Skip to main content

Controlled Delivery of Target-Specific MicroRNA Analogs as a Key to RNAi Therapeutics in Cancer

  • Chapter
  • First Online:
Interdisciplinary Cancer Research

Abstract

Although the tumor microenvironment is well known to be important for cancer progression, understanding how the complex molecular networks contribute to cancers, particularly with all the different types of cancers, remains a limitation that often prevents the successful translation of research results in effective clinical applications. One approach has been the use of RNAi therapeutics. The exciting potential of these therapies is currently hampered by the high risk of off-target effects due to the imperfect complementarity used by these noncoding RNAs (ncRNAs) to recognize their mRNA targets. While this suggests that the miRNA analog specificity is one problem, another major obstacle is the problem of developing effective and targeted delivery systems specifically for the tumor that avoids serious adverse complications. These roadblocks indicate the need for the development of novel miRNA delivery systems and target-specific miRNA analogs before successful miRNA anticancer therapies become available. In this chapter, we discuss the current limitations of various types of miRNA analogs and the variety of delivery systems that are currently being developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abtahi NA, Salehi S, Naghib SM, Haghiralsadat F, Edgahi MA, Ghorbanzadeh S, Zhang W (2023) Multi-sensitive functionalized niosomal nanocarriers for controllable gene delivery in vitro and in vivo. Cancer Nanotechnol 14:1–18

    Google Scholar 

  • Ackley KL (2016) Are we there yet? An update on oligonucleotide drug development. Chimica Oggi-Chemistry Today 34:Xxxv–Xxxviii

    Google Scholar 

  • Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL, Lin KP, Vita G, Attarian S, Plante-Bordeneuve V, Mezei MM, Campistol JM, Buades J, Brannagan TH 3rd, Kim BJ, Oh J, Parman Y, Sekijima Y, Hawkins PN, Solomon SD, Polydefkis M, Dyck PJ, Gandhi PJ, Goyal S, Chen J, Strahs AL, Nochur SV, Sweetser MT, Garg PP, Vaishnaw AK, Gollob JA, Suhr OB (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21

    Google Scholar 

  • Aday S, Hazan-Halevy I, Chamorro-Jorganes A, Anwar M, Goldsmith M, Beazley-Long N, Sahoo S, Dogra N, Sweaad W, Catapano F (2021) Bioinspired artificial exosomes based on lipid nanoparticles carrying let-7b-5p promote angiogenesis in vitro and in vivo. Mol Ther 29:2239–2252

    Google Scholar 

  • Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67:657–685

    Google Scholar 

  • Almeida R, Allshire RC (2005) RNA silencing and genome regulation. Trends Cell Biol 15:251–258

    Google Scholar 

  • Anderson NM, Simon MC (2020) The tumor microenvironment. Curr Biol 30:R921–r925

    Google Scholar 

  • Arora V, Devi GR, Iversen PL (2004) Neutrally charged phosphorodiamidate morpholino antisense oligomers: uptake, efficacy and pharmacokinetics. Curr Pharm Biotechnol 5:431–439

    Google Scholar 

  • Baden LR, Liu J, Li H, Walsh S, Johnson J, Milner D, Seaman M, Krause K, Swan E, Tucker R, Weijtens M, Pau M, Dolin R, Barouch DH (2011) A Phase1 clinical trial to evaluate the safety, mucosal and innate immunity of adenovirus type 26 HIV-1 vaccine in healthy, HIV-1 uninfected adults. AIDS Res Hum Retrovir 27:A124–A124

    Google Scholar 

  • Bansal P, Kumar A, Chandna S, Arora M, Bansal R (2018) Targeting miRNA for therapeutics using a micronome based method for identification of miRNA-mRNA pairs and validation of key regulator miRNA. Methods Mol Biol 1823:185–195

    Google Scholar 

  • Barckmann B, Pierson S, Dufourt J, Papin C, Armenise C, Port F, Grentzinger T, Chambeyron S, Baronian G, Desvignes JP, Curk T, Simonelig M (2015) Aubergine iCLIP reveals piRNA-dependent decay of mRNAs involved in germ cell development in the early embryo. Cell Rep 12:1205–1216

    Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Google Scholar 

  • Bartoszewska S, Kamysz W, Jakiela B, Sanak M, Kroliczewski J, Bebok Z, Bartoszewski R, Collawn JF (2017) miR-200b downregulates CFTR during hypoxia in human lung epithelial cells. Cell Mol Biol Lett 22:23

    Google Scholar 

  • Bartoszewska S, Cabaj A, Dabrowski M, Collawn JF, Bartoszewski R (2019) miR-34c-5p modulates X-box-binding protein 1 (XBP1) expression during the adaptive phase of the unfolded protein response. FASEB J 33:11541–11554

    Google Scholar 

  • Bartoszewska S, Collawn JF, Bartoszewski R (2022) The role of the hypoxia-related unfolded protein response (UPR) in the tumor microenvironment. Cancers (Basel) 14(19):4870

    Google Scholar 

  • Bartoszewska S, Slawski J, Collawn JF, Bartoszewski R (2023) HIF-1-induced hsa-miR-429: understanding its direct targets as the key to developing cancer diagnostics and therapies. Cancers (Basel) 15(11):2903

    Google Scholar 

  • Bartoszewski R, Sikorski AF (2018) Editorial focus: entering into the non-coding RNA era. Cell Mol Biol Lett 23:45

    Google Scholar 

  • Bartoszewski R, Sikorski AF (2019) Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 24:69

    Google Scholar 

  • Baum C, Kustikova O, Modlich U, Li Z, Fehse B (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17:253–263

    Google Scholar 

  • Bejerano T, Etzion S, Elyagon S, Etzion Y, Cohen S (2018) Nanoparticle delivery of miRNA-21 mimic to cardiac macrophages improves myocardial remodeling after myocardial infarction. Nano Lett 18:5885–5891

    Google Scholar 

  • Bernardo BC, Ooi JY, Lin RC, McMullen JR (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 7:1771–1792

    Google Scholar 

  • Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2:711–719

    Google Scholar 

  • Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci U S A 98:9742–9747

    Google Scholar 

  • Carlin CR (2019) New insights to adenovirus-directed innate immunity in respiratory epithelial cells. Microorganisms 7(8):216

    Google Scholar 

  • Chan SK, Steinmetz NF (2023) microRNA-181a silencing by antisense oligonucleotides delivered by virus-like particles. J Mater Chem B 11:816–825

    Google Scholar 

  • Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    Google Scholar 

  • Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z (2014) The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 35:5041–5048

    Google Scholar 

  • Conde J, Artzi N (2015) Are RNAi and miRNA therapeutics truly dead? Trends Biotechnol 33:141–144

    Google Scholar 

  • Cuellar TL, Barnes D, Nelson C, Tanguay J, Yu SF, Wen X, Scales SJ, Gesch J, Davis D, van Brabant SA, Leake D, Vandlen R, Siebel CW (2015) Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res 43:1189–1203

    Google Scholar 

  • Czech B, Hannon GJ (2016) One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci 41:324–337

    Google Scholar 

  • Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340

    Google Scholar 

  • Davis BN, Hata A (2009) Regulation of MicroRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal 7:18

    Google Scholar 

  • Davis S, Propp S, Freier SM, Jones LE, Serra MJ, Kinberger G, Bhat B, Swayze EE, Bennett CF, Esau C (2009) Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Res 37:70–77

    Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Google Scholar 

  • del Pozo-Acebo L, López de las Hazas M, Tomé-Carneiro J, Gil-Cabrerizo P, San-Cristobal R, Busto R, García-Ruiz A, Dávalos A (2021) Bovine milk-derived exosomes as a drug delivery vehicle for miRNA-based therapy. Int J Mol Sci 22:1105

    Google Scholar 

  • Denizli M, Aslan B, Mangala LS, Jiang D, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK (2017) Chitosan nanoparticles for miRNA delivery. In: RNA Nanostructures: Methods and Protocols, pp 219–230

    Google Scholar 

  • DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, Meyers R, Gollob J, Vaishnaw A (2010a) A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A 107:8800–8805

    Google Scholar 

  • DeVincenzo JP, Wilkinson T, Vaishnaw A, Cehelsky J, Meyers R, Nochur S, Harrison L, Meeking P, Mann A, Moane E, Oxford J, Pareek R, Moore R, Walsh E, Studholme R, Dorsett P, Alvarez R, Lambkin-Williams R (2010b) Viral load drives disease in humans experimentally infected with respiratory syncytial virus. Am J Respir Crit Care Med 182:1305–1314

    Google Scholar 

  • Dimitrov DS (2012) Therapeutic proteins. Methods Mol Biol 899:1–26

    Google Scholar 

  • Dimitrov DS, Marks JD (2009) Therapeutic antibodies: current state and future trends--is a paradigm change coming soon? Methods Mol Biol 525:1–27, xiii

    Google Scholar 

  • Dogra P, Ramírez JR, Butner JD, Peláez MJ, Cristini V, Wang Z (2021). A multiscale model to identify limiting factors in nanoparticle-based miRNA delivery for tumor inhibition. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE

    Google Scholar 

  • Dowdy SF (2017) Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 35:222–229

    Google Scholar 

  • Ehlert EM, Eggers R, Niclou SP, Verhaagen J (2010) Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system. BMC Neurosci 11:20

    Google Scholar 

  • Ekin A, Karatas OF, Culha M, Ozen M (2014) Designing a gold nanoparticle-based nanocarrier for microRNA transfection into the prostate and breast cancer cells. J Gene Med 16:331–335

    Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200

    Google Scholar 

  • Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    Google Scholar 

  • Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60

    Google Scholar 

  • Esposito CL, Catuogno S, de Franciscis V (2016) Aptamer-MiRNA conjugates for cancer cell-targeted delivery. SiRNA Deliv Methods Methods Protoc 1364:197–208

    Google Scholar 

  • Eystathioy T, Chan EK, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13:1338–1351

    Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Google Scholar 

  • Ford LP (2006) Using synthetic miRNA mimics for diverting cell fate: a possibility of miRNA-based therapeutics? Leuk Res 30:511–513

    Google Scholar 

  • Forti E, Kryukov O, Elovic E, Goldshtein M, Korin E, Margolis G, Felder S, Ruvinov E, Cohen S (2016) A bridge to silencing: co-assembling anionic nanoparticles of siRNA and hyaluronan sulfate via calcium ion bridges. J Control Release 232:215–227

    Google Scholar 

  • Franco-Serrano L, Huerta M, Hernandez S, Cedano J, Perez-Pons J, Pinol J, Mozo-Villarias A, Amela I, Querol E (2018) Multifunctional proteins: involvement in human diseases and targets of current drugs. Protein J 37:444–453

    Google Scholar 

  • Fu Y, Chen J, Huang Z (2019) Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA 1:1–14

    Google Scholar 

  • Garcia-Martin R, Wang G, Brandão BB, Zanotto TM, Shah S, Kumar Patel S, Schilling B, Kahn CR (2022) MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature 601:446–451

    Google Scholar 

  • Gaur S, Wen Y, Song JH, Parikh NU, Mangala LS, Blessing AM, Ivan C, Wu SY, Varkaris A, Shi Y (2015) Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget 6:29161

    Google Scholar 

  • Ghaffari M, Kalantar SM, Hemati M, Dehghani Firoozabadi A, Asri A, Shams A, Jafari Ghalekohneh S, Haghiralsadat F (2021) Co-delivery of miRNA-15a and miRNA-16–1 using cationic PEGylated niosomes downregulates Bcl-2 and induces apoptosis in prostate cancer cells. Biotechnol Lett 43:981–994

    Google Scholar 

  • Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149

    Google Scholar 

  • Gurtan AM, Sharp PA (2013) The role of miRNAs in regulating gene expression networks. J Mol Biol 425:3582–3600

    Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Google Scholar 

  • Hambly K, Danzer J, Muskal S, Debe DA (2006) Interrogating the druggable genome with structural informatics. Mol Divers 10:273–281

    Google Scholar 

  • Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Google Scholar 

  • Haussecker D (2012) The business of RNAi therapeutics in 2012. Mol Ther Nucleic Acids 1:e8

    Google Scholar 

  • Haussecker D (2014) Current issues of RNAi therapeutics delivery and development. J Control Release 195:49–54

    Google Scholar 

  • Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF (2014) Innate immunity to adenovirus. Hum Gene Ther 25:265–284

    Google Scholar 

  • Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Google Scholar 

  • Hudziak RM, Barofsky E, Barofsky DF, Weller DL, Huang SB, Weller DD (1996) Resistance of morpholino phosphorodiamidate oligomers to enzymatic degradation. Antisense Nucleic Acid Drug Dev 6:267–272

    Google Scholar 

  • Jung D, Shin S, Kang SM, Jung I, Ryu S, Noh S, Choi SJ, Jeong J, Lee BY, Kim KS (2022) Reprogramming of T cell-derived small extracellular vesicles using IL2 surface engineering induces potent anti-cancer effects through miRNA delivery. J Extracellular Vesicles 11:12287

    Google Scholar 

  • Kang E, Kortylewski M (2023) Lipid nanoparticle-mediated delivery of miRNA mimics to myeloid cells. In: Inflammation and cancer: methods and protocols. Springer, pp 337–350

    Google Scholar 

  • Kasar S, Salerno E, Yuan Y, Underbayev C, Vollenweider D, Laurindo M, Fernandes H, Bonci D, Addario A, Mazzella F (2012) Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes & Immunity 13:109–119

    Google Scholar 

  • Khan MB, Ruggieri R, Jamil E, Tran NL, Gonzalez C, Mugridge N, Gao S, MacDiarmid J, Brahmbhatt H, Sarkaria JN (2021) Nanocell-mediated delivery of miR-34a counteracts temozolomide resistance in glioblastoma. Mol Med 27:1–17

    Google Scholar 

  • Kim SW, Kim NY, Choi YB, Park SH, Yang JM, Shin S (2010) RNA interference in vitro and in vivo using an arginine peptide/siRNA complex system. J Control Release 143:335–343

    Google Scholar 

  • Kim JK, Choi K-J, Lee M, Jo M-h, Kim S (2012) Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer-and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–217

    Google Scholar 

  • Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, Albuquerque RJ, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Kariko K, Ambati BK, Wilgus TA, DiPietro LA, Sakurai E, Zhang K, Smith JR, Taylor EW, Ambati J (2008) Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597

    Google Scholar 

  • Korin E, Bejerano T, Cohen S (2017) GalNAc bio-functionalization of nanoparticles assembled by electrostatic interactions improves siRNA targeting to the liver. J Control Release 266:310–320

    Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, Chang T-C, Vivekanandan P, Torbenson M, Clark KR (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Google Scholar 

  • Kouri FM, Ritner C, Stegh AH (2015) miRNA-182 and the regulation of the glioblastoma phenotype - toward miRNA-based precision therapeutics. Cell Cycle 14:3794–3800

    Google Scholar 

  • Kristen AV, Ajroud-Driss S, Conceicao I, Gorevic P, Kyriakides T, Obici L (2019) Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener Dis Manag 9:5–23

    Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    Google Scholar 

  • Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M, Stoffel M (2007) Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 35:2885–2892

    Google Scholar 

  • Kutwin M, Sosnowska ME, Strojny-CieÅ›lak B, Jaworski S, Trzaskowski M, Wierzbicki M, Chwalibog A, Sawosz E (2021) MicroRNA delivery by graphene-based complexes into glioblastoma cells. Molecules 26:5804

    Google Scholar 

  • Kwekkeboom RF, Lei Z, Doevendans PA, Musters RJ, Sluijter JP (2014) Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci (Lond) 127:351–365

    Google Scholar 

  • Lam JK, Chow MY, Zhang Y, Leung SW (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4:e252

    Google Scholar 

  • Li DJ, Sun CC (2018) Editorial: towards MiRNA based therapeutics for lung cancer. Curr Pharm Des 23:5971–5972

    Google Scholar 

  • Li T, Li Y, Rehmani H, Guo J, Padia R, Calbay O, Ding Z, Jiang Y, Jin L, Huang S (2022) Attenuated miR-203b-3p is critical for ovarian cancer progression and aptamer/miR-203b-3p chimera can be explored as a therapeutic. Adv Cancer Biol Metastasis 4:100031

    Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Google Scholar 

  • Liu Y, Lai L, Chen Q, Song Y, Xu S, Ma F, Wang X, Wang J, Yu H, Cao X (2012) MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J Immunol 188:5500–5510

    Google Scholar 

  • Liu G, Gao J, Ai H, Chen X (2013) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9:1533–1545

    Google Scholar 

  • Manikandan M, Ramachandran D, Chun S (2015) De novo synthesis of novel bacteriogenic nanocell particles and its cancer cell compatibility evaluation. RSC Adv 5:79792–79799

    Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 (Spec No 1):R17–R29

    Google Scholar 

  • McNamara JO 2nd, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, Sullenger BA, Giangrande PH (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    Google Scholar 

  • Meissner JM, Toporkiewicz M, Czogalla A, Matusewicz L, Kuliczkowski K, Sikorski AF (2015) Novel antisense therapeutics delivery systems: in vitro and in vivo studies of liposomes targeted with anti-CD20 antibody. J Control Release 220:515–528

    Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Google Scholar 

  • Miroshnichenko S, Patutina O (2019) Enhanced inhibition of tumorigenesis using combinations of miRNA-targeted therapeutics. Front Pharmacol 10:488

    Google Scholar 

  • Mishra S, Yadav T, Rani V (2016) Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol 98:12–23

    Google Scholar 

  • Nouraee N, Mowla SJ (2015) miRNA therapeutics in cardiovascular diseases: promises and problems. Front Genet 6:232

    Google Scholar 

  • Nuzzo S, Catuogno S, Capuozzo M, Fiorelli A, Swiderski P, Boccella S, de Nigris F, Esposito CL (2019) Axl-targeted delivery of the oncosuppressor miR-137 in non-small-cell lung cancer. Mol. Ther Nucleic Acids 17:256–263

    Google Scholar 

  • Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L (2012) Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J 279:1198–1208

    Google Scholar 

  • Park S-H, Lee J, Yeo J-S (2018) On-chip plasmonic detection of microRNA-106a in gastric cancer using hybridized gold nanoparticles. Sensors Actuators B Chem 262:703–709

    Google Scholar 

  • Patil N, Allgayer H, Leupold JH (2020) MicroRNAs in the tumor microenvironment. Adv Exp Med Biol 1277:1–31

    Google Scholar 

  • Pauwels K, Gijsbers R, Toelen J, Schambach A, Willard-Gallo K, Verheust C, Debyser Z, Herman P (2009) State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther 9:459–474

    Google Scholar 

  • Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CM (2013) Delivering the promise of miRNA cancer therapeutics. Drug Discov Today 18:282–289

    Google Scholar 

  • Rojas-Rios P, Simonelig M (2018) piRNAs and PIWI proteins: regulators of gene expression in development and stem cells. Development 145(17):dev161786

    Google Scholar 

  • Rouget C, Papin C, Boureux A, Meunier AC, Franco B, Robine N, Lai EC, Pelisson A, Simonelig M (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467:1128–1132

    Google Scholar 

  • Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Google Scholar 

  • Russ AP, Lampel S (2005) The druggable genome: an update. Drug Discov Today 10:1607–1610

    Google Scholar 

  • Sani A, Cao C, Cui D (2021) Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep 26:100991

    Google Scholar 

  • Saraswathy M, Gong S (2014) Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment. Mater Today 17:298–306

    Google Scholar 

  • Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17:767–777

    Google Scholar 

  • Serrano-Sevilla I, Artiga A, Mitchell SG, De Matteis L, de la Fuente JM (2019) Natural polysaccharides for siRNA delivery: Nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules 24(14):2570

    Google Scholar 

  • Setten RL, Rossi JJ, Han SP (2019) The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18:421–446

    Google Scholar 

  • Shi B, Ma C, Liu G, Guo Y (2019) MiR-106a directly targets LIMK1 to inhibit proliferation and EMT of oral carcinoma cells. Cell Mol Biol Lett 24:1

    Google Scholar 

  • Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38:789–802

    Google Scholar 

  • Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38:323–332

    Google Scholar 

  • Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717

    Google Scholar 

  • Song Y, Zhang C, Zhang J, Jiao Z, Dong N, Wang G, Wang Z, Wang L (2019) Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics 9:2346

    Google Scholar 

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Google Scholar 

  • Staton AA, Giraldez AJ (2011) Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo. Nat Protoc 6:2035–2049

    Google Scholar 

  • Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3:1

    Google Scholar 

  • Su Y-L, Swiderski P, Marcucci G, Kortylewski M (2019) Targeted delivery of miRNA antagonists to myeloid cells in vitro and in vivo. In: RNA interference and cancer therapy: methods and protocols, pp 141–150

    Google Scholar 

  • Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158

    Google Scholar 

  • Summerton JE (2007) Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem 7:651–660

    Google Scholar 

  • Sun Y, Sun Y, Zhao R (2017) Establishment of MicroRNA delivery system by PP7 bacteriophage-like particles carrying cell-penetrating peptide. J Biosci Bioeng 124:242–249

    Google Scholar 

  • Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    Google Scholar 

  • Terasawa K, Shimizu K, Tsujimoto G (2011) Synthetic pre-miRNA-based shRNA as potent RNAi triggers. J Nucleic Acids 2011:131579

    Google Scholar 

  • Terlecki-Zaniewicz L, Lämmermann I, Latreille J, Bobbili MR, Pils V, Schosserer M, Weinmüllner R, Dellago H, Skalicky S, Pum D (2018) Small extracellular vesicles and their miRNA cargo are anti-apoptotic members of the senescence-associated secretory phenotype. Aging (Albany NY) 10:1103

    Google Scholar 

  • Titze de Almeida SS, Horst CH, Soto-Sánchez C, Fernandez E, Titze de Almeida R (2018) Delivery of miRNA-targeted oligonucleotides in the rat striatum by magnetofection with Neuromag®. Molecules 23:1825

    Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    Google Scholar 

  • Toro Cabrera G, Mueller C (2016) Design of shRNA and miRNA for delivery to the CNS. In: Gene therapy for neurological disorders: methods and protocols, pp 67–80

    Google Scholar 

  • Torres AG, Fabani MM, Vigorito E, Gait MJ (2011) MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved northern-blot-based method for miRNA detection. RNA 17:933–943

    Google Scholar 

  • Treiber T, Treiber N, Meister G (2019) Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol 20:5–20

    Google Scholar 

  • Tseng YC, Mozumdar S, Huang L (2009) Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 61:721–731

    Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Google Scholar 

  • Van der Ven CF, Tibbitt MW, Conde J, van Mil A, Hjortnaes J, Doevendans PA, Sluijter JP, Aikawa E, Langer RS (2021) Controlled delivery of gold nanoparticle-coupled miRNA therapeutics via an injectable self-healing hydrogel. Nanoscale 13:20451–20461

    Google Scholar 

  • van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B (2002) Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915–6924

    Google Scholar 

  • van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864

    Google Scholar 

  • Velu CS, Grimes HL (2012) Utilizing antagomiR (antisense microRNA) to knock down microRNA in murine bone marrow cells. Methods Mol Biol 928:185–195

    Google Scholar 

  • Wang X, Xu X, Ma Z, Huo Y, Xiao Z, Li Y, Wang Y (2011) Dynamic mechanisms for pre-miRNA binding and export by Exportin-5. RNA 17:1511–1528

    Google Scholar 

  • Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y (2015) Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev 81:142–160

    Google Scholar 

  • Wen MM (2016) Getting miRNA therapeutics into the target cells for neurodegenerative diseases: a mini-review. Front Mol Neurosci 9:129

    Google Scholar 

  • Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Google Scholar 

  • Wu M, Wang G, Tian W, Deng Y, Xu Y (2018) MiRNA-based therapeutics for lung cancer. Curr Pharm Des 23:5989–5996

    Google Scholar 

  • Xu H, Zhang Y, Xie SJ, Xu SJ, Zhou H, Qu LH (2013) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps during heart development. Cardiology 126:62–62

    Google Scholar 

  • Yan C, Chen J, Wang C, Yuan M, Kang Y, Wu Z, Li W, Zhang G, Machens H-G, Rinkevich Y (2022) Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv 29:214–228

    Google Scholar 

  • Yanai K, Kaneko S, Ishii H, Aomatsu A, Morishita Y (2022) Delivery of exogenous artificially synthesized miRNA mimic to the kidney using polyethylenimine nanoparticles in several kidney disease mouse models. JoVE (J Visualized Exp) 183:e63302

    Google Scholar 

  • Yang C, Gao S, Song P, Dagnæs-Hansen F, Jakobsen M, Kjems J (2018) Theranostic niosomes for efficient siRNA/MicroRNA delivery and activatable near-infrared fluorescent tracking of stem cells. ACS Appl Mater Interfaces 10:19494–19503

    Google Scholar 

  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15:541–555

    Google Scholar 

  • Yin H, Wang H, Li Z, Shu D, Guo P (2018) RNA micelles for the systemic delivery of anti-miRNA for cancer targeting and inhibition without ligand. ACS Nano 13:706–717

    Google Scholar 

  • Zhang Y, Wang Z, Gemeinhart RA (2013) Progress in microRNA delivery. J Control Release 172:962–974

    Google Scholar 

  • Zhang Y, Buhrman JS, Liu Y, Rayahin JE, Gemeinhart RA (2016) Reducible micelleplexes are stable systems for anti-miRNA delivery in cerebrospinal fluid. Mol Pharm 13:1791–1799

    Google Scholar 

  • Zhao Z, Lin CY, Cheng K (2019) siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res 214:17

    Google Scholar 

  • Zhou JH, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16:181–202

    Google Scholar 

  • Zhu K, Liu D, Lai H, Li J, Wang C (2016) Developing miRNA therapeutics for cardiac repair in ischemic heart disease. J Thorac Dis 8:E918–E927

    Google Scholar 

  • Zhu J, Yang S, Qi Y, Gong Z, Zhang H, Liang K, Shen P, Huang Y-Y, Zhang Z, Ye W (2022) Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci Adv 8:eabk0011

    Google Scholar 

  • Zuckerman JE, Davis ME (2015) Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov 14:843–856

    Google Scholar 

Download references

Conflict of Interest

The authors declare no competing financial interests.

Author Contributions

All authors wrote and revised the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafal Bartoszewski .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grzyb, J., SÅ‚awski, J., Collawn, J.F., Bartoszewski, R. (2024). Controlled Delivery of Target-Specific MicroRNA Analogs as a Key to RNAi Therapeutics in Cancer. In: Interdisciplinary Cancer Research. Springer, Cham. https://doi.org/10.1007/16833_2024_201

Download citation

  • DOI: https://doi.org/10.1007/16833_2024_201

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics