbon ion irradiation inhibits glioma cell migration through downregulation of integrin expression. Int J Radiat Oncol Biol Phys 83(1):394–399. https://doi.org/10.1016/j.ijrobp.2011.06.2004. Epub 2011 Nov 4

    Article  Google Scholar 

  • Saitoh JI, Shirai K, Mizukami T, Abe T, Ebara T, Ohno T, Minato K, Saito R, Yamada M, Nakano T (2019) Hypofractionated carbon-ion radiotherapy for stage I peripheral non small cell lung cancer (GUNMA0701): prospective phase II study. Cancer Med 8(15):6644–6650. https://doi.org/10.1002/cam4.2561

    Article  Google Scholar 

  • Sato K, Nitta N, Aoki I et al (2018) Repeated photon and C-ion irradiations in vivo have different impact on alteration of tumor characteristics. Sci Rep 8:1458. https://doi.org/10.1038/s41598-018-19422-x

    Article  Google Scholar 

  • Satoh Y, Onishi H, Nambu A, Araki T (2014) Volume-based parameters measured by using FDG PET/CT in patients with stage I NSCLC treated with stereotactic body radiation therapy: prognostic value. Radiology 270(1):275–281. https://doi.org/10.1148/radiol.13130652

    Article  Google Scholar 

  • Shimokawa T, Ma L, Ando K, Sato K, Imai T (2016) The future of combining carbon-ion radiotherapy with immunotherapy: evidence and progress in mouse models. Int J Part Ther 3(1):61–70. https://doi.org/10.14338/IJPT-15-00023.1. Epub 2016 Aug 29

    Article  Google Scholar 

  • Shirai K, Abe T, Saitoh JI, Mizukami T, Irie D, Takakusagi Y, Shiba S, Okano N, Ebara T, Ohno T, Nakano T (2017) Maximum standardized uptake value on FDG-PET predicts survival in stage I non-small cell lung cancer following carbon ion radiotherapy. Oncol Lett 13(6):4420–4426. https://doi.org/10.3892/ol.2017.5952

    Article  Google Scholar 

  • Shrestha S, Higuchi T, Shirai K et al (2020) Prognostic significance of semi-quantitative FDG-PET parameters in stage I non-small cell lung cancer treated with carbon-ion radiotherapy. Eur J Nucl Med Mol Imaging 47:1220–1227. https://doi.org/10.1007/s00259-019-04585-0

    Article  Google Scholar 

  • Sibley GS (1998) Radiotherapy for patients with medically inoperable stage I non-small-cell lung cancer. Cancer 82:433–438

    Google Scholar 

  • St James S, Grassberger C, Lu HM (2018) Considerations when treating lung cancer with passive scatter or active scanning proton therapy. Transl Lung Cancer Res. 7(2):210–215. https://doi.org/10.21037/tlcr.2018.04.01

    Article  Google Scholar 

  • Su WH, Chuang PC, Huang EY, Yang KD (2012) Radiation-induced increase in cell migration and metastatic potential of cervical cancer cells operates via the K-Ras pathway. Am J Pathol 180:862–871

    Google Scholar 

  • Subtil FS, Wilhelm J, Bill V, Westholt N, Rudolph S, Fischer J, Scheel S, Seay U, Fournier C, Taucher-Scholz G, Scholz M, Seeger W, Engenhart-Cabillic R, Rose F, Dahm-Daphi J, Hänze J (2014) Carbon ion radiotherapy of human lung cancer attenuates HIF-1 signaling and acts with considerably enhanced therapeutic efficiency. FASEB J 28(3):1412–1421. https://doi.org/10.1096/fj.13-242230. Epub 2013 Dec 17

    Article  Google Scholar 

  • Takahashi Y, Teshima T, Kawaguchi N, Hamada Y, Mori S, Madachi A, Ikeda S, Mizuno H, Ogata T, Nojima K, Furusawa Y, Matsuura N (2003) Heavy ion irradiation inhibits in vitro angiogenesis even at sublethal dose. Cancer Res 63(14):4253–4257

    Google Scholar 

  • Timmerman R, McGarry R, Yiannoutsos C et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24:4833–4839

    Google Scholar 

  • Vedam SS, Keall PJ, Kini VR, Mohan R (2001) Determining parameters for respiration-gated radiotherapy. Med Phys 28:2139–2146

    Google Scholar 

  • Vera P, Thureau S, Chaumet-Riffaud P et al (2017) Phase II study of a radiotherapy total dose increase in hypoxic lesions identified by 18F-misonidazole PET/CT in patients with non–small cell lung carcinoma (RTEP5 study). J Nucl Med 58:1045–1053

    Google Scholar 

  • Wild-Bode C, Weller M, Rimber A, Dichigans J, Wick W (2001) Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61:2744–2750

    Google Scholar 

  • Yamamoto N, Miyamoto T, Nakajima M, Karube M, Hayashi K, Tsuji H, Tsujii H, Kamada T, Fujisawa T (2017) A dose escalation clinical trial of single-fraction carbon ion radiotherapy for peripheral stage I non-small cell lung cancer. J Thorac Oncol 12(4):673–680

    Google Scholar 

  • Yan S, Wang Y, Yang Q, Li X, Kong X, Zhang N et al (2013) Low-dose radiation-induced epithelial-mesenchymal transition through NF-kappaB in cervical cancer cells. Int J Oncol 42:1801–1806

    Google Scholar 

  • Zheng X, Schipper M, Kidwell K et al (2014) Survival outcome after stereotactic body radiation therapy and surgery for stage I non-small cell lung cancer: a meta-analysis. Int J Radiat Oncol Biol Phys 90:603–611

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tubin, S., Fossati, P., Mori, S., Hug, E., Kamada, T. (2023). Heavy Particles in Non-small Cell Lung Cancer: Carbon Ions. In: Jeremić, B. (eds) Advances in Radiation Oncology in Lung Cancer. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2023_382

Download citation

  • DOI: https://doi.org/10.1007/174_2023_382

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34846-4

  • Online ISBN: 978-3-031-34847-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics