Skip to main content

Toll-Like Receptors (TLRs) in Health and Disease: An Overview

  • Chapter
  • First Online:
Toll-like Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 276))

Abstract

Toll-like receptors were discovered as proteins playing a crucial role in the dorsoventral patterning during embryonic development in the Drosophila melanogaster (D. melanogaster) almost 40 years ago. Subsequently, further research also showed a role of the Toll protein or Toll receptor in the recognition of Gram-positive bacterial and fungal pathogens infecting D. melanogaster. In 1997, the human homolog was reported and the receptor was named the Toll-like receptor 4 (TLR4) that recognizes lipopolysaccharide (LPS) of the Gram-negative bacteria as a pathogen-associated molecular pattern (PAMP). Identification of TLR4 in humans filled the long existing gap in the field of infection and immunity, addressing the mystery surrounding the recognition of foreign pathogens/microbes by the immune system. It is now known that mammals (mice and humans) express 13 different TLRs that are expressed on the outer cell membrane or intracellularly, and which recognize different PAMPs or microbe-associated molecular patterns (MAMPs) and death/damage-associated molecular patterns (DAMPs) to initiate the protective immune response. However, their dysregulation generates profound and prolonged pro-inflammatory immune responses responsible for different inflammatory and immune-mediated diseases. This chapter provides an overview of TLRs in the control of the immune response, their association with different diseases, including TLR single nucleotide polymorphisms (SNPs), interactions with microRNAs (miRs), use in drug development and vaccine design, and expansion in neurosciences to include pain, addiction, metabolism, reproduction, and wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnese DM, Calvano JE, Hahm SJ, Coyle SM, Corbett SA, Calvano SE, Lowry SF (2002) Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 186:1522–1525

    Article  CAS  PubMed  Google Scholar 

  • Al-Qahtani A, Al-Ahdal M, Abdo A, Sanai F, Al-Anazi M, Khalaf N, Viswan NA, Al-Ashgar H, Al-Humaidan H, Al-Suwayeh R, Hussain Z, Alarifi S, Al-Okail M, Almajhdi FN (2012) Toll-like receptor 3 polymorphism and its association with hepatitis B virus infection in Saudi Arabian patients. J Med Virol 84:1353–1359

    Article  CAS  PubMed  Google Scholar 

  • Aluri J, Cooper MA, Schuettpelz LG (2021) Toll-like receptor signaling in the establishment and function of the immune system. Cell 10:1374

    Article  CAS  Google Scholar 

  • Anwar MA, Shah M, Kim J, Choi S (2019) Recent clinical trends in toll-like receptor targeting therapeutics. Med Res Rev 39:1053–1090

    Article  CAS  PubMed  Google Scholar 

  • Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191

    Article  CAS  PubMed  Google Scholar 

  • Awomoyi AA, Rallabhandi P, Pollin TI, Lorenz E, Sztein MB, Boukhvalova MS, Hemming VG, Blanco JC, Vogel SN (2007) Association of TLR4 polymorphisms with symptomatic respiratory syncytial virus infection in high-risk infants and young children. J Immunol 179:3171–3177

    Article  CAS  PubMed  Google Scholar 

  • Balistreri CR, Candore G, Lio D, Colonna-Romano G, Di Lorenzo G, Mansueto P, Rini G, Mansueto S, Cillari E, Franceschi C, Caruso C (2005) Role of TLR4 receptor polymorphisms in Boutonneuse fever. Int J Immunopathol Pharmacol 18:655–660

    Article  CAS  PubMed  Google Scholar 

  • Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, Zhang Y, Dorgham K, Philippot Q, Rosain J, Béziat V, Manry J, Shaw E, Haljasmägi L, Peterson P, Lorenzo L, Bizien L, Trouillet-Assant S, Dobbs K, de Jesus AA, Belot A, Kallaste A, Catherinot E, Tandjaoui-Lambiotte Y, Le Pen J, Kerner G, Bigio B, Seeleuthner Y, Yang R, Bolze A, Spaan AN, Delmonte OM, Abers MS, Aiuti A, Casari G, Lampasona V, Piemonti L, Ciceri F, Bilguvar K, Lifton RP, Vasse M, Smadja DM, Migaud M, Hadjadj J, Terrier B, Duffy D, Quintana-Murci L, van de Beek D, Roussel L, Vinh DC, Tangye SG, Haerynck F, Dalmau D, Martinez-Picado J, Brodin P, Nussenzweig MC, Boisson-Dupuis S, Rodríguez-Gallego C, Vogt G, Mogensen TH, Oler AJ, Gu J, Burbelo PD, Cohen JI, Biondi A, Bettini LR, D'Angio M, Bonfanti P, Rossignol P, Mayaux J, Rieux-Laucat F, Husebye ES, Fusco F, Ursini MV, Imberti L, Sottini A, Paghera S, Quiros-Roldan E, Rossi C, Castagnoli R, Montagna D, Licari A, Marseglia GL, Duval X, Ghosn J, HGID Lab, NIAID-USUHS Immune Response to COVID Group, COVID Clinicians, COVID-STORM Clinicians, Imagine COVID Group, French COVID Cohort Study Group, Milieu Intérieur Consortium, CoV-Contact Cohort, Amsterdam UMC Covid-19 Biobank, COVID Human Genetic Effort, Tsang JS, Goldbach-Mansky R, Kisand K, Lionakis MS, Puel A, Zhang S-Y, Holland SM, Gorochov G, Jouanguy E, Rice CM, Cobat A, Notarangelo LD, Abel L, Su HC, Casanova J-L, Collaborators (2020) Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370:eabd4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayraktar R, Bertilaccio MTS, Calin GA (2019) The interaction between two worlds: microRNAs and toll-like receptors. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01053

  • Belvin MP, Anderson KV (1996) A conserved signaling pathway: the drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 12:393–416

    Article  CAS  PubMed  Google Scholar 

  • Beutner KR, Spruance SL, Hougham AJ, Fox TL, Owens ML, Douglas JM Jr (1998) Treatment of genital warts with an immune-response modifier (imiquimod). J Am Acad Dermatol 38:230–239

    Article  CAS  PubMed  Google Scholar 

  • Bilak H, Tauszig-Delamasure S, Imler JL (2003) Toll and toll-like receptors in drosophila. Biochem Soc Trans 31:648–651

    Article  CAS  PubMed  Google Scholar 

  • Bochud PY, Magaret AS, Koelle DM, Aderem A, Wald A (2007a) Polymorphisms in TLR2 are associated with increased viral shedding and lesional rate in patients with genital herpes simplex virus type 2 infection. J Infect Dis 196:505–509

    Article  CAS  PubMed  Google Scholar 

  • Bochud PY, Hersberger M, Taffe P, Bochud M, Stein CM, Rodrigues SD, Calandra T, Francioli P, Telenti A, Speck RF, Aderem A (2007b) Polymorphisms in toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS 21:441–446

    Article  CAS  PubMed  Google Scholar 

  • Bochud PY, Hawn TR, Siddiqui MR, Saunderson P, Britton S, Abraham I, Argaw AT, Janer M, Zhao LP, Kaplan G, Aderem A (2008) Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis 197:253–261

    Article  CAS  PubMed  Google Scholar 

  • Calmasini FB, McCarthy CG, Wenceslau CF, Priviero FBM, Antunes E, Webb RC (2020) Toll-like receptor 9 regulates metabolic profile and contributes to obesity-induced benign prostatic hyperplasia in mice. Pharmacol Rep 72:179–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes-Barragan L, Züst R, Weber F, Spiegel M, Lang KS, Akira S, Thiel V, Ludewig B (2007) Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109:1131–1137

    Article  CAS  PubMed  Google Scholar 

  • Channappanavar R, Fehr AR, Zheng J, Wohlford-Lenane C, Abrahante JE, Mack M, Sompallae R, McCray PB Jr, Meyerholz DK, Perlman S (2019) IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. J Clin Invest 129:3625–3639

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, DiPietro LA (2017) Toll-like receptor function in acute wounds. Adv Wound Care (New Rochelle) 6:344–355

    Article  Google Scholar 

  • Chen X, Liang H, Zhang J, Zen K, Zhang C-Y (2013) microRNAs are ligands of toll-like receptors. RNA 19:737–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citores MJ, Banos I, Noblejas A, Rosado S, Castejon R, Cuervas-Mons V (2011) Toll-like receptor 3 L412F polymorphism may protect against acute graft rejection in adult patients undergoing liver transplantation for hepatitis C-related cirrhosis. Transplant Proc 43:2224–2226

    Article  CAS  PubMed  Google Scholar 

  • Crews FT, Walter TJ, Coleman LG Jr, Vetreno RP (2017) Toll-like receptor signaling and stages of addiction. Psychopharmacology 234:1483–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croci S, Venneri MA, Mantovani S, Fallerini C, Benetti E, Picchiotti N, Campolo F, Imperatore F, Palmieri M, Daga S, Gabbi C, Montagnani F, Beligni G, Farias TDJ, Carriero ML, Sarno LD, Alaverdian D, Aslaksen S, Cubellis MV, Spiga O, Baldassarri M, Fava F, Norman PJ, Frullanti E, Isidori AM, Amoroso A, Mari F, Furini S, Mondelli MU, GEN-COVID Multicenter Study, Chiariello M, Renieri A, Meloni I (2021) The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males. medRxiv. https://doi.org/10.1101/2021.03.23.21254158

  • Dasu MR, Rivkah Isseroff R (2012) Toll-like receptors in wound healing: location, accessibility, and timing. J Investig Dermatol 132:1955–1958

    Article  CAS  PubMed  Google Scholar 

  • De Santis V, Corona A, Vitale D, Nencini C, Potalivo A, Prete A, Zani G, Malfatto A, Tritapepe L, Taddei S, Locatelli A, Sambri V, Fusari M, Singer M (2021) Bacterial infections in critically ill patients with SARS-2-COVID-19 infection: results of a prospective observational multicenter study. Infection. https://doi.org/10.1007/s15010-021-01661-2

  • Dhangadamajhi G, Rout R (2021) Association of TLR3 functional variant (rs3775291) with COVID-19 susceptibility and death: a population-scale study. Hum Cell 34:1025–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallerini C, Daga S, Mantovani S, Benetti E, Picchiotti N, Francisci D, Paciosi F, Schiaroli E, Baldassarri M, Fava F, Palmieri M, Ludovisi S, Castelli F, Quiros-Roldan E, Vaghi M, Rusconi S, Siano M, Bandini M, Spiga O, Capitani K, Furini S, Mari F, Study G-CM, Renieri A, Mondelli MU, Frullanti E (2021) Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. elife 10:e67569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Batool M, Kim MS, Choi S (2021) Toll-like receptors as a therapeutic target in the era of immunotherapies. Front Cell Dev Biol 9:756315

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrugia M, Baron B (2017) The role of toll-like receptors in autoimmune diseases through failure of the self-recognition mechanism. Int J Inflam 2017:8391230–8391230

    PubMed  PubMed Central  Google Scholar 

  • Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S, Wu J, Datta P, McCormick M, Huang L, McDermott E, Eisenlohr L, Landel CP, Alnemri ES (2010) The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol 11:385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrandon D, Imler JL, Hoffmann JA (2004) Sensing infection in drosophila: toll and beyond. Semin Immunol 16:43–53

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald KA, Kagan JC (2020) Toll-like receptors and the control of immunity. Cell 180:1044–1066

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Xiong Y, Li Q, Yang H (2017) Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. Front Physiol 8:508

    Article  PubMed  PubMed Central  Google Scholar 

  • Gobert V, Gottar M, Matskevich AA, Rutschmann S, Royet J, Belvin M, Hoffmann JA, Ferrandon D (2003) Dual activation of the drosophila toll pathway by two pattern recognition receptors. Science 302:2126–2130

    Article  CAS  PubMed  Google Scholar 

  • Gozuacik D, Akkoc Y, Ozturk DG, Kocak M (2017) Autophagy-regulating microRNAs and cancer. Front Oncol 7:65–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansson GK, Edfeldt K (2005) Toll to be paid at the gateway to the vessel wall. Arterioscler Thromb Vasc Biol 25:1085–1087

    Article  CAS  PubMed  Google Scholar 

  • Hartl D, Lehmann N, Hoffmann F, Jansson A, Hector A, Notheis G, Roos D, Belohradsky BH, Wintergerst U (2008) Dysregulation of innate immune receptors on neutrophils in chronic granulomatous disease. J Allergy Clin Immunol 121:375–382.e9

    Article  CAS  PubMed  Google Scholar 

  • Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198:1563–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM (2009) Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One 4:e5990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752

    CAS  PubMed  Google Scholar 

  • Huang L, Xu H, Peng G (2018) TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol 15:428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huebener P, Schwabe RF (2013) Regulation of wound healing and organ fibrosis by toll-like receptors. Biochim Biophys Acta (BBA) - Mol Basis Dis 1832:1005–1017

    Article  CAS  Google Scholar 

  • Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, Hamann L, Schumann RR, Tapping RI (2007) Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol (Baltimore, MD: 1950) 178:7520–7524

    Article  CAS  Google Scholar 

  • Jones CL, Weiss DS (2011) TLR2 signaling contributes to rapid inflammasome activation during F. novicida infection. PLoS One 6:e20609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junqueira C, Crespo Â, Ranjbar S, Ingber J, Parry B, Ravid S, Lacerda LB d, Lewandrowski M, Clark S, Ho F, Vora SM, Leger V, Beakes C, Margolin J, Russell N, Gehrke L, Adhikari UD, Henderson L, Janssen E, Kwon D, Sander C, Abraham J, Filbin M, Goldberg MB, Wu H, Mehta G, Bell S, Goldfeld AE, Lieberman J (2021) SARS-CoV-2 infects blood monocytes to activate NLRP3 and AIM2 inflammasomes, pyroptosis and cytokine release. medRxiv. https://doi.org/10.1101/2021.03.06.21252796

  • Kannaki TR, Shanmugam M, Verma PC (2011) Toll-like receptors and their role in animal reproduction. Anim Reprod Sci 125:1–12

    Article  CAS  PubMed  Google Scholar 

  • Karnaushkina MA, Guryev AS, Mironov KO, Dunaeva EA, Korchagin VI, Bobkova OY, Vasilyeva IS, Kassina DV, Litvinova MM (2021) Associations of toll-like receptor gene polymorphisms with NETosis activity as prognostic criteria for the severity of pneumonia. Sovrem Tekhnologii Med 13:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesh S, Mensah NY, Peterlongo P, Jaffe D, Hsu K, Brink MVD, O'Reilly R, Pamer E, Satagopan J, Papanicolaou GA (2005) TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann N Y Acad Sci 1062:95–103

    Article  CAS  PubMed  Google Scholar 

  • Könner AC, Brüning JC (2011) Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol Metab 22:16–23

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2018) Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol 59:391–412

    Article  CAS  Google Scholar 

  • Kumar V (2019a) The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. Int Rev Immunol 38:131–156

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2019b) Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 332:16–30

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2020a) The trinity of cGAS, TLR9, and ALRs guardians of the cellular galaxy against host-derived self-DNA. Front Immunol 11:624597

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2020b) Understanding the complexities of SARS-CoV2 infection and its immunology: a road to immune-based therapeutics. Int Immunopharmacol 88:106980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V (2020c) Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 89:107087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V (2021) Going, toll-like receptors in skin inflammation and inflammatory diseases. EXCLI J 20:52–79

    PubMed  PubMed Central  Google Scholar 

  • Kumar V, Sharma A (2008) Innate immunity in sepsis pathogenesis and its modulation: new immunomodulatory targets revealed. J Chemother 20:672–683

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kiran S, Kumar S, Singh UP (2021) Extracellular vesicles in obesity and its associated inflammation. Int Rev Immunol. https://doi.org/10.1080/08830185.2021.1964497

  • Lacagnina MJ, Watkins LR, Grace PM (2018) Toll-like receptors and their role in persistent pain. Pharmacol Ther 184:145–158

    Article  CAS  PubMed  Google Scholar 

  • Lancaster GI, Langley KG, Berglund NA, Kammoun HL, Reibe S, Estevez E, Weir J, Mellett NA, Pernes G, Conway JRW, Lee MKS, Timpson P, Murphy AJ, Masters SL, Gerondakis S, Bartonicek N, Kaczorowski DC, Dinger ME, Meikle PJ, Bond PJ, Febbraio MA (2018) Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 27:1096–1110.e5

    Article  CAS  PubMed  Google Scholar 

  • Lathia JD, Okun E, Tang S-C, Griffioen K, Cheng A, Mughal MR, Laryea G, Selvaraj PK, ffrench-Constant C, Magnus T, Arumugam TV, Mattson MP (2008) Toll-like receptor 3 is a negative regulator of embryonic neural progenitor cell proliferation. J Neurosci 28:13978–13984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauterbach MA, Hanke JE, Serefidou M, Mangan MSJ, Kolbe C-C, Hess T, Rothe M, Kaiser R, Hoss F, Gehlen J, Engels G, Kreutzenbeck M, Schmidt SV, Christ A, Imhof A, Hiller K, Latz E (2019) Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51:997–1011.e7

    Article  CAS  PubMed  Google Scholar 

  • Lee SM-Y, Yip T-F, Yan S, Jin D-Y, Wei H-L, Guo R-T, Peiris JSM (2018) Recognition of double-stranded RNA and regulation of interferon pathway by toll-like receptor 10. Front Immunol 9:516–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann SM, Krüger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kälin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012) An unconventional role for miRNA: let-7 activates toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835

    Article  CAS  PubMed  Google Scholar 

  • Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B (2003) The drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4:478–484

    Article  CAS  PubMed  Google Scholar 

  • Li G, Hidalgo A (2021) The toll route to structural brain plasticity. Front Physiol 12:679766–679766

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Shi X (2013) MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 10:65–71

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Kidder K, Liu Y (2019) Extracellular microRNAs initiate immunostimulation via activating toll-like receptor signaling pathways. ExRNA 1:9

    Article  Google Scholar 

  • Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart JM (2002) Activation of drosophila toll during fungal infection by a blood serine protease. Science 297:114–116

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-T, Verma A, Hodgkinson CP (2012) Toll-like receptors and human disease: lessons from single nucleotide polymorphisms. Curr Genomics 13:633–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032

    Article  CAS  PubMed  Google Scholar 

  • Lv M, Tan H, Deng J, Du L, Su G, Wang Q, Zhong Z, Tan X, Cao Q, Kijlstra A, Yang P (2020) Association of toll-like receptor 10 polymorphisms with paediatric idiopathic uveitis in Han Chinese. Br J Ophthalmol 104:1467–1471

    Article  PubMed  Google Scholar 

  • Maglione PJ, Simchoni N, Cunningham-Rundles C (2015) Toll-like receptor signaling in primary immune deficiencies. Ann N Y Acad Sci 1356:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6:823–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A (2015) Type I interferons in infectious disease. Nat Rev Immunol 15:87–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medvedev AE (2013) Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer. J Interf Cytokine Res 33:467–484

    Article  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the drosophila toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  CAS  PubMed  Google Scholar 

  • Mezger M, Einsele H, Loeffler J (2010) Genetic susceptibility to infections with aspergillus fumigatus. Crit Rev Microbiol 36:168–177

    Article  CAS  PubMed  Google Scholar 

  • Michel T, Reichhart JM, Hoffmann JA, Royet J (2001) Drosophila toll is activated by gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756–759

    Article  CAS  PubMed  Google Scholar 

  • Misch EA, Hawn TR (2008) Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond) 114:347–360

    Article  Google Scholar 

  • Moore CE, Segal S, Berendt AR, Hill AV, Day NP (2004) Lack of association between toll-like receptor 2 polymorphisms and susceptibility to severe disease caused by Staphylococcus aureus. Clin Diagn Lab Immunol 11:1194–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nahid MA, Satoh M, Chan EKL (2011) MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 8:388–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Netea MG, Wijmenga C, O'Neill LA (2012) Genetic variation in toll-like receptors and disease susceptibility. Nat Immunol 13:535–542

    Article  CAS  PubMed  Google Scholar 

  • Nishimoto S, Fukuda D, Sata M (2020) Emerging roles of toll-like receptor 9 in cardiometabolic disorders. Inflamm Regener 40:18

    Article  CAS  Google Scholar 

  • Nunes KP, de Oliveira AA, Szasz T, Biancardi VC, Webb RC (2018) Blockade of toll-like receptor 4 attenuates erectile dysfunction in diabetic rats. J Sex Med 15:1235–1245

    Article  PubMed  Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  • O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Article  CAS  PubMed  Google Scholar 

  • Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34:269–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of toll-like receptor signalling. Nat Rev Immunol 11:163–175

    Article  CAS  PubMed  Google Scholar 

  • Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, Wittebole X, Dugernier T, Perrotin D, Tidswell M, Jauregui L, Krell K, Pachl J, Takahashi T, Peckelsen C, Cordasco E, Chang CS, Oeyen S, Aikawa N, Maruyama T, Schein R, Kalil AC, Van Nuffelen M, Lynn M, Rossignol DP, Gogate J, Roberts MB, Wheeler JL, Vincent JL (2013) Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 309:1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Paracatu LC, Schuettpelz LG (2020) Contribution of aberrant toll like receptor signaling to the pathogenesis of myelodysplastic syndromes. Front Immunol 11. https://doi.org/10.3389/fimmu.2021.672346

  • Peirs C, Seal RP (2015) Targeting toll-like receptors to treat chronic pain. Nat Med 21:1251–1252

    Article  CAS  PubMed  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  CAS  PubMed  Google Scholar 

  • Priviero F, Calmasini F, Dela Justina V, Wenceslau CF, McCarthy CG, Webb RC (2021) Macrophage-specific toll like receptor 9 (TLR9) causes corpus cavernosum dysfunction in mice fed a high fat diet. J Sex Med 18:723–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutschmann S, Kilinc A, Ferrandon D (2002) Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in drosophila. J Immunol 168:1542–1546

    Article  CAS  PubMed  Google Scholar 

  • Sariol A, Perlman S (2021) SARS-CoV-2 takes its toll. Nat Immunol 22:801–802

    Article  CAS  PubMed  Google Scholar 

  • Sartorius R, Trovato M, Manco R, D'Apice L, De Berardinis P (2021) Exploiting viral sensing mediated by toll-like receptors to design innovative vaccines. NPJ Vaccines 6:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schott E, Witt H, Neumann K, Taube S, Oh DY, Schreier E, Vierich S, Puhl G, Bergk A, Halangk J, Weich V, Wiedenmann B, Berg T (2007) A toll-like receptor 7 single nucleotide polymorphism protects from advanced inflammation and fibrosis in male patients with chronic HCV-infection. J Hepatol 47:203–211

    Article  CAS  PubMed  Google Scholar 

  • Schulze HJ, Cribier B, Requena L, Reifenberger J, Ferrandiz C, Garcia Diez A, Tebbs V, McRae S (2005) Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from a randomized vehicle-controlled phase III study in Europe. Br J Dermatol 152:939–947

    Article  CAS  PubMed  Google Scholar 

  • Shafran N, Shafran I, Ben-Zvi H, Sofer S, Sheena L, Krause I, Shlomai A, Goldberg E, Sklan EH (2021) Secondary bacterial infection in COVID-19 patients is a stronger predictor for death compared to influenza patients. Sci Rep 11:12703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J, Chen WH, Ernst RK, Rossignol DP, Gusovsky F, Blanco JCG, Vogel SN (2013) The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497:498–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirey KA, Perkins DJ, Lai W, Zhang W, Fernando LR, Gusovsky F, Blanco JCG, Vogel SN (2019) Influenza “trains” the host for enhanced susceptibility to secondary bacterial infection. MBio 10:e00810-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirey KA, Blanco JCG, Vogel SN (2021) Targeting TLR4 signaling to blunt viral-mediated acute lung injury. Front Immunol 12:705080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sironi M, Biasin M, Cagliani R, Forni D, De Luca M, Saulle I, Lo Caputo S, Mazzotta F, Macias J, Pineda JA, Caruz A, Clerici M (2012) A common polymorphism in TLR3 confers natural resistance to HIV-1 infection. J Immunol 188:818–823

    Article  CAS  PubMed  Google Scholar 

  • Sopirala MM (2021) Predisposition of COVID-19 patients to secondary infections: set in stone or subject to change? Curr Opin Infect Dis 34:357–364

    CAS  PubMed  Google Scholar 

  • Stallmann-Jorgensen I, Ogbi S, Szasz T, Webb RC (2015) A toll-like receptor 1/2 agonist augments contractility in rat corpus cavernosum. J Sex Med 12:1722–1731

    Article  CAS  PubMed  Google Scholar 

  • Stappers MHT, Oosting M, Ioana M, Reimnitz P, Mouton JW, Netea MG, Gyssens IC, Joosten LAB (2015) Genetic variation in TLR10, an inhibitory toll-like receptor, influences susceptibility to complicated skin and skin structure infections. J Infect Dis 212:1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wiklund F, Hsu FC, Balter K, Zheng SL, Johansson JE, Chang B, Liu W, Li T, Turner AR, Li L, Li G, Adami HO, Isaacs WB, Xu J, Gronberg H (2006) Interactions of sequence variants in interleukin-1 receptor-associated kinase4 and the toll-like receptor 6-1-10 gene cluster increase prostate cancer risk. Cancer Epidemiol Biomark Prev 15:480–485

    Article  CAS  Google Scholar 

  • Svensson A, Tunback P, Nordstrom I, Padyukov L, Eriksson K (2012) Polymorphisms in toll-like receptor 3 confer natural resistance to human herpes simplex virus type 2 infection. J Gen Virol 93:1717–1724

    Article  CAS  PubMed  Google Scholar 

  • Taha SI, Shata AK, Baioumy SA, Fouad SH, Anis SG, Mossad IM, Moustafa NM, Abdou DM, Youssef MK (2021) Toll-like receptor 4 polymorphisms (896A/G and 1196C/T) as an indicator of COVID-19 severity in a convenience sample of Egyptian patients. J Inflamm Res 14:6293–6303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tal G, Mandelberg A, Dalal I, Cesar K, Somekh E, Tal A, Oron A, Itskovich S, Ballin A, Houri S, Beigelman A, Lider O, Rechavi G, Amariglio N (2004) Association between common toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J Infect Dis 189:2057–2063

    Article  CAS  PubMed  Google Scholar 

  • Tantisira K, Klimecki WT, Lazarus R, Palmer LJ, Raby BA, Kwiatkowski DJ, Silverman E, Vercelli D, Martinez FD, Weiss ST (2004) Toll-like receptor 6 gene (TLR6): single-nucleotide polymorphism frequencies and preliminary association with the diagnosis of asthma. Genes Immun 5:343–346

    Article  CAS  PubMed  Google Scholar 

  • Tesovnik T, Kovač J, Pohar K, Hudoklin S, Dovč K, Bratina N, Trebušak Podkrajšek K, Debeljak M, Veranič P, Bosi E, Piemonti L, Ihan A, Battelino T (2020) Extracellular vesicles derived human-miRNAs modulate the immune system in type 1 diabetes. Front Cell Dev Biol 8. https://doi.org/10.3389/fcell.2020.00202

  • Thompson CM, Holden TD, Rona G, Laxmanan B, Black RA, OʼKeefe, G. E., Wurfel, M. M. (2014) Toll-like receptor 1 polymorphisms and associated outcomes in sepsis after traumatic injury: a candidate gene association study. Ann Surg 259:179–185

    Article  PubMed  Google Scholar 

  • Thuong NT, Hawn TR, Thwaites GE, Chau TT, Lan NT, Quy HT, Hieu NT, Aderem A, Hien TT, Farrar JJ, Dunstan SJ (2007) A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun 8:422–428

    Article  CAS  PubMed  Google Scholar 

  • Ueta M, Sotozono C, Inatomi T, Kojima K, Tashiro K, Hamuro J, Kinoshita S (2007) Toll-like receptor 3 gene polymorphisms in Japanese patients with Stevens-Johnson syndrome. Br J Ophthalmol 91:962–965

    Article  PubMed  PubMed Central  Google Scholar 

  • Ureña-Peralta JR, Pérez-Moraga R, García-García F, Guerri C (2020) Lack of TLR4 modifies the miRNAs profile and attenuates inflammatory signaling pathways. PLoS One 15:e0237066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valanne S, Wang J-H, Rämet M (2011) The drosophila toll Signaling pathway. J Immunol 186:649–656

    Article  CAS  PubMed  Google Scholar 

  • Virtue A, Wang H, Yang, X.-f. (2012) MicroRNAs and toll-like receptor/interleukin-1 receptor signaling. J Hematol Oncol 5:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CH, Eng HL, Lin KH, Chang CH, Hsieh CA, Lin YL, Lin TM (2011) TLR7 and TLR8 gene variations and susceptibility to hepatitis C virus infection. PLoS One 6:e26235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Liu F, Wei M, Qiu Y, Ma C, Shen L, Huang Y (2018a) Chronic constriction injury-induced microRNA-146a-5p alleviates neuropathic pain through suppression of IRAK1/TRAF6 signaling pathway. J Neuroinflammation 15:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang MM, Huang WW, Wu SQ, Wang MG, Tang XY, Sandford AJ, He JQ (2018b) Polymorphisms in toll-like receptor 10 and tuberculosis susceptibility: evidence from three independent series. Front Immunol 9:309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wlasiuk G, Khan S, Switzer WM, Nachman MW (2009) A history of recurrent positive selection at the toll-like receptor 5 in primates. Mol Biol Evol 26:937–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Metcalf JP (2020) The role of type I IFNs in influenza: antiviral superheroes or immunopathogenic villains? J Innate Immun 12:437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurfel MM, Gordon AC, Holden TD, Radella F, Strout J, Kajikawa O, Ruzinski JT, Rona G, Black RA, Stratton S, Jarvik GP, Hajjar AM, Nickerson DA, Rieder M, Sevransky J, Maloney JP, Moss M, Martin G, Shanholtz C, Garcia JGN, Gao L, Brower R, Barnes KC, Walley KR, Russell JA, Martin TR (2008) Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med 178:710–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Wang Y, Tan X, Jing H (2012) MicroRNAs in autophagy and their emerging roles in crosstalk with apoptosis. Autophagy 8:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu J, Wang C, Liu J, Lu W (2021) Toll-like receptors gene polymorphisms in autoimmune disease. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.672346

  • Zhao L, Ye Y, Gu L, Jian Z, Stary CM, Xiong X (2021) Extracellular vesicle-derived miRNA as a novel regulatory system for bi-directional communication in gut-brain-microbiota axis. J Transl Med 19:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P, Jonsson CB, Kanneganti T-D (2021) TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol 22:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Kumar or James E. Barrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Barrett, J.E. (2022). Toll-Like Receptors (TLRs) in Health and Disease: An Overview. In: Kumar, V. (eds) Toll-like Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 276. Springer, Cham. https://doi.org/10.1007/164_2021_568

Download citation

Publish with us

Policies and ethics