Skip to main content

Chimeric Antigen Receptor (CAR) T Cell Immunotherapy for Solid Tumors

  • Chapter
  • First Online:
Interdisciplinary Cancer Research

Abstract

Chimeric antigen receptor (CAR) T cells are engineered T lymphocytes that redirect the immune cell against a specific target antigen. As a novel immunotherapeutic method, CAR T cells have shown promising results against malignancies with hematologic sources. By the end of 2021, five CAR T products have been approved by the food and drug association (FDA) for B-cell malignancies. Nevertheless, this immunotherapeutic method has not shown impressive results against solid tissue-derived cancers. Understanding the molecular and cellular mechanisms underlying the road backs of CAR T therapy in solid tumors, such as the physical and metabolic barriers, immunosuppressive immune cells and soluble factors, insufficient immune cell homing to the tumor site, and tumor antigen heterogeneity can pave the way to engineer novel CAR T products with higher specificity. In this chapter, we review the current progress of preclinical and clinical studies of CAR T cell therapy in different solid tumors, including lung, liver, renal, breast, gastric, prostate, ovarian, pancreatic, and colorectal malignancies. Moreover, obstacles that reduce the efficacy of CAR T therapy in solid tumors and solutions to these barriers, by focusing on recent novel CAR structures engineered to improve CAR T cell recognition, specificity, and survival in solid tumors are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abate-Daga D, Lagisetty KH, Tran E, Zheng Z, Gattinoni L, Yu Z, Burns WR, Miermont AM, Teper Y, Rudloff U (2014) A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Hum Gene Ther 25:1003–1012

    Google Scholar 

  • Abdollahzadeh R, Mansoori Y, Azarnezhad A, Daraei A, Paknahad S, Mehrabi S, Tabei MB, Jafari D, Shakoori A, Tavakkoly-Bazzaz J (2020) Expression and clinicopathological significance of AOC4P, PRNCR1, and PCAT1 lncRNAs in breast cancer. Pathol Res Pract 216:153131

    Google Scholar 

  • Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K (2018) IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol 36:346–351

    Google Scholar 

  • Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, Jones DR, Sadelain M (2014) Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci Transl Med 6:261ra151

    Google Scholar 

  • Adusumilli PS, Zauderer MG, Rusch VW, O’Cearbhaill R, Zhu A, Ngai D, McGee E, Chintala N, Messinger J, Cheema W (2019) Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-PD-1 agent. Proc Am Soc Clin Oncol 2:2511

    Google Scholar 

  • Adusumilli PS, Zauderer MG, Rivière I, Solomon SB, Rusch VW, O’Cearbhaill RE, Zhu A, Cheema W, Chintala NK, Halton E (2021) A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti–PD-1 agent pembrolizumab. Cancer Discov 11:2748–2763

    Google Scholar 

  • Agarwalla P, Ogunnaike EA, Ahn S, Ligler FS, Dotti G, Brudno Y (2020) Scaffold-mediated static transduction of T cells for CAR-T cell therapy. Adv Healthc Mater 9:2000275

    Google Scholar 

  • Akce M, Zaidi MY, Waller EK, El-Rayes BF, Lesinski GB (2018) The potential of CAR T cell therapy in pancreatic cancer. Front Immunol 9:2166

    Google Scholar 

  • Alhabbab RY (2020) Targeting cancer stem cells by genetically engineered chimeric antigen receptor T cells. Front Genet 11:312

    Google Scholar 

  • Alzubi J, Dettmer-Monaco V, Kuehle J, Thorausch N, Seidl M, Taromi S, Schamel W, Zeiser R, Abken H, Cathomen T (2020) PSMA-directed CAR T cells combined with Low-dose docetaxel treatment induce tumor regression in a prostate cancer xenograft model. Mol Ther Oncolytics 18:226–235

    Google Scholar 

  • Amato M, Perrone G, Righi D, Pellegrini C, Rabitti C, Di Matteo F, Crucitti P, Caputo D, Coppola R, Tonini G (2017) HER2 status in gastric cancer: comparison between primary and distant metastatic disease. Pathol Oncol Res 23:55–61

    Google Scholar 

  • Ang WX, Li Z, Chi Z, Du S-H, Chen C, Tay JC, Toh HC, Connolly JE, Xu XH, Wang S (2017) Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis. Oncotarget 8:13545

    Google Scholar 

  • Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, Murugesan SR, Leach SD, Jaffee E, Yeo CJ (2001a) Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res 7:3862–3868

    Google Scholar 

  • Argani P, Rosty C, Reiter RE, Wilentz RE, Murugesan SR, Leach SD, Ryu B, Skinner HG, Goggins M, Jaffee EM (2001b) Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res 61:4320–4324

    Google Scholar 

  • Arneth B (2020) Tumor microenvironment. Medicina 56:15

    Google Scholar 

  • Bannert N, Kurth R (2004) Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci 101:14572–14579

    Google Scholar 

  • Banville AC, Wouters MC, Oberg AL, Goergen KM, Maurer MJ, Milne K, Ashkani J, Field E, Ghesquiere C, Jones SJ (2021) Co-expression patterns of chimeric antigen receptor (CAR)-T cell target antigens in primary and recurrent ovarian cancer. Gynecol Oncol 160:520–529

    Google Scholar 

  • Baselga J, Carbonell X, Castañeda-Soto N-J, Clemens M, Green M, Harvey V, Morales S, Barton C, Ghahramani P (2005) Phase II study of efficacy, safety, and pharmacokinetics of trastuzumab monotherapy administered on a 3-weekly schedule. J Clin Oncol 23:2162–2171

    Google Scholar 

  • Bast RC, Badgwell D, Lu Z, Marquez R, Rosen D, Liu J, Baggerly K, Atkinson E, Skates S, Zhang Z (2005) New tumor markers: CA125 and beyond. Int J Gynecol Cancer 15:274

    Google Scholar 

  • Bębnowska D, Grywalska E, Niedźwiedzka-Rystwej P, Sosnowska-Pasiarska B, Smok-Kalwat J, Pasiarski M, Góźdź S, Roliński J, Polkowski W (2020) CAR-T cell therapy—an overview of targets in gastric cancer. J Clin Med 9:1894

    Google Scholar 

  • Berger C, Sommermeyer D, Hudecek M, Berger M, Balakrishnan A, Paszkiewicz PJ, Kosasih PL, Rader C, Riddell SR (2015) Safety of targeting ROR1 in primates with chimeric antigen receptor–modified T cells. Cancer Immunol Res 3:206–216

    Google Scholar 

  • Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, Wu M-F, Orange JS, Sumazin P, Man T-K (2018) Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology 20:506–518

    Google Scholar 

  • Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K, Quintás-Cardama A, Larson SM, Sadelain M (2007) Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res 13:5426–5435

    Google Scholar 

  • Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569

    Google Scholar 

  • Bughda R, Dimou P, D’Souza RR, Klampatsa A (2021) Fibroblast activation protein (FAP)-targeted CAR-T cells: launching an attack on tumor stroma. ImmunoTargets and Therapy 10:313

    Google Scholar 

  • Burkholder B, Huang R-Y, Burgess R, Luo S, Jones VS, Zhang W, Lv Z-Q, Gao C-Y, Wang B-L, Zhang Y-M (2014) Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta Rev Cancer 1845:182–201

    Google Scholar 

  • Cadilha BL, Benmebarek M-R, Dorman K, Oner A, Lorenzini T, Obeck H, Vänttinen M, Di Pilato M, Pruessmann JN, Stoiber S (2021) Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Sci Adv 7:eabi5781

    Google Scholar 

  • Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27:5869–5885

    Google Scholar 

  • Caruana I, Savoldo B, Hoyos V, Weber G, Liu H, Kim ES, Ittmann MM, Marchetti D, Dotti G (2015) Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 21:524–529

    Google Scholar 

  • Chekmasova AA, Rao TD, Nikhamin Y, Park KJ, Levine DA, Spriggs DR, Brentjens RJ (2010) Successful eradication of established peritoneal ovarian tumors in SCID-beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res 16:3594–3606

    Google Scholar 

  • Chen N, Morello A, Tano Z, Adusumilli PS (2017) CAR T-cell intrinsic PD-1 checkpoint blockade: A two-in-one approach for solid tumor immunotherapy. Onco Targets Ther 6:e1273302

    Google Scholar 

  • Chen Y, Pei Y, Luo J, Huang Z, Yu J, Meng X (2020) Looking for the optimal PD-1/PD-L1 inhibitor in cancer treatment: a comparison in basic structure, function, and clinical practice. Front Immunol 11:1088

    Google Scholar 

  • Chen X, Yang S, Li S, Qu Y, Wang H-Y, Liu J, Dunn ZS, Cinay GE, MacMullan MA, Hu F (2021) Secretion of bispecific protein of anti-PD-1 fused with TGF-β trap enhances antitumor efficacy of CAR-T cell therapy. Molr Ther Oncolytics 21:144–157

    Google Scholar 

  • Cheng W, Huang C, Chang M-C, Hu Y, Chiang Y, Chen Y, Hsieh C, Chen C (2009) High mesothelin correlates with chemoresistance and poor survival in epithelial ovarian carcinoma. Br J Cancer 100:1144–1153

    Google Scholar 

  • Chi X, Yang P, Zhang E, Gu J, Xu H, Li M, Gao X, Li X, Zhang Y, Xu H (2019) Significantly increased anti-tumor activity of carcinoembryonic antigen-specific chimeric antigen receptor T cells in combination with recombinant human IL-12. Cancer Med 8:4753–4765

    Google Scholar 

  • Chinnasamy D, Yu Z, Theoret MR, Zhao Y, Shrimali RK, Morgan RA, Feldman SA, Restifo NP, Rosenberg SA (2010) Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest 120:3953–3968

    Google Scholar 

  • Chinnasamy D, Yu Z, Kerkar SP, Zhang L, Morgan RA, Restifo NP, Rosenberg SA (2012) Local delivery of lnterleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 18:1672–1683

    Google Scholar 

  • Chmielewski M, Abken H (2012) CAR T cells transform to trucks: chimeric antigen receptor–redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol Immunother 61:1269–1277

    Google Scholar 

  • Chmielewski M, Abken H (2015) TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15:1145–1154

    Google Scholar 

  • Chmielewski M, Abken H (2017) CAR T cells releasing IL-18 convert to T-Bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell Rep 21:3205–3219

    Google Scholar 

  • Chmielewski M, Abken H (2018) TRUCKs with IL-18 payload: toward shaping the immune landscape for a more efficacious CAR T-cell therapy of solid cancer. Adv Cell Gene Ther 1:e7

    Google Scholar 

  • Chmielewski M, Abken H (2020) TRUCKS, the fourth-generation CAR T cells: current developments and clinical translation. Adv Cell Gene Ther 3:e84

    Google Scholar 

  • Choi BD, Yu X, Castano AP, Darr H, Henderson DB, Bouffard AA, Larson RC, Scarfò I, Bailey SR, Gerhard GM (2019) CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer 7:1–8

    Google Scholar 

  • Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z, Rainusso N, Wu M-F, Liu H, Kew Y (2013) T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther 21:629–637

    Google Scholar 

  • Chulanetra M, Morchang A, Sayour E, Eldjerou L, Milner R, Lagmay J, Cascio M, Stover B, Slayton W, Chaicumpa W (2020) GD2 chimeric antigen receptor modified T cells in synergy with sub-toxic level of doxorubicin targeting osteosarcomas. Am J Cancer Res 10:674

    Google Scholar 

  • Condomines M, Arnason J, Benjamin R, Gunset G, Plotkin J, Sadelain M (2015) Tumor-targeted human T cells expressing CD28-based chimeric antigen receptors circumvent CTLA-4 inhibition. PLoS One 10:e0130518

    Google Scholar 

  • Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F, Giusti F, Dosik MH, Hayes DF, Gitlin SD (2008) Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol 82:9329–9336

    Google Scholar 

  • Courtney AH, Lo W-L, Weiss A (2018) TCR signaling: mechanisms of initiation and propagation. Trends Biochem Sci 43:108–123

    Google Scholar 

  • Craddock JA, Lu A, Bear A, Pule M, Brenner MK, Rooney CM, Foster AE (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 33:780

    Google Scholar 

  • Crossland DL, Denning WL, Ang S, Olivares S, Mi T, Switzer K, Singh H, Huls H, Gold KS, Glisson BS (2018) Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models. Oncogene 37:3686–3697

    Google Scholar 

  • Curioni A, Britschgi C, Hiltbrunner S, Bankel L, Gulati P, Weder W, Opitz I, Lauk O, Caviezel C, Knuth A (2019) A phase I clinical trial of malignant pleural mesothelioma treated with locally delivered autologous anti-FAP-targeted CAR T-cells. Ann Oncol 30:v501

    Google Scholar 

  • Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, Mescher MF (1999) Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 162:3256–3262

    Google Scholar 

  • da Cunha SG, Shepherd FA, Tsao MS (2011) EGFR mutations and lung cancer. Ann Rev Pathol Mech Dis 6:49–69

    Google Scholar 

  • Dai M, Yuan F, Fu C, Shen G, Hu S, Shen G (2017) Relationship between epithelial cell adhesion molecule (EpCAM) overexpression and gastric cancer patients: A systematic review and meta-analysis. PLoS One 12:e0175357

    Google Scholar 

  • DeBerardinis RJ, Chandel NS (2020) We need to talk about the Warburg effect. Nat Metab 2:127–129

    Google Scholar 

  • Deng Z, Wu Y, Ma W, Zhang S, Zhang Y-Q (2015) Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol 16:1–9

    Google Scholar 

  • Deng X, Gao F, Li N, Li Q, Zhou Y, Yang T, Cai Z, Du P, Chen F, Cai J (2019) Antitumor activity of NKG2D CAR-T cells against human colorectal cancer cells in vitro and in vivo. Am J Cancer Res 9:945

    Google Scholar 

  • Desnoyers LR, Vasiljeva O, Richardson JH, Yang A, Menendez EE, Liang TW, Wong C, Bessette PH, Kamath K, Moore SJ (2013) Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med 5:207ra144

    Google Scholar 

  • Dhar P, Wu JD (2018) NKG2D and its ligands in cancer. Curr Opin Immunol 51:55–61

    Google Scholar 

  • Du H, Hirabayashi K, Ahn S, Kren NP, Montgomery SA, Wang X, Tiruthani K, Mirlekar B, Michaud D, Greene K (2019) Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell 35:221–237

    Google Scholar 

  • Elahi R, Khosh E, Tahmasebi S, Esmaeilzadeh A (2018) Immune cell hacking: challenges and clinical approaches to create smarter generations of chimeric antigen receptor T cells. Front Immunol 9:1717

    Google Scholar 

  • Elahi R, Heidary AH, Hadiloo K, Esmaeilzadeh A (2021) Chimeric antigen receptor-engineered natural killer (CAR NK) cells in cancer treatment; recent advances and future prospects. Stem Cell Rev Rep 17:2081–2106

    Google Scholar 

  • Elahi R, Karami P, Heidary AH, Esmaeilzadeh A (2022) An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). Int Immunopharmacol 105:108536

    Google Scholar 

  • Esmaeilzadeh A, Tahmasebi S, Athari SS (2020) Chimeric antigen receptor-T cell therapy: applications and challenges in treatment of allergy and asthma. Biomed Pharmacother 123:109685

    Google Scholar 

  • Esmaeilzadeh A, Jafari D, Tahmasebi S, Elahi R, Khosh E (2021) Immune-based therapy for COVID-19. Adv Exp Med Biol 1318:449–468

    Google Scholar 

  • Estiar MA, Zare A-A, Esmaeili R, Farahmand L, Fazilaty H, Jafari D, Samadi T, Majidzadeh-A K (2017) Clinical significance of NDRG3 in patients with breast cancer. Future Oncol 13:961–969

    Google Scholar 

  • Fedorov VD, Themeli M, Sadelain M (2013) PD-1–and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5:215ra172

    Google Scholar 

  • Feldmann A, Arndt C, Bergmann R, Loff S, Cartellieri M, Bachmann D, Aliperta R, Hetzenecker M, Ludwig F, Albert S (2017) Retargeting of T lymphocytes to PSCA-or PSMA positive prostate cancer cells using the novel modular chimeric antigen receptor platform technology “UniCAR”. Oncotarget 8:31368

    Google Scholar 

  • Feng K, Guo Y, Dai H, Wang Y, Li X, Jia H, Han W (2016) Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci 59:468–479

    Google Scholar 

  • Feng K, Liu Y, Guo Y, Qiu J, Wu Z, Dai H, Yang Q, Wang Y, Han W (2018) Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell 9:838–847

    Google Scholar 

  • Fernández L, Metais J-Y, Escudero A, Vela M, Valentín J, Vallcorba I, Leivas A, Torres J, Valeri A, Patiño-García A (2017) Memory T cells expressing an NKG2D-CAR efficiently target osteosarcoma cells. Clin Cancer Res 23:5824–5835

    Google Scholar 

  • Forsberg EM, Lindberg MF, Jespersen H, Alsén S, Bagge RO, Donia M, Svane IM, Nilsson O, Ny L, Nilsson LM (2019) HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy–resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mice. Cancer Res 79:899–904

    Google Scholar 

  • Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O’Connor RS, Hwang W-T (2018) Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 24:563–571

    Google Scholar 

  • Franchina DG, Dostert C, Brenner D (2018) Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol 39:489–502

    Google Scholar 

  • Fransen MF, Van Der Sluis TC, Ossendorp F, Arens R, Melief CJ (2013) Controlled local delivery of CTLA-4 blocking antibody induces CD8+ T-cell–dependent tumor eradication and decreases risk of toxic side effects. Clin Cancer Res 19:5381–5389

    Google Scholar 

  • Gansauge S, Gansauge F, Beger H (1996) Molecular oncology in pancreatic cancer. J Mol Med 74:313–320

    Google Scholar 

  • Gillespie JR, Uversky VN (2000) Structure and function of α-fetoprotein: a biophysical overview. Biochim et Biophys Acta (BBA)-Protein Struct Mol Enzymol 1480:41–56

    Google Scholar 

  • Giuffrida L, Sek K, Henderson MA, House IG, Lai J, Chen AX, Todd KL, Petley EV, Mardiana S, Todorovski I (2020) IL-15 preconditioning augments CAR T cell responses to checkpoint blockade for improved treatment of solid tumors. Mol Ther 28:2379–2393

    Google Scholar 

  • Golubovskaya V, Berahovich R, Zhou H, Xu S, Harto H, Li L, Chao C-C, Mao MM, Wu L (2017) CD47-CAR-T cells effectively kill target cancer cells and block pancreatic tumor growth. Cancers 9:139

    Google Scholar 

  • Goto S, Sakoda Y, Adachi K, Sekido Y, Yano S, Eto M, Tamada K (2021) Enhanced anti-tumor efficacy of IL-7/CCL19-producing human CAR-T cells in orthotopic and patient-derived xenograft tumor models. Cancer Immunol Immunother 70:1–13

    Google Scholar 

  • Grandi N, Tramontano E (2018) Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front Immunol 9:2039

    Google Scholar 

  • Grillo F, Fassan M, Sarocchi F, Fiocca R, Mastracci L (2016) HER2 heterogeneity in gastric/gastroesophageal cancers: from benchside to practice. World J Gastroenterol 22:5879

    Google Scholar 

  • Grunnet M, Sorensen J (2012) Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 76:138–143

    Google Scholar 

  • Gubbels JA, Belisle J, Onda M, Rancourt C, Migneault M, Ho M, Bera TK, Connor J, Sathyanarayana BK, Lee B (2006) Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer 5:1–15

    Google Scholar 

  • Guo X, Jiang H, Shi B, Zhou M, Zhang H, Shi Z, Du G, Luo H, Wu X, Wang Y (2018) Disruption of PD-1 enhanced the anti-tumor activity of chimeric antigen receptor T cells against hepatocellular carcinoma. Front Pharmacol 9:1118

    Google Scholar 

  • Haas AR, Tanyi JL, O’Hara MH, Gladney WL, Lacey SF, Torigian DA, Soulen MC, Tian L, McGarvey M, Nelson AM (2019) Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancers. Mol Ther 27:1919–1929

    Google Scholar 

  • Hallaj S, Meshkini F, Chaleshtari MG, Ghorbani A, Namdar A, Soleimanpour H, Jadidi-Niaragh F (2019) Conjugated CAR T cell one step beyond conventional CAR T cell for a promising cancer immunotherapy. Cell Immunol 345:103963

    Google Scholar 

  • Han S-H, Joo M, Kim H, Chang S (2017a) Mesothelin expression in gastric adenocarcinoma and its relation to clinical outcomes. J Pathol Trans Med 51:122

    Google Scholar 

  • Han X, Bryson PD, Zhao Y, Cinay GE, Li S, Guo Y, Siriwon N, Wang P (2017b) Masked chimeric antigen receptor for tumor-specific activation. Mol Ther 25:274–284

    Google Scholar 

  • Han Y, Liu C, Li G, Li J, Lv X, Shi H, Liu J, Liu S, Yan P, Wang S (2018a) Antitumor effects and persistence of a novel HER2 CAR T cells directed to gastric cancer in preclinical models. Am J Cancer Res 8:106

    Google Scholar 

  • Han Y, Xie W, Song D-G, Powell DJ (2018b) Control of triple-negative breast cancer using ex vivo self-enriched, costimulated NKG2D CAR T cells. J Hematol Oncol 11:1–13

    Google Scholar 

  • Hartmann LC, Keeney GL, Lingle WL, Christianson TJ, Varghese B, Hillman D, Oberg AL, Low PS (2007) Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 121:938–942

    Google Scholar 

  • Hassan R, Kreitman RJ, Pastan I, Willingham MC (2005) Localization of mesothelin in epithelial ovarian cancer. Appl Immunohistochem Mol Morphol 13:243–247

    Google Scholar 

  • Heczey A, Louis CU (2013) Advances in chimeric antigen receptor immunotherapy for neuroblastoma. Discov Med 16:287

    Google Scholar 

  • Heczey A, Louis CU, Savoldo B, Dakhova O, Durett A, Grilley B, Liu H, Wu MF, Mei Z, Gee A (2017) CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol Ther 25:2214–2224

    Google Scholar 

  • Hegde M, DeRenzo CC, Zhang H, Mata M, Gerken C, Shree A, Yi Z, Brawley V, Dakhova O, Wu M-F (2017) Expansion of HER2-CAR T cells after lymphodepletion and clinical responses in patients with advanced sarcoma. Proc Am Soc Clin Oncol 35:10508

    Google Scholar 

  • Hegde M, Mukherjee M, Grada Z, Pignata A, Landi D, Navai SA, Wakefield A, Fousek K, Bielamowicz K, Chow KK (2019) Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest 129:3464–3464

    Google Scholar 

  • Hegde M, Joseph SK, Pashankar F, DeRenzo C, Sanber K, Navai S, Byrd TT, Hicks J, Xu ML, Gerken C (2020) Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat Commun 11:1–15

    Google Scholar 

  • Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454

    Google Scholar 

  • Hillerdal V, Ramachandran M, Leja J, Essand M (2014) Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice. BMC Cancer 14:1–9

    Google Scholar 

  • Hirabayashi K, Du H, Xu Y, Shou P, Zhou X, Fucá G, Landoni E, Sun C, Chen Y, Savoldo B (2021) Dual-targeting CAR-T cells with optimal co-stimulation and metabolic fitness enhance antitumor activity and prevent escape in solid tumors. Nature cancer 2:904–918

    Google Scholar 

  • Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P, Rutherford N, Martin JM, Frydenberg M, Shakher R (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395:1208–1216

    Google Scholar 

  • Hohn O, Hanke K, Bannert N (2013) HERV-K (HML-2), the best preserved family of HERVs: endogenization, expression, and implications in health and disease. Front Oncol 3:246

    Google Scholar 

  • Hombach AA, Rappl G, Abken H (2019) Blocking CD30 on T cells by a dual specific CAR for CD30 and colon cancer antigens improves the CAR T cell response against CD30− tumors. Mol Ther 27:1825–1835

    Google Scholar 

  • Hombach AA, Geumann U, Günther C, Hermann FG, Abken H (2020) IL7-IL12 engineered mesenchymal stem cells (MSCs) improve a CAR T cell attack against colorectal cancer cells. Cell 9:873

    Google Scholar 

  • Hu Y, Huang H (2021) CD19/CD22 dual-targeted CAR T–cell therapy for relapsed/refractory aggressive B-cell lymphoma: A safety and efficacy study

    Google Scholar 

  • Hu Z, Zheng X, Jiao D, Zhou Y, Sun R, Wang B, Tian Z, Wei H (2020) LunX-CAR T cells as a targeted therapy for non-small cell lung cancer. Mol Ther Oncolytics 17:361–370

    Google Scholar 

  • Hu Y, Zhou Y, Zhang M, Ge W, Li Y, Yang L, Wei G, Han L, Wang H, Yu S (2021) CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia. Clin Cancer Res 27:2764–2772

    Google Scholar 

  • Huang X, Park H, Greene J, Pao J, Mulvey E, Zhou SX, Albert CM, Moy F, Sachdev D, Yee D (2015) IGF1R-and ROR1-specific CAR T cells as a potential therapy for high risk sarcomas. PLoS One 10:e0133152

    Google Scholar 

  • Huarte E, O’Connor RS, Peel MT, Nunez-Cruz S, Leferovich J, Juvekar A, Yang Y-o, Truong L, Huang T, Naim A (2020) Itacitinib (INCB039110), a JAK1 inhibitor, reduces cytokines associated with cytokine release syndrome induced by CAR T-cell therapy. Clin Cancer Res 26:6299–6309

    Google Scholar 

  • Ivanov S, Liao S-Y, Ivanova A, Danilkovitch-Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919

    Google Scholar 

  • Jacob J, Bellach J, Grützmann R, Alldinger I, Pilarsky C, Dietel M, Kristiansen G (2004) Expression of CD24 in adenocarcinomas of the pancreas correlates with higher tumor grades. Pancreatology 4:454–460

    Google Scholar 

  • Jafari D, Noorbakhsh F, Delavari A, Tavakkoli-Bazzaz J, Farashi-Bonab S, Abdollahzadeh R, Rezaei N (2020) Expression level of long noncoding RNA NKILAmiR103-miR107 inflammatory axis and its clinical significance as potential biomarker in patients with colorectal cancer. J Res Med Sci 25:41

    Google Scholar 

  • Jamnani FR, Rahbarizadeh F, Shokrgozar MA, Mahboudi F, Ahmadvand D, Sharifzadeh Z, Parhamifar L, Moghimi SM (2014) T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: towards tumor-directed oligoclonal T cell therapy. Biochim et Biophys Acta (BBA)-General Sub 1840:378–386

    Google Scholar 

  • Jiang Z, Jiang X, Chen S, Lai Y, Wei X, Li B, Lin S, Wang S, Wu Q, Liang Q (2017) Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. Front Immunol 7:690

    Google Scholar 

  • Jiang H, Gao H, Kong J, Song B, Wang P, Shi B, Wang H, Li Z (2018) Selective targeting of glioblastoma with EGFRvIII/EGFR bitargeted chimeric antigen receptor T cell. Cancer Immunol Res 6:1314–1326

    Google Scholar 

  • Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, Zhang H, Shi B, Jia J, Li Q (2019) Claudin18. 2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. JNCI 111:409–418

    Google Scholar 

  • Jiang H, Dong B, Gao L, Liu L, Ge J, He A, Du J Jr, Li L, Lu J, Chen X (2020) Clinical results of a multicenter study of the first-in-human dual BCMA and CD19 targeted novel platform fast CAR-T cell therapy for patients with relapsed/refractory multiple myeloma. Blood 136:25–26

    Google Scholar 

  • Jiang W, Li T, Guo J, Wang J, Jia L, Yang T, Jiao R, Wei X, Feng Z, Tang Q (2021) Bispecific c-met/PD-L1 CAR-T cells have enhanced therapeutic effects on hepatocellular carcinoma. Front Oncol 11:315

    Google Scholar 

  • Jin L, Tao H, Karachi A, Long Y, Hou AY, Na M, Dyson KA, Grippin AJ, Deleyrolle LP, Zhang W (2019) CXCR1-or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nat Commun 10:1–13

    Google Scholar 

  • Juillerat A, Marechal A, Filhol JM, Valogne Y, Valton J, Duclert A, Duchateau P, Poirot L (2017) An oxygen sensitive self-decision making engineered CAR T-cell. Sci Rep 7:1–8

    Google Scholar 

  • Jung M, Yang Y, McCloskey JE, Zaman M, Vedvyas Y, Zhang X, Stefanova D, Gray KD, Min IM, Zarnegar R (2020) Chimeric antigen receptor T cell therapy targeting ICAM-1 in gastric cancer. Mol Ther Oncolytics 18:587–601

    Google Scholar 

  • Junghans RP, Ma Q, Rathore R, Gomes EM, Bais AJ, Lo AS, Abedi M, Davies RA, Cabral HJ, Al-Homsi AS (2016) Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 76:1257–1270

    Google Scholar 

  • Kagoya Y, Tanaka S, Guo T, Anczurowski M, Wang C-H, Saso K, Butler MO, Minden MD, Hirano N (2018) A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nat Med 24:352–359

    Google Scholar 

  • Kakarla S, Chow KK, Mata M, Shaffer DR, Song X-T, Wu M-F, Liu H, Wang LL, Rowley DR, Pfizenmaier K (2013) Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther 21:1611–1620

    Google Scholar 

  • Kamita MK, Kano A, Mitsuru S (2015). Immunosuppression by colon cancer cells, mediated by tumor-secreted soluble factors. In: Proceedings of International Exchange and Innovation Conference on Engineering & Sciences (IEICES), Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

    Google Scholar 

  • Kaneko O, Gong L, Zhang J, Hansen JK, Hassan R, Lee B, Ho M (2009) A binding domain on mesothelin for CA125/MUC16. J Biol Chem 284:3739–3749

    Google Scholar 

  • Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF (2015) Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor–modified T-cell therapy for CEA+ liver metastases. Clin Cancer Res 21:3149–3159

    Google Scholar 

  • Katz S, Point GR, Cunetta M, Thorn M, Guha P, Espat NJ, Boutros C, Hanna N, Junghans RP (2016) Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther 23:142–148

    Google Scholar 

  • Katz SC, Hardaway J, Prince E, Guha P, Cunetta M, Moody A, Wang LJ, Armenio V, Espat NJ, Junghans RP (2020) HITM-SIR: phase Ib trial of intraarterial chimeric antigen receptor T-cell therapy and selective internal radiation therapy for CEA+ liver metastases. Cancer Gene Ther 27:341–355

    Google Scholar 

  • Kelley KM, Rowan BG, Ratnam M (2003) Modulation of the folate receptor α gene by the estrogen receptor: mechanism and implications in tumor targeting. Cancer Res 63:2820–2828

    Google Scholar 

  • Kim M, Pyo S, Kang CH, Lee CO, Lee HK, Choi SU, Park CH (2018) Folate receptor 1 (FOLR1) targeted chimeric antigen receptor (CAR) T cells for the treatment of gastric cancer. PLoS One 13:e0198347

    Google Scholar 

  • Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31:71–75

    Google Scholar 

  • Kloss CC, Lee J, Zhang A, Chen F, Melenhorst JJ, Lacey SF, Maus MV, Fraietta JA, Zhao Y, June CH (2018) Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther 26:1855–1866

    Google Scholar 

  • Knoche SM, Larson AC, Sliker BH, Poelaert BJ, Solheim JC (2021) The role of tumor heterogeneity in immune-tumor interactions. Cancer Metastasis Rev 40:1–13

    Google Scholar 

  • Knödler M, Körfer J, Kunzmann V, Trojan J, Daum S, Schenk M, Kullmann F, Schroll S, Behringer D, Stahl M (2018) Randomised phase II trial to investigate catumaxomab (anti-EpCAM× anti-CD3) for treatment of peritoneal carcinomatosis in patients with gastric cancer. Br J Cancer 119:296–302

    Google Scholar 

  • Komoto M, Nakata B, Amano R, Yamada N, Yashiro M, Ohira M, Wakasa K, Hirakawa K (2009) HER2 overexpression correlates with survival after curative resection of pancreatic cancer. Cancer Sci 100:1243–1247

    Google Scholar 

  • Koneru M, O’Cearbhaill R, Pendharkar S, Spriggs DR, Brentjens RJ (2015a) A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16 ecto directed chimeric antigen receptors for recurrent ovarian cancer. J Transl Med 13:1–11

    Google Scholar 

  • Koneru M, Purdon TJ, Spriggs D, Koneru S, Brentjens RJ (2015b) IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Onco Targets Ther 4:e994446

    Google Scholar 

  • Kotch C, Barrett D, Teachey DT (2019) Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol 15:813–822

    Google Scholar 

  • Kozani PS, Kozani PS, Rahbarizadeh F, Nikkhoi SK (2021) Strategies for dodging the obstacles in CAR T cell therapy. Front Oncol 11:627549

    Google Scholar 

  • Krenciute G, Prinzing BL, Yi Z, Wu M-F, Liu H, Dotti G, Balyasnikova IV, Gottschalk S (2017) Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 5:571–581

    Google Scholar 

  • Kubota K, Moriyama M, Furukawa S, Rafiul HA, Maruse Y, Jinno T, Tanaka A, Ohta M, Ishiguro N, Yamauchi M (2017) CD163+ CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Sci Rep 7:1–12

    Google Scholar 

  • Kuhn NF, Lopez AV, Li X, Cai W, Daniyan AF, Brentjens RJ (2020) CD103+ cDC1 and endogenous CD8+ T cells are necessary for improved CD40L-overexpressing CAR T cell antitumor function. Nat Commun 11:1–10

    Google Scholar 

  • Künkele A, Taraseviciute A, Finn LS, Johnson AJ, Berger C, Finney O, Chang CA, Rolczynski LS, Brown C, Mgebroff S (2017) Preclinical assessment of CD171-directed CAR T-cell adoptive therapy for childhood neuroblastoma: CE7 epitope target safety and product manufacturing feasibility. Clin Cancer Res 23:466–477

    Google Scholar 

  • Lamers CH, Sleijfer S, Van Steenbergen S, Van Elzakker P, Van Krimpen B, Groot C, Vulto A, Den Bakker M, Oosterwijk E, Debets R (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21:904–912

    Google Scholar 

  • Lamers CH, Klaver Y, Gratama JW, Sleijfer S, Debets R (2016) Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells–a completed study overview. Biochem Soc Trans 44:951–959

    Google Scholar 

  • Landry K, Thomas AA (2020) Neurological complications of CAR T cell therapy. Curr Oncol Rep 22:1–8

    Google Scholar 

  • Lange S, Sand LG, Bell M, Patil SL, Langfitt D, Gottschalk S (2021) A chimeric GM-CSF/IL18 receptor to sustain CAR T-cell function. Cancer Discov 11:1661

    Google Scholar 

  • Lanitis E, Poussin M, Hagemann IS, Coukos G, Sandaltzopoulos R, Scholler N, Powell DJ Jr (2012) Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor. Mol Ther 20:633–643

    Google Scholar 

  • Lanitis E, Paris Kosti CR, Cribioli E, Rota G, Spill A, Reichenbach P, Zoete V, Laniti DD, Coukos G, Irving M (2021) VEGFR-2 redirected CAR-T cells are functionally impaired by soluble VEGF-A competition for receptor binding. J Immunother Cancer 9:e002151

    Google Scholar 

  • Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, Grupp SA, Mackall CL (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood J Am Soc Hematol 124:188–195

    Google Scholar 

  • Leick MB, Maus MV, Frigault MJ (2021) Clinical perspective: treatment of aggressive B cell lymphomas with FDA-approved CAR-T cell therapies. Mol Ther 29:433–441

    Google Scholar 

  • Li T, Wang J (2020) Therapeutic effect of dual CAR-T targeting PDL1 and MUC16 antigens on ovarian cancer cells in mice. BMC Cancer 20:1–13

    Google Scholar 

  • Li S, Siriwon N, Zhang X, Yang S, Jin T, He F, Kim YJ, Mac J, Lu Z, Wang S (2017) Enhanced cancer immunotherapy by chimeric antigen receptor–modified T cells engineered to secrete checkpoint inhibitors. Clin Cancer Res 23:6982–6992

    Google Scholar 

  • Li G, Boucher JC, Kotani H, Park K, Zhang Y, Shrestha B, Wang X, Guan L, Beatty N, Abate-Daga D (2018a) 4-1BB enhancement of CAR T function requires NF-κB and TRAFs. JCI Insight 3:e121322

    Google Scholar 

  • Li H, Huang Y, Jiang D-Q, Cui L-Z, He Z, Wang C, Zhang Z-W, Zhu H-L, Ding Y-M, Li L-F (2018b) Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice. Cell Death Dis 9:1–11

    Google Scholar 

  • Li J, Li W, Huang K, Zhang Y, Kupfer G, Zhao Q (2018c) Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol 11:1–18

    Google Scholar 

  • Li C, Jiang P, Wei S, Xu X, Wang J (2020a) Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer 19:1–23

    Google Scholar 

  • Li P, Yang L, Li T, Bin S, Sun B, Huang Y, Yang K, Shan D, Gu H, Li H (2020b) The third generation anti-HER2 chimeric antigen receptor mouse T cells alone or together with anti-PD1 antibody inhibits the growth of mouse breast tumor cells expressing HER2 in vitro and in immune competent mice. Front Oncol 10:1143

    Google Scholar 

  • Li X, Berahovich R, Zhou H, Liu X, Li F, Xu S, Wei Y, Ouaret D, Bodmer W, Wu L (2020c) PLAP-CAR T cells mediate high specific cytotoxicity against colon cancer cells. Front Biosci 25:1765–1786

    Google Scholar 

  • Li Y, Xiao F, Zhang A, Zhang D, Nie W, Xu T, Han B, Seth P, Wang H, Yang Y (2020d) Oncolytic adenovirus targeting TGF-β enhances anti-tumor responses of mesothelin-targeted chimeric antigen receptor T cell therapy against breast cancer. Cell Immunol 348:104041

    Google Scholar 

  • Li Z, Chi Z, Ang W-X, Chen C, Tay JC, Ng Y-Y, Xu X, Wang J, Zhu J, Wang S (2020e) Experimental treatment of colorectal cancer in mice with human T cells electroporated with NKG2D RNA CAR. Immunotherapy 12:733–748

    Google Scholar 

  • Li H, Yang C, Cheng H, Huang S, Zheng Y (2021) CAR-T cells for colorectal cancer: target-selection and strategies for improved activity and safety. J Cancer 12:1804

    Google Scholar 

  • Ligtenberg MA, Mougiakakos D, Mukhopadhyay M, Witt K, Lladser A, Chmielewski M, Riet T, Abken H, Kiessling R (2016) Coexpressed catalase protects chimeric antigen receptor–redirected T cells as well as bystander cells from oxidative stress–induced loss of antitumor activity. J Immunol 196:759–766

    Google Scholar 

  • Lindner S, Johnson S, Brown C, Wang L (2020) Chimeric antigen receptor signaling: functional consequences and design implications. Sci Adv 6:eaaz3223

    Google Scholar 

  • Liu Y, Zheng P (2018) How does an anti-CTLA-4 antibody promote cancer immunity? Trends Immunol 39:953–956

    Google Scholar 

  • Liu H, Xu Y, Xiang J, Long L, Green S, Yang Z, Zimdahl B, Lu J, Cheng N, Horan LH (2017) Targeting alpha-fetoprotein (AFP)–MHC complex with CAR T-cell therapy for liver cancer. Clin Cancer Res 23:478–488

    Google Scholar 

  • Liu D, Zhao J, Song Y (2019) Engineering switchable and programmable universal CARs for CAR T therapy. J Hematol Oncol 12:1–9

    Google Scholar 

  • Liu G, Rui W, Zheng H, Huang D, Yu F, Zhang Y, Dong J, Zhao X, Lin X (2020a) CXCR2-modified CAR-T cells have enhanced trafficking ability that improves treatment of hepatocellular carcinoma. Eur J Immunol 50:712–724

    Google Scholar 

  • Liu M, Wang X, Li W, Yu X, Flores-Villanueva P, Xu-Monette ZY, Li L, Zhang M, Young KH, Ma X (2020b) Targeting PD-L1 in non-small cell lung cancer using CAR T cells. Oncogenesis 9:1–11

    Google Scholar 

  • Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S, El-Etriby R, Galli S, Tsokos MG, Orentas RJ (2016) Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res 4:869–880

    Google Scholar 

  • Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, Zeng Y, Chen H (2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9:176

    Google Scholar 

  • Lu T, Zhang Z, Zhu J, Wang Y, Jiang P, Xiao X, Bernatchez C, Heymach JV, Gibbons DL, Wang J (2021) Deep learning-based prediction of the T cell receptor–antigen binding specificity. Nat Mach Intell 3:864–875

    Google Scholar 

  • Luangwattananun P, Junking M, Sujjitjoon J, Wutti-In Y, Poungvarin N, Thuwajit C, Yenchitsomanus P-t (2021) Fourth-generation chimeric antigen receptor T cells targeting folate receptor alpha antigen expressed on breast cancer cells for adoptive T cell therapy. Breast Cancer Res Treat 186:25–36

    Google Scholar 

  • Lukjanov V, Koutná I, Šimara P (2021) CAR T-cell production using nonviral approaches. J Immunol Res 27:6644685

    Google Scholar 

  • Lv J, Zhao R, Wu D, Zheng D, Wu Z, Shi J, Wei X, Wu Q, Long Y, Lin S (2019) Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J Hematol Oncol 12:1–14

    Google Scholar 

  • Ma Y, Wang Z, Gong R, Li L, Wu H, Jin H (2014) Specific cytotoxicity of MUC1 chimeric antigen receptor-engineered Jurkat T cells against hepatocellular carcinoma. Acad J Second Mil Med Univ 5:1177–1182

    Google Scholar 

  • Magee MS, Kraft CL, Abraham TS, Baybutt TR, Marszalowicz GP, Li P, Waldman SA, Snook AE (2016) GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity. Onco Targets Ther 5:e1227897

    Google Scholar 

  • Makkouk A, Yang XC, Barca T, Lucas A, Turkoz M, Wong JT, Nishimoto KP, Brodey MM, Tabrizizad M, Gundurao SR (2021) Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J Immunother Cancer 9:e003441

    Google Scholar 

  • Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander M, Shomali N, Chartrand MS, Pathak Y, Jarahian M (2021) CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther 12:1–16

    Google Scholar 

  • Marrelli D, Roviello F, De Stefano A, Farnetani M, Garosi L, Messano A, Pinto E (1999) Prognostic significance of CEA, CA 19-9 and CA 72-4 preoperative serum levels in gastric carcinoma. Oncology 57:55–62

    Google Scholar 

  • Maruhashi T, Sugiura D, Okazaki I-m, Okazaki T (2020) LAG-3: from molecular functions to clinical applications. J Immunother Cancer 8:e001014

    Google Scholar 

  • Masoumi J, Jafarzadeh A, Abdolalizadeh J, Khan H, Philippe J, Mirzaei H, Mirzaei HR (2021) Cancer stem cell-targeted chimeric antigen receptor (CAR)-T cell therapy: challenges and prospects. Acta Pharm Sin B 11:1721–1739

    Google Scholar 

  • McGowan E, Lin Q, Ma G, Yin H, Chen S, Lin Y (2020) PD-1 disrupted CAR-T cells in the treatment of solid tumors: promises and challenges. Biomed Pharmacother 121:109625

    Google Scholar 

  • McKenna MK, Englisch A, Brenner B, Smith T, Hoyos V, Suzuki M, Brenner MK (2021) Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol Ther 29:1808–1820

    Google Scholar 

  • Migliore C, Giordano S (2008) Molecular cancer therapy: can our expectation be MET? Eur J Cancer 44:641–651

    Google Scholar 

  • Mirzaei HR, Pourghadamyari H, Rahmati M, Mohammadi A, Nahand JS, Rezaei A, Mirzaei H, Hadjati J (2018) Gene-knocked out chimeric antigen receptor (CAR) T cells: tuning up for the next generation cancer immunotherapy. Cancer Lett 423:95–104

    Google Scholar 

  • Mohammed S, Sukumaran S, Bajgain P, Watanabe N, Heslop HE, Rooney CM, Brenner MK, Fisher WE, Leen AM, Vera JF (2017) Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther 25:249–258

    Google Scholar 

  • Morello A, Sadelain M, Adusumilli PS (2016) Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov 6:133–146

    Google Scholar 

  • Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851

    Google Scholar 

  • Morgenroth A, Cartellieri M, Schmitz M, Günes S, Weigle B, Bachmann M, Abken H, Rieber EP, Temme A (2007) Targeting of tumor cells expressing the prostate stem cell antigen (PSCA) using genetically engineered T-cells. Prostate 67:1121–1131

    Google Scholar 

  • Morrison BJ, Steel JC, Morris JC (2018) Reduction of MHC-I expression limits T-lymphocyte-mediated killing of cancer-initiating cells. BMC Cancer 18:1–10

    Google Scholar 

  • Mullard A (2017) Second anticancer CAR T therapy receives FDA approval. Nat Rev Drug Discov 16:818–819

    Google Scholar 

  • Munisvaradass R, Kumar S, Govindasamy C, Alnumair KS, Mok PL (2017) Human CD3+ T-cells with the anti-ERBB2 chimeric antigen receptor exhibit efficient targeting and induce apoptosis in ERBB2 overexpressing breast cancer cells. Int J Mol Sci 18:1797

    Google Scholar 

  • Murad JP, Kozlowska AK, Lee HJ, Ramamurthy M, Chang W-C, Yazaki P, Colcher D, Shively J, Cristea M, Forman SJ (2018) Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol 9:2268

    Google Scholar 

  • Narayan V, Gladney W, Plesa G, Vapiwala N, Carpenter E, Maude SL, Lal P, Lacey SF, Melenhorst JJ, Sebro R (2019) A phase I clinical trial of PSMA-directed/TGFβ-insensitive CAR-T cells in metastatic castration-resistant prostate cancer. Proc Am Soc Clin Oncol 28:724

    Google Scholar 

  • Niemira M, Collin F, Szalkowska A, Bielska A, Chwialkowska K, Reszec J, Niklinski J, Kwasniewski M, Kretowski A (2020) Molecular signature of subtypes of non-small-cell lung cancer by large-scale transcriptional profiling: identification of key modules and genes by weighted gene co-expression network analysis (WGCNA). Cancers 12:37

    Google Scholar 

  • Norton N, Youssef B, Hillman DW, Nassar A, Geiger XJ, Necela BM, Liu H, Ruddy KJ, Polley M-YC, Ingle JN (2020) Folate receptor alpha expression associates with improved disease-free survival in triple negative breast cancer patients. NPJ Breast Cancer 6:1–9

    Google Scholar 

  • O’Shannessy DJ, Somers EB, Maltzman J, Smale R, Fu Y-S (2012) Folate receptor alpha (FRA) expression in breast cancer: identification of a new molecular subtype and association with triple negative disease. Springerplus 1:1–9

    Google Scholar 

  • Ostroukhova M, Qi Z, Oriss TB, Dixon-McCarthy B, Ray A (2006) Treg-mediated immunosuppression involves activation of the notch-HES1 axis by membrane-bound TGF-β. J Clin Invest 116:996–1004

    Google Scholar 

  • Owen DH, Giffin MJ, Bailis JM, Smit M-AD, Carbone DP, He K (2019) DLL3: an emerging target in small cell lung cancer. J Hematol Oncol 12:1–8

    Google Scholar 

  • Papa S, van Schalkwyk M, Maher J (2015) Clinical evaluation of ErbB-targeted CAR T-cells, following intracavity delivery in patients with ErbB-expressing solid tumors. Springer, Gene Therapy of Solid Cancers, pp 365–382

    Google Scholar 

  • Pegram H, Purdon T, Van Leeuwen D, Curran K, Giralt S, Barker J, Brentjens R (2015) IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia 29:415–422

    Google Scholar 

  • Peng W, Ye Y, Rabinovich BA, Liu C, Lou Y, Zhang M, Whittington M, Yang Y, Overwijk WW, Lizée G (2010) Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin Cancer Res 16:5458–5468

    Google Scholar 

  • Petersen C, Bell M, Houke H, Yi Z, Gottschalk S, Krenciute G (2019) IMMU-13. CRISPR/CAS9-mediated silencing of shp-1 significantly enhances the anti-glioma activity of IL-13Rα2 CAR T cells. Neuro-Oncology 21:ii95

    Google Scholar 

  • Petrausch U, Schuberth PC, Hagedorn C, Soltermann A, Tomaszek S, Stahel R, Weder W, Renner C (2012) Re-directed T cells for the treatment of fibroblast activation protein (FAP)-positive malignant pleural mesothelioma (FAPME-1). BMC Cancer 12:1–7

    Google Scholar 

  • Ping Y, Li F, Nan S, Zhang D, Shi X, Shan J, Zhang Y (2020) Augmenting the effectiveness of CAR-T cells by enhanced self-delivery of PD-1-neutralizing scFv. Front Cell Dev Biol 8:803

    Google Scholar 

  • Posey AD Jr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM (2016) Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44:1444–1454

    Google Scholar 

  • Priceman SJ, Gerdts EA, Tilakawardane D, Kennewick KT, Murad JP, Park AK, Jeang B, Yamaguchi Y, Yang X, Urak R (2018a) Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Onco Targets Ther 7:e1380764

    Google Scholar 

  • Priceman SJ, Tilakawardane D, Jeang B, Aguilar B, Murad JP, Park AK, Chang W-C, Ostberg JR, Neman J, Jandial R (2018b) Regional delivery of chimeric antigen receptor–engineered T cells effectively targets HER2+ breast cancer metastasis to the brain. Clin Cancer Res 24:95–105

    Google Scholar 

  • Qi C, Qin Y, Liu D, Gong J, Ge S, Zhang M, Peng Z, Zhou J, Zhang X, Peng X (2021) 1372O CLDN 18.2-targeted CAR-T cell therapy in patients with cancers of the digestive system. Ann Oncol 32:S1040

    Google Scholar 

  • Qin L, Zhao R, Chen D, Wei X, Wu Q, Long Y, Jiang Z, Li Y, Wu H, Zhang X (2020) Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth. Biomarker Res 8:1–12

    Google Scholar 

  • Qu C, Li Y, Song Y, Rizvi S, Raja C, Zhang D, Samra J, Smith R, Perkins A, Apostolidis C (2004) MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by 213 bi-C595 radioimmunoconjugate. Br J Cancer 91:2086–2093

    Google Scholar 

  • Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, Song M, Miele MM, Li Z, Wang P (2018) Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol 36:847–856

    Google Scholar 

  • Rafiq S, Hackett CS, Brentjens RJ (2020) Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 17:147–167

    Google Scholar 

  • Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017a) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23:2255–2266

    Google Scholar 

  • Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, Zhao Y (2017b) A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8:17002

    Google Scholar 

  • Renke J, Wasilewska E, Kędzierska-Mieszkowska S, Zorena K, Barańska S, Wenta T, Liberek A, Siluk D, Żurawa-Janicka D, Szczepankiewicz A, Renke M, Lipińska B (2020) Tumor suppressors-HTRA proteases and Interleukin-12-in pediatric asthma and allergic rhinitis patients. Medicina (Kaunas) 56:298

    Google Scholar 

  • Richman SA, Nunez-Cruz S, Moghimi B, Li LZ, Gershenson ZT, Mourelatos Z, Barrett DM, Grupp SA, Milone MC (2018) High-affinity GD2-specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. Cancer Immunol Res 6:36–46

    Google Scholar 

  • Roberti MP, Mordoh J, Levy EM (2012) Biological role of NK cells and immunotherapeutic approaches in breast cancer. Front Immunol 3:375

    Google Scholar 

  • Rochman H, Selhub J, Karrison T (1985) Folate binding protein and the estrogen receptor in breast cancer. Cancer Detect Prev 8:71–75

    Google Scholar 

  • Rossi SH, Klatte T, Usher-Smith J, Stewart GD (2018) Epidemiology and screening for renal cancer. World J Urol 36:1341–1353

    Google Scholar 

  • Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, Lim WA (2016a) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164:770–779

    Google Scholar 

  • Roybal KT, Williams JZ, Morsut L, Rupp LJ, Kolinko I, Choe JH, Walker WJ, McNally KA, Lim WA (2016b) Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell 167(419–432):e416

    Google Scholar 

  • Rudd CE, Taylor A, Schneider H (2009) CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229:12–26

    Google Scholar 

  • Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober A, Kraft DO, Feldman M, Wasik MA, June CH, Gill S (2017) Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov 7:1154–1167

    Google Scholar 

  • Rupp L, Schumann K, Roybal KT, Marson A, Lim WA (2016) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Am Assoc Immnol 7:737

    Google Scholar 

  • Safarzadeh Kozani P, Rahbarizadeh F, Khoshtinat Nikkhoi S (2021) Strategies for dodging the obstacles in CAR T cell therapy. Front Oncol 11:924

    Google Scholar 

  • Sahlolbei M, Dehghani M, Kheiri Yeghane Azar B, Vafaei S, Roviello G, D’Angelo A, Madjd Z, Kiani J (2020) Evaluation of targetable biomarkers for chimeric antigen receptor T-cell (CAR-T) in the treatment of pancreatic cancer: a systematic review and meta-analysis of preclinical studies: pancreatic cancer is one of the lethal malignant tumours in the world. In this study, we investigated the CAR T-cell therapy of pancreatic cancer. Int Rev Immunol 39:223–232

    Google Scholar 

  • Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ (2019) The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am Soc Clin Oncol Educ Book 39:433–444

    Google Scholar 

  • Santoro SP, Kim S, Motz GT, Alatzoglou D, Li C, Irving M, Powell DJ, Coukos G (2015) T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol Res 3:68–84

    Google Scholar 

  • Scarfò I, Maus MV (2017) Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer 5:1–8

    Google Scholar 

  • Schattgen SA, Guion K, Crawford JC, Souquette A, Barrio AM, Stubbington MJ, Thomas PG, Bradley P (2021) Integrating T cell receptor sequences and transcriptional profiles by clonotype neighbor graph analysis (CoNGA). Nat Biotechnol 40:1–10

    Google Scholar 

  • Scheffel MJ, Scurti G, Simms P, Garrett-Mayer E, Mehrotra S, Nishimura MI, Voelkel-Johnson C (2016) Efficacy of adoptive T-cell therapy is improved by treatment with the antioxidant N-acetyl cysteine, which limits activation-induced T-cell death. Cancer Res 76:6006–6016

    Google Scholar 

  • Schepisi G, Cursano MC, Casadei C, Menna C, Altavilla A, Lolli C, Cerchione C, Paganelli G, Santini D, Tonini G (2019) CAR-T cell therapy: a potential new strategy against prostate cancer. J Immunother Cancer 7:1–11

    Google Scholar 

  • Schiavone G, Epistolio S, Martin V, Molinari F, Barizzi J, Mazzucchelli L, Frattini M, Wannesson L (2020) Functional and clinical significance of ROR1 in lung adenocarcinoma. BMC Cancer 20:1–7

    Google Scholar 

  • Schneider D, Xiong Y, Wu D, Hu P, Alabanza L, Steimle B, Mahmud H, Anthony-Gonda K, Krueger W, Zhu Z (2021) Trispecific CD19-CD20-CD22–targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models. Sci Transl Med 13:eabc6401

    Google Scholar 

  • Schuberth PC, Hagedorn C, Jensen SM, Gulati P, van den Broek M, Mischo A, Soltermann A, Jüngel A, Belaunzaran OM, Stahel R (2013) Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med 11:1–11

    Google Scholar 

  • Schurich A, Magalhaes I, Mattsson J (2019) Metabolic regulation of CAR T cell function by the hypoxic microenvironment in solid tumors. Immunotherapy 11:335–345

    Google Scholar 

  • Schutsky K, Song D-G, Lynn R, Smith JB, Poussin M, Figini M, Zhao Y, Powell DJ (2015) Rigorous optimization and validation of potent RNA CAR T cell therapy for the treatment of common epithelial cancers expressing folate receptor. Oncotarget 6:28911

    Google Scholar 

  • Shah PD, Huang ACC, Xu X, Zhang PJ, Orlowski R, Matlawski T, Shea J, Cervini A, Amaravadi RK, Tchou JC (2020) Phase I trial of autologous cMET-directed CAR-t cells administered intravenously in patients with melanoma & breast carcinoma. Proc Am Soc Clin Oncol 38:10035

    Google Scholar 

  • Shen Z, Seppänen H, Vainionpää S, Ye Y, Wang S, Mustonen H, Puolakkainen P (2012) IL10, IL11, IL18 are differently expressed in CD14+ TAMs and play different role in regulating the invasion of gastric cancer cells under hypoxia. Cytokine 59:352–357

    Google Scholar 

  • Shen L, Li H, Bin S, Li P, Chen J, Gu H, Yuan W (2019) The efficacy of third generation anti-HER2 chimeric antigen receptor T cells in combination with PD1 blockade against malignant glioblastoma cells. Oncol Rep 42:1549–1557

    Google Scholar 

  • Shen L, Xiao Y, Tian J, Lu Z (2022) Remodeling metabolic fitness: strategies for improving the efficacy of chimeric antigen receptor T cell therapy. Cancer Lett 529:139

    Google Scholar 

  • Shi L, Meng T, Zhao Z, Han J, Zhang W, Gao F, Cai J (2017) CRISPR knock out CTLA-4 enhances the anti-tumor activity of cytotoxic T lymphocytes. Gene 636:36–41

    Google Scholar 

  • Shu R, Evtimov VJ, Hammett MV, Nguyen N-YN, Zhuang J, Hudson PJ, Howard MC, Pupovac A, Trounson AO, Boyd RL (2021) Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer. Mol Ther Oncolytics 20:325–341

    Google Scholar 

  • Siegel AM, Heimall J, Freeman AF, Hsu AP, Brittain E, Brenchley JM, Douek DC, Fahle GH, Cohen JI, Holland SM (2011) A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35:806–818

    Google Scholar 

  • Siegler EL, Kenderian SS (2020) Neurotoxicity and cytokine release syndrome after chimeric antigen receptor t cell therapy: insights into mechanisms and novel therapies. Front Immunol 11:1973

    Google Scholar 

  • Simon B, Harrer DC, Schuler-Thurner B, Schaft N, Schuler G, Dörrie J, Uslu U (2018) The si RNA-mediated downregulation of PD-1 alone or simultaneously with CTLA-4 shows enhanced in vitro CAR-T-cell functionality for further clinical development towards the potential use in immunotherapy of melanoma. Exp Dermatol 27:769–778

    Google Scholar 

  • Singh AP, Senapati S, Ponnusamy MP, Jain M, Lele SM, Davis JS, Remmenga S, Batra SK (2008) Clinical potential of mucins in diagnosis, prognosis, and therapy of ovarian cancer. Lancet Oncol 9:1076–1085

    Google Scholar 

  • Soler DC, Kerstetter-Fogle A, McCormick TS, Sloan AE (2021) Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, present and future developments. J Neuro-Oncol 156:1–16

    Google Scholar 

  • Song W, Li H, Tao K, Li R, Song Z, Zhao Q, Zhang F, Dou K (2008) Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. Int J Clin Pract 62:1212–1218

    Google Scholar 

  • Song D-G, Ye Q, Poussin M, Harms GM, Figini M, Powell DJ Jr (2012) CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood J Am Soc Hematol 119:696–706

    Google Scholar 

  • Song D-G, Ye Q, Poussin M, Chacon JA, Figini M, Powell DJ (2016) Effective adoptive immunotherapy of triple-negative breast cancer by folate receptor-alpha redirected CAR T cells is influenced by surface antigen expression level. J Hematol Oncol 9:1–12

    Google Scholar 

  • Song Y, Tong C, Wang Y, Gao Y, Dai H, Guo Y, Zhao X, Wang Y, Wang Z, Han W (2018) Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell 9:867–878

    Google Scholar 

  • Spear P, Barber A, Sentman CL (2013) Collaboration of chimeric antigen receptor (CAR)-expressing T cells and host T cells for optimal elimination of established ovarian tumors. Onco Targets Ther 2:e23564

    Google Scholar 

  • Specht JM, Lee S, Turtle CJ, Berger C, Baladrishnan A, Srivastava S, Voillet V, Veatch J, Gooley T, Mullane E (2018) Abstract CT131: A phase I study of adoptive immunotherapy for advanced ROR1+ malignancies with defined subsets of autologous T cells expressing a ROR1-specific chimeric antigen receptor (ROR1-CAR). AACR 78:CT131

    Google Scholar 

  • Sridhar P, Petrocca F (2017) Regional delivery of chimeric antigen receptor (CAR) T-cells for cancer therapy. Cancers 9:92

    Google Scholar 

  • Stern L, Perry R, Ofek P, Many A, Shabat D, Satchi-Fainaro R (2009) A novel antitumor prodrug platform designed to be cleaved by the endoprotease legumain. Bioconjug Chem 20:500–510

    Google Scholar 

  • Stüber T, Monjezi R, Wallstabe L, Kühnemundt J, Nietzer SL, Dandekar G, Wöckel A, Einsele H, Wischhusen J, Hudecek M (2020) Inhibition of TGF-β-receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J Immunother Cancer 8:e000676

    Google Scholar 

  • Sun J, Hemler ME (2001) Regulation of MMP-1 and MMP-2 production through CD147/extracellular matrix metalloproteinase inducer interactions. Cancer Res 61:2276–2281

    Google Scholar 

  • Sun M, Shi H, Liu C, Liu J, Liu X, Sun Y (2014) Construction and evaluation of a novel humanized HER2-specific chimeric receptor. Breast Cancer Res 16:1–10

    Google Scholar 

  • Sun B, Yang D, Dai H, Liu X, Jia R, Cui X, Li W, Cai C, Xu J, Zhao X (2019) Eradication of hepatocellular carcinoma by NKG2D-based CAR-T cells. Cancer Immunol Res 7:1813

    Google Scholar 

  • Sureban SM, Berahovich R, Zhou H, Xu S, Wu L, Ding K, May R, Qu D, Bannerman-Menson E, Golubovskaya V (2020) DCLK1 monoclonal antibody-based CAR-T cells as a novel treatment strategy against human colorectal cancers. Cancers 12:54

    Google Scholar 

  • Tahmasebi S, Elahi R, Esmaeilzadeh A (2019) Solid tumors challenges and new insights of CAR T cell engineering. Stem Cell Rev Rep 15:619–636

    Google Scholar 

  • Tahmasebi S, Elahi R, Khosh E, Esmaeilzadeh A (2021) Programmable and multi-targeted CARs: a new breakthrough in cancer CAR-T cell therapy. Clin Transl Oncol 23:1003–1019

    Google Scholar 

  • Talbot LJ, Chabot A, Funk A, Nguyen P, Wagner J, Ross A, Tillman H, Davidoff A, Gottschalk S, DeRenzo C (2021) A novel Orthotopic implantation technique for osteosarcoma produces spontaneous metastases and illustrates dose-dependent efficacy of B7-H3-CAR T cells. Front Immunol 12:2209

    Google Scholar 

  • Tang N, Cheng C, Zhang X, Qiao M, Li N, Mu W, Wei X-F, Han W, Wang H (2020) TGF-β inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 5:e133977

    Google Scholar 

  • Tanyi JL, Haas AR, Beatty GL, Stashwick CJ, O’Hara MH, Morgan MA, Porter DL, Melenhorst JJ, Plesa G, Lacey SF (2016) Anti-mesothelin chimeric antigen receptor T cells in patients with epithelial ovarian cancer. Proc Am Soc Clin Oncol 34:5511

    Google Scholar 

  • Tao K, He M, Tao F, Xu G, Ye M, Zheng Y, Li Y (2018) Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother Pharmacol 82:815–827

    Google Scholar 

  • Taromi S, Firat E, Simonis A, Braun LM, Apostolova P, Elze M, Passlick B, Schumacher A, Lagies S, Frey A (2021) Enhanced AC133-specific CAR T cell therapy induces durable remissions in mice with metastatic small cell lung cancer. Cancer Lett 520:385–399

    Google Scholar 

  • Tchou J, Wang L-C, Selven B, Zhang H, Conejo-Garcia J, Borghaei H, Kalos M, Vondeheide RH, Albelda SM, June CH (2012) Mesothelin, a novel immunotherapy target for triple negative breast cancer. Breast Cancer Res Treat 133:799–804

    Google Scholar 

  • Tchou J, Zhao Y, Levine BL, Zhang PJ, Davis MM, Melenhorst JJ, Kulikovskaya I, Brennan AL, Liu X, Lacey SF (2017) Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res 5:1152–1161

    Google Scholar 

  • Teng R, Zhao J, Zhao Y, Gao J, Li H, Zhou S, Wang Y, Sun Q, Lin Z, Yang W (2019) Chimeric antigen receptor–modified T cells repressed solid tumors and their relapse in an established patient-derived colon carcinoma xenograft model. J Immunother 42:33

    Google Scholar 

  • Thistlethwaite FC, Gilham DE, Guest RD, Rothwell DG, Pillai M, Burt DJ, Byatte AJ, Kirillova N, Valle JW, Sharma SK (2017) The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother 66:1425–1436

    Google Scholar 

  • Tóth G, Szöllősi J, Abken H, Vereb G, Szöőr Á (2020) A small number of HER2 redirected CAR T cells significantly improves immune response of adoptively transferred mouse lymphocytes against human breast cancer xenografts. Int J Mol Sci 21:1039

    Google Scholar 

  • Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee C-CR, Restifo NP, Rosenberg SA (2013) Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med 210:1125–1135

    Google Scholar 

  • Tu E, McGlinchey K, Lazdun Y, Kurasawa J, Wilson S, Wetzel L, Coffman K, Cooper Z, Streicher K (2020) Anti-PD-L1 and anti-CD73 combination therapy promotes T cell response to EGFR mutant NSCLC. JCI Insight 7:e142843

    Google Scholar 

  • Tumino N, Weber G, Besi F, Del Bufalo F, Bertaina V, Paci P, Quatrini L, Antonucci L, Sinibaldi M, Quintarelli C (2021) Polymorphonuclear myeloid-derived suppressor cells impair the anti-tumor efficacy of GD2. CAR T-cells in patients with neuroblastoma. J Hematol Oncol 14:1–7

    Google Scholar 

  • Uma R (2012) Role of mucin histochemistry and immunohistochemistry in gastric adenocarcinoma. Thanjavur Medical College, Thanjavur

    Google Scholar 

  • Ungureanu BS, Lungulescu C-V, Pirici D, Turcu-Stiolica A, Gheonea DI, Sacerdotianu VM, Liliac IM, Moraru E, Bende F, Saftoiu A (2021) Clinicopathologic relevance of Claudin 18.2 expression in gastric cancer: A meta-analysis. Front Oncol 11:533

    Google Scholar 

  • Vitale I, Shema E, Loi S, Galluzzi L (2021) Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med 27:212–224

    Google Scholar 

  • Vogler I, Newrzela S, Hartmann S, Schneider N, Von Laer D, Koehl U, Grez M (2010) An improved bicistronic CD20/tCD34 vector for efficient purification and in vivo depletion of gene-modified T cells for adoptive immunotherapy. Mol Ther 18:1330–1338

    Google Scholar 

  • Vormittag P, Gunn R, Ghorashian S, Veraitch FS (2018) A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol 53:164–181

    Google Scholar 

  • Wallstabe L, Göttlich C, Nelke LC, Kühnemundt J, Schwarz T, Nerreter T, Einsele H, Walles H, Dandekar G, Nietzer SL (2019) ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI Insight 4:e126345

    Google Scholar 

  • Wang X, Rivière I (2016) Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 3:16015

    Google Scholar 

  • Wang X, Che X, Liu C, Fan Y, Bai M, Hou K, Shi X, Zhang X, Liu B, Zheng C (2018a) Cancer-associated fibroblasts-stimulated interleukin-11 promotes metastasis of gastric cancer cells mediated by upregulation of MUC1. Exp Cell Res 368:184–193

    Google Scholar 

  • Wang Y, Chen M, Wu Z, Tong C, Dai H, Guo Y, Liu Y, Huang J, Lv H, Luo C (2018b) CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. Onco Targets Ther 7:e1440169

    Google Scholar 

  • Wang Y, Jiang H, Luo H, Sun Y, Shi B, Sun R, Li Z (2019a) An IL-4/21 inverted cytokine receptor improving CAR-T cell potency in immunosuppressive solid-tumor microenvironment. Front Immunol 10:1691

    Google Scholar 

  • Wang Y, Yu W, Zhu J, Wang J, Xia K, Liang C, Tao H (2019b) Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res 38:1–11

    Google Scholar 

  • Wang D, Shao Y, Zhang X, Lu G, Liu B (2020a) IL-23 and PSMA-targeted duo-CAR T cells in prostate cancer eradication in a preclinical model. J Transl Med 18:1–10

    Google Scholar 

  • Wang JX, Choi SY, Niu X, Kang N, Xue H, Killam J, Wang Y (2020b) Lactic acid and an acidic tumor microenvironment suppress anticancer immunity. Int J Mol Sci 21:8363

    Google Scholar 

  • Wang Z, Liu Q, Risu N, Fu J, Zou Y, Tang J, Li L, Liu H, Zhou G, Zhu X (2020c) Galunisertib enhances chimeric antigen receptor-modified T cell function. Eur J Histochem 64:3122

    Google Scholar 

  • Wei X, Lai Y, Li J, Qin L, Xu Y, Zhao R, Li B, Lin S, Wang S, Wu Q (2017) PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells. Onco Targets Ther 6:e1284722

    Google Scholar 

  • Weinkove R, George P, Dasyam N, McLellan AD (2019) Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin Transl Immunol 8:e1049

    Google Scholar 

  • Weiss T, Weller M, Guckenberger M, Sentman CL, Roth P (2018) NKG2D-based CAR T cells and radiotherapy exert synergistic efficacy in glioblastoma. Cancer Res 78:1031–1043

    Google Scholar 

  • Whilding LM, Halim L, Draper B, Parente-Pereira AC, Zabinski T, Davies DM, Maher J (2019) CAR T-cells targeting the integrin αvβ6 and co-expressing the chemokine receptor CXCR2 demonstrate enhanced homing and efficacy against several solid malignancies. Cancers 11:674

    Google Scholar 

  • Whiteside T (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912

    Google Scholar 

  • Wikenheiser DJ, Stumhofer JS (2016) ICOS co-stimulation: friend or foe? Front Immunol 7:304

    Google Scholar 

  • Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira ACP, Burbridge SE, Box C, Eccles SA, Maher J (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 32:1059–1070

    Google Scholar 

  • Wolf P, Alzubi J, Gratzke C, Cathomen T (2021) The potential of CAR T cell therapy for prostate cancer. Nat Rev Urol 18:556–571

    Google Scholar 

  • Wu D, Lv J, Zhao R, Wu Z, Zheng D, Shi J, Lin S, Wang S, Wu Q, Long Y (2020) PSCA is a target of chimeric antigen receptor T cells in gastric cancer. Biomarker Res 8:1–11

    Google Scholar 

  • Wu JW, Dand S, Doig L, Papenfuss AT, Scott CL, Ho G, Ooi JD (2021) T-cell receptor therapy in the treatment of ovarian cancer: A mini review. Front Immunol 12:1141

    Google Scholar 

  • Xing H, Yang X, Xu Y, Tang K, Tian Z, Chen Z, Zhang Y, Xue Z, Rao Q, Wang M (2021) Anti-tumor effects of vascular endothelial growth factor/vascular endothelial growth factor receptor binding domain-modified chimeric antigen receptor T cells. Cytotherapy 23:810–819

    Google Scholar 

  • Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, Liu H, Creighton CJ, Gee AP, Heslop HE (2014) Closely related T-memory stem cells correlate with in vivo expansion of CAR. CD19-T cells and are preserved by IL-7 and IL-15. Blood J Am Soc Hematol 123:3750–3759

    Google Scholar 

  • Yang M, Tang X, Zhang Z, Gu L, Wei H, Zhao S, Zhong K, Mu M, Huang C, Jiang C (2020a) Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors. Theranostics 10:7622

    Google Scholar 

  • Yang Y, McCloskey JE, Yang H, Puc J, Gallegos AAG, Vedvyas Y, Min IM, von Hofe E, Jin MM (2020b) Eradication of EpCAM expressing solid tumors by low-affinity CAR T cells. AACR 80:6598

    Google Scholar 

  • Ye L, Lou Y, Lu L, Fan X (2019) Mesothelin-targeted second generation CAR-T cells inhibit growth of mesothelin-expressing tumors in vivo. Exp Ther Med 17:739–747

    Google Scholar 

  • Yen MJ, Hsu C-Y, Mao T-L, Wu T, Roden R, Wang T-L, Shih I-M (2006) Diffuse mesothelin expression correlates with prolonged patient survival in ovarian serous carcinoma. Clin Cancer Res 12:827–831

    Google Scholar 

  • Yilmaz A, Cui H, Caligiuri MA, Yu J (2020) Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol 13:1–22

    Google Scholar 

  • Yin Y, Boesteanu AC, Binder ZA, Xu C, Reid RA, Rodriguez JL, Cook DR, Thokala R, Blouch K, McGettigan-Croce B (2018) Checkpoint blockade reverses anergy in IL-13Rα2 humanized scFv-based CAR T cells to treat murine and canine gliomas. Mol Ther Oncolytics 11:20–38

    Google Scholar 

  • Yoon DH, Osborn MJ, Tolar J, Kim CJ (2018) Incorporation of immune checkpoint blockade into chimeric antigen receptor T cells (CAR-Ts): combination or built-in CAR-T. Int J Mol Sci 19:340

    Google Scholar 

  • Yu YD, Kim TJ (2021) Chimeric antigen receptor-engineered T cell therapy for the Management of Patients with metastatic prostate cancer: A comprehensive review. Int J Mol Sci 22:640

    Google Scholar 

  • Yu J, Wu X, Yan J, Yu H, Xu L, Chi Z, Sheng X, Si L, Cui C, Dai J (2018) Anti-GD2/4-1BB chimeric antigen receptor T cell therapy for the treatment of Chinese melanoma patients. J Hematol Oncol 11:1–15

    Google Scholar 

  • Zare Rafie M, Esmaeilzadeh A, Ghoreishi A, Tahmasebi S, Faghihzadeh E, Elahi R (2021) IL-38 as an early predictor of the ischemic stroke prognosis. Cytokine 146:155626

    Google Scholar 

  • Zhai X, You F, Xiang S, Jiang L, Chen D, Li Y, Fan S, Han Z, Zhang T, An G (2021) MUC1-Tn-targeting chimeric antigen receptor-modified Vγ9Vδ2 T cells with enhanced antigen-specific anti-tumor activity. Am J Cancer Res 11:79

    Google Scholar 

  • Zhan X, Wang B, Li Z, Li J, Wang H, Chen L, Jiang H, Wu M, Xiao J, Peng X (2019) Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. Proc Am Soc Clin Oncol 37:2509

    Google Scholar 

  • Zhang B (2010) CD73: a novel target for cancer immunotherapy. Cancer Res 70:6407–6411

    Google Scholar 

  • Zhang Z, Wang J, Tacha DE, Li P, Bremer RE, Chen H, Wei B, Xiao X, Da J, Skinner K (2014) Folate receptor α associated with triple-negative breast cancer and poor prognosis. Arch Pathol Lab Med 138:890–895

    Google Scholar 

  • Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R (2016) CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: from bench to bedside. Onco Targets Ther 5:e1251539

    Google Scholar 

  • Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, Zhang R, Xiong Z, Wei Z, Shen J (2017a) Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol Ther 25:1248–1258

    Google Scholar 

  • Zhang Y, Zhang X, Cheng C, Mu W, Liu X, Li N, Wei X, Liu X, Xia C, Wang H (2017b) CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells. Front Medicine 11:554–562

    Google Scholar 

  • Zhang W, Ni M, Su Y, Wang H, Zhu S, Zhao A, Li G (2018) MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur Urol Focus 4:412–419

    Google Scholar 

  • Zhang B-L, Li D, Gong Y-L, Huang Y, Qin D-Y, Jiang L, Liang X, Yang X, Gou H-F, Wang Y-S (2019a) Preclinical evaluation of chimeric antigen receptor–modified T cells specific to epithelial cell adhesion molecule for treating colorectal cancer. Hum Gene Ther 30:402–412

    Google Scholar 

  • Zhang R-Y, Wei D, Liu Z-K, Yong Y-L, Wei W, Zhang Z-Y, Lv J-J, Zhang Z, Chen Z-N, Bian H (2019b) Doxycycline inducible chimeric antigen receptor T cells targeting CD147 for hepatocellular carcinoma therapy. Front Cell Dev Biol 7:233

    Google Scholar 

  • Zhao Y, Wang QJ, Yang S, Kochenderfer JN, Zheng Z, Zhong X, Sadelain M, Eshhar Z, Rosenberg SA, Morgan RA (2009) A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J Immunol 183:5563–5574

    Google Scholar 

  • Zhao J, Lin Q, Song Y, Liu D (2018) Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol 11:1–9

    Google Scholar 

  • Zhao J, Song Y, Liu D (2019a) Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. J Hematol Oncol 12:1–11

    Google Scholar 

  • Zhao W, Jia L, Zhang M, Huang X, Qian P, Tang Q, Zhu J, Feng Z (2019b) The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cancer. Am J Cancer Res 9:1846

    Google Scholar 

  • Zhao Z, Li Y, Liu W, Li X (2020) Engineered IL-7 receptor enhances the therapeutic effect of AXL-CAR-T cells on triple-negative breast cancer. Biomed Res Int 2020:4795171

    Google Scholar 

  • Zheng W, Carol E, Alli R, Basham JH, Abdelsamed HA, Palmer LE, Jones LL, Youngblood B, Geiger TL (2018) PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia 32:1157–1167

    Google Scholar 

  • Zhong X-S, Matsushita M, Plotkin J, Riviere I, Sadelain M (2010) Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell–mediated tumor eradication. Mol Ther 18:413–420

    Google Scholar 

  • Zhong S, Cui Y, Liu Q, Chen S (2020) CAR-T cell therapy for lung cancer: a promising but challenging future. J Thorac Dis 12:4516

    Google Scholar 

  • Zhou X, Di Stasi A, Tey S-K, Krance RA, Martinez C, Leung KS, Durett AG, Wu M-F, Liu H, Leen AM (2014) Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood J Am Soci Hematol 123:3895–3905

    Google Scholar 

  • Zhou F, Krishnamurthy J, Wei Y, Li M, Hunt K, Johanning GL, Cooper LJ, Wang-Johanning F (2015) Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Onco Targets Ther 4:e1047582

    Google Scholar 

  • Zhou F, Li M, Wei Y, Lin K, Lu Y, Shen J, Johanning GL, Wang-Johanning F (2016) Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget 7:84093

    Google Scholar 

  • Zhou F, Shang W, Yu X, Tian J (2018) Glypican-3: A promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev 38:741–767

    Google Scholar 

  • Zhou R, Yazdanifar M, Roy LD, Whilding LM, Gavrill A, Maher J, Mukherjee P (2019a) CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 10:1149

    Google Scholar 

  • Zhou Y, Wen P, Li M, Li Y, Li XA (2019b) Construction of chimeric antigen receptor-modified T cells targeting EpCAM and assessment of their anti-tumor effect on cancer cells. Mol Med Rep 20:2355–2364

    Google Scholar 

  • Zhu X, Prasad S, Gaedicke S, Hettich M, Firat E, Niedermann G (2015) Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Oncotarget 6:171

    Google Scholar 

  • Zuccolotto G, Fracasso G, Merlo A, Montagner IM, Rondina M, Bobisse S, Figini M, Cingarlini S, Colombatti M, Zanovello P (2014) PSMA-specific CAR-engineered T cells eradicate disseminated prostate cancer in preclinical models. PLoS One 9:e109427

    Google Scholar 

Download references

Acknowlegments

As medical primary care providers, the authors would like to appreciate all cancer frontline researchers who seek help for cancer patients.

Author Contribution

R.E., M.Z., and M.B. contributed to data gathering, writing the primary manuscript, and designing the tables. R.E. contributed to reviewing the manuscript. D.J. contributed to the hypothesis, data gathering, and reviewing and revising the final manuscript. A.H.M contributed to designing the figures, and reviewing and revising the manuscript. A.E. contributed to the hypothesis, correspondence, and reviewing and revising the final manuscript. All authors have viewed and confirmed the final manuscript before submission.

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval

This chapter does not contain any studies with human participants/animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Esmaeilzadeh .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esmaeilzadeh, A., Jafari, D., Elahi, R., Bazargan, M., Rafie, M.Z., Mansourabadi, A.H. (2023). Chimeric Antigen Receptor (CAR) T Cell Immunotherapy for Solid Tumors. In: Interdisciplinary Cancer Research. Springer, Cham. https://doi.org/10.1007/16833_2023_156

Download citation

  • DOI: https://doi.org/10.1007/16833_2023_156

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics