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Abstract

Triglycerides are critical lipids as they provide an energy source that is both
compact and efficient. Due to its hydrophobic nature triglyceride molecules can
pack together densely and so be stored in adipose tissue. To be transported in the
aqueous medium of plasma, triglycerides have to be incorporated into lipoprotein
particles along with other components such as cholesterol, phospholipid and
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associated structural and regulatory apolipoproteins. Here we discuss the physi-
ology of normal triglyceride metabolism, and how impaired metabolism induces
hypertriglyceridemia and its pathogenic consequences including atherosclerosis.
We also discuss established and novel therapies to reduce triglyceride-rich
lipoproteins.
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1 Introduction

Interest in triglyceride-rich lipoproteins (TRLs) has for long been rather low, but
recent results demonstrating that TRLs are causally associated with atherosclerotic
cardiovascular disease (ASCVD) have generated major interest in these lipoproteins.
Hypertriglyceridemia is quite common today and approximately 25% of US adults
are estimated to have hypertriglyceridemia (triglyceride [TG] level � 1.7 mmol/L]).
TRLs are synthesized in the liver as very low-density lipoproteins (VLDL) and in the
intestine as chylomicrons. During lipolysis TRLs are converted to atherogenic
cholesterol-ester enriched lipoprotein remnant particles. Dysregulation of the normal
metabolism of TRLs leads to excess formation of these atherogenic lipoprotein
remnant particles (Chapman et al. 2011; Nordestgaard and Varbo 2014; Boren
et al. 2014; Dallinga-Thie et al. 2016). Since humans are postprandial most of the
day, we continuously generate atherogenic remnant particles. Consequently, the
continuous generation of remnants after each meal may be an important causal
risk factor for the development of atherosclerosis. Genetic studies have also
identified key regulators of the metabolism of TRLs and major emphasis is now
directed at evaluating their potential as novel candidate targets for dyslipidemia and
premature ASCVD risk (Dallinga-Thie et al. 2016). Here we discuss how TRLs are
synthesized and metabolized.

2 Hepatic Formation and Secretion of VLDL

The assembly of VLDL is a complex process and involves a stepwise lipidation of
apoB100, the principal apolipoprotein on VLDL, in the liver (Olofsson et al. 2000;
Olofsson and Boren 2005). ApoB100 is a large protein consisting of one globular
N-terminal structure, two domains of amphipathic β-sheets and two domains of
amphipathic α-helices (Segrest et al. 2001) ApoB differs from other apolipoproteins
in that it is highly hydrophobic. Therefore, it cannot equilibrate between different
lipoproteins but remains bound to the particle on which it was secreted into plasma.
Thus, every VLDL particle contains one molecule of apoB100. This is generally
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thought to be explained by the presence of antiparallel β-sheets with a width of
approximately 30 Å, which form very strong lipid-binding structures (Segrest et al.
2001).

The lipidation cascade starts with a cotranslational transfer of triglycerides to
nascent apoB polypeptides during the assembly of nascent VLDL mediated by the
microsomal triglyceride-transfer protein (MTP) in the rough endoplasmic reticulum
(ER) (Fig. 1) (Boren et al. 1992; Rustaeus et al. 1998). The critical role of MTP in
VLDL assembly is demonstrated by the rare, autosomal-recessive disorder
abetalipoproteinemia. The disorder results from mutations in the gene encoding
the large subunit of MTP and is characterized by nearly a complete absence of
apoB-containing lipoproteins including VLDL. To date, over different 30 mutations

Fig. 1 Assembly and secretion of apoB100-containing lipoproteins. ApoB is synthesized and
translocated into the lumen of the endoplasmic reticulum (ER) (1). The growing nascent apoB
polypeptide is cotranslationally lipidated by the lipid transfer protein MTTP to form a partially
lipidated pre-VLDL particle (2). If apoB fails to be lipidated and acquire a correct protein folding
(3), it is sorted to posttranslational degradation (4). The triglyceride-poor pre-VLDL particle exits
the ER by Sar1/CopII vesicles that bud off (6) from specific sites on the ER membrane (Gusarova
et al. 2003). The vesicles fuse to form the ER Golgi intermediate compartment (ERGIC) (7), which
then fuses with the cis-Golgi (8). The triglyceride-poor particles are either secreted as smaller
VLDL2 particles (9) or further lipidated (10) to form mature triglyceride-rich VLDL1 particles,
which are then secreted (11). The formation of triglyceride-rich VLDL1 particles is highly depen-
dent on the presence of triglyceride-containing cytosolic lipid droplets. These lipid droplets are
formed as small primordial droplets from microsomal membranes (12) and increase in size by
fusion (13). The triglycerides within the droplets undergo lipolysis and are re-esterified (14) before
they lipidate the triglyceride-poor VLDL to form triglyceride-rich VLDL. Hepatic triglycerides
originate from influx of free fatty acids, hepatic de novo lipogenesis (DNL), or hepatic uptake of
lipoprotein particles
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in the MTP gene have been described for ABL (Lee and Hegele 2014). Absence of
MTP leads to premature proteosomal degradation of nascent apoB and therefore
absence of VLDL and chylomicron production. The patients are characterized by
hypocholesterolemia and the absence of apoB-containing lipoproteins (Paquette
et al. 2016).

The cotranslational lipidation stabilizes the nascent apoB polypeptide and results
in the formation of a nascent pre-VLDL lipoprotein particle (Bostrom et al. 1988).
The immature pre-VLDL undergoes further lipidation in the secretory pathway,
forming a triglyceride-poor VLDL particle (Stillemark-Billton et al. 2005). This
particle can either be secreted from the liver as a smaller VLDL particle (i.e.,
VLDL2) or undergo further lipidation to form a larger triglyceride-rich (i.e.,
VLDL1) (Stillemark-Billton et al. 2005; Stillemark et al. 2000). The lipidation
cascade is still not fully understood, but has been shown to involve several proteins
including the GTP-binding protein ADP-ribosylation factor 1 (ARF-1) (Asp et al.
2005).

The conversion of smaller triglyceride-poor VLDL particles to large triglyceride-
rich VLDL likely involves the fusion of cytoplasmic lipid droplets to the smaller
VLDL particle. Thus, this bulk addition of triglycerides differs from the initial
stepwise addition of triglycerides. The formation of the large mature VLDL particles
is therefore dependent on the presence of cytosolic lipid droplets (Wiggins and
Gibbons 1992; Salter et al. 1998; Gibbons et al. 2000). Therefore, it’s not surprising
that hepatic accumulation of triglycerides, non-alcoholic fatty liver disease
(NAFLD), is linked to oversecretion of large VLDL1 particles (Adiels et al.
2006a, b). However, not all forms of fatty liver disease are linked to increased
hepatic secretion of VLDL1, indicating that the hepatic stores of triglycerides in
some genetic forms of NAFLD, like PNPLA3, are not accessible for VLDL forma-
tion. However, the molecular mechanisms are still unclear. Interestingly, the
amounts of triglycerides that are added to triglyceride-rich poor VLDL seem to be
constant. Thus, subjects with type 2 diabetes secrete more – not larger – VLDL1

particles than non-diabetic controls (Adiels et al. 2005, 2006a, b). Thus, bulk
addition of triglycerides from the cytoplasmic lipid droplets seems to be a highly
regulated process.

3 Regulators of Hepatic VLDL Secretion

Hepatic triglyceride accumulation stimulates hepatic VLDL1 secretion, and the
sources for liver fat are: (1) plasma fatty acids generated by lipolysis of the peripheral
adipose tissue; (2) fatty acids synthesized in the liver from carbohydrates through
hepatic de novo lipogenesis (DNL); (3) fatty acids that come from the diet; and
(4) hepatic uptake of triglyceride-rich lipoproteins (TRLs) (Parks and Hellerstein
2006; Barrows and Parks 2006). Most of the hepatic triglycerides originate from
circulating fatty acids, since the hepatic uptake of fatty acids is not regulated. Thus,
increased levels of circulating fatty acids are directly connected to increased hepatic
uptake of fatty acids (Tamura and Shimomura 2005). Lipolysis of adipose tissue
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(in particular the visceral adipose tissue) is the principal contributor (approx. 80%) of
the plasma NEFA pool (Tamura and Shimomura 2005). It is therefore not surprising
that visceral adiposity is strongly associated with NAFLD and oversecretion of
VLDL1 particles (Parks and Hellerstein 2006; Barrows and Parks 2006; Farquhar
et al. 1965; Parks et al. 1999; Havel 1961; Donnelly et al. 2005).

Normally the hepatic DNL plays a minor role (<5%) (Barrows and Parks 2006),
but in conditions of increased plasma glucose and hyperinsulinemia it has been
shown to generate �25% of liver triglycerides (Donnelly et al. 2005). The explana-
tion is that glucose is the substrate for hepatic DNL and that hyperinsulinemia is
linked to increased expression of factors needed for hepatic DNL such as SREBP1-c
(Browning and Horton 2004; Shimomura et al. 1999), the carbohydrate response
element–binding protein (ChREBP) (Koo et al. 2001), and PPARγ (Edvardsson
et al. 1999; Chao et al. 2000; Westerbacka et al. 2007).

In addition, there is evidence that VLDL1 and VLDL2 are regulated indepen-
dently. Ethanol overconsumption seems to stimulate VLDL1 production in humans
(Fielding et al. 2000), whereas endogenous cholesterol synthesis correlates with
VLDL2-apoB but not VLDL1-apoB production (Prinsen et al. 2003). This finding
may explain why VLDL2, but not VLDL1, is increased in patients with increased
plasma cholesterol such as moderate hypercholesterolemia (Gaw et al. 1995) and
familial hypercholesterolemia (James et al. 1989).

4 Synthesis and Secretion of Chylomicrons from
the Intestine

Chylomicrons are synthesized in the enterocytes of the small intestine and each
chylomicron contains one molecule of apoB48. The apoB48 protein corresponds
exactly to the N-terminal 48% of apoB100. The explanation for this is that both
proteins are encoded by the same gene. The mRNA for apoB48 is generated from the
apoB100 mRNA by a posttranscriptional editing process during which a deamina-
tion of a cytidine (at nucleotide 6,666) to a uridine converts a glutamine codon to a
stop codon. The mechanism has been extensively reviewed (Davidson and Shelness
2000; Anant and Davidson 2001; Wang et al. 2003). The assembly of chylomicrons
is a highly complex multistep process, and less is still known about chylomicron
assembly than VLDL assembly (Xiao et al. 2019; Hussain et al. 2005). However, it
is known that in addition to MTTP, intestinal assembly of chylomicron requires Sar1
GTPase, which is critical for the intracellular transport of apoB48-containing
particles from ER to the Golgi (Julve et al. 2016).

The newly synthesized chylomicrons carrying dietary lipids and fat-soluble
vitamins are secreted through lacteal endothelial gaps that are present in the post-
prandial phase into the venous system blood system through the lymphatic system.
Thus, unlike other nutrients dietary lipids bypass the hepatic portal system.

Over the last years several surprising findings have been made (Lambert and
Parks 2012). First, studies have demonstrated that the intestine stores triglycerides
and that lipids secreted after a meal may have been consumed in an earlier meal
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(Mattes 2002; Robertson et al. 2002; Chavez-Jauregui et al. 2010). This may explain
the early rise in postprandial plasma triglycerides since the intestine does not have to
absorb dietary lipids and then form chylomicrons, but instead start secreting stored
triglycerides in chylomicrons. We have also realized that the release of chylomicrons
is linked to a taste–gut–brain axis (Khan and Besnard 2009) Interestingly,
chylomicrons can be secreted when fat (Mattes 2009) or glucose (Robertson et al.
2003) is merely tasted but not consumed. Lastly, contrary to what was believed,
recent studies have shown that apoB48-containing particles are secreted not only as
chylomicrons but also as less triglyceride-rich lipoprotein particles (isolated in the
VLDL density range) both in the fasting state and postprandially (Bjornson et al.
2019a, b).

5 Disorders of the Synthesis of TRLs

Abetalipoproteinemia (ABL) (also known as the Bassen–Kornzweig syndrome) is a
rare autosomal-recessive disease that is characterized by very low plasma
concentrations of TG and cholesterol (under 30 mg/dL) and undetectable levels of
LDL and apoB. The rare recessive genetic disease is caused by loss-of-function
mutations in the MTTP gene encoding for the microsomal triglyceride-transfer
protein (MTP).

Clinic: Mutations in MTP leads to impairment of the formation of triglyceride-
rich VLDL and chylomicrons. Patients with ABL (and compound heterozygous and
homozygous FHBL) have therefore very low plasma total cholesterol and generally
low plasma triglycerides. LDL-C when measured by direct methods, and apoB, will
be absent or their concentrations will be very low. Patients may display neurological,
hematological (acanthocytosis on peripheral blood smear and anemia), and gastro-
intestinal symptoms due to deficiency in lipophilic vitamins and fat malabsorption
(Paquette et al. 2016). The deficiency of vitamin E could lead to severe neurological
disorders including spinocerebellar degeneration with ataxia and retinitis
pigmentosa (Welty 2014). In addition, the impaired secretion of hepatic triglycerides
may lead to hepatic steatosis (Welty 2014). The clinical phenotype and severity
differs as the type and combination of MTTP mutations influence the clinical
phenotype and treatment response (Paquette et al. 2016). Subjects who carry a single
MTTP mutation may have normal plasma lipid levels or may have LDL-cholesterol
and apoB concentrations similar to those seen in heterozygous familial
hypobetalipoproteinemia (Lee and Hegele 2014; Paquette et al. 2016).

Treatment: Early diagnosis and treatment is important to prevent neurologic
complications of this disease. Reversal of existing neurologic disease can also be
achieved. Treatment involves a low-fat diet, supplementation with essential fatty
acids and high oral doses of fat-soluble vitamins, vitamins A and E (Paquette et al.
2016; Welty 2014; Linton et al. 1993). High dose of oral fat-soluble vitamins
bypasses the chylomicron pathway, and vitamins are carried via the portal circula-
tion (Lee and Hegele 2014; Paquette et al. 2016).
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Chylomicron retention disease (CRD). In addition to MTP, chylomicron forma-
tion requires Sar1 GTPase, one of the subunits of the coat protein (COPII) complex,
which is critical for the vesicular transport of apoB-48-containing particles from
endoplasmic reticulum to the Golgi (Julve et al. 2016). Loss-of-function mutations in
SAR1B, the gene encoding Sar1 homolog B GTPase causes CRD (also known as
Anderson disease) (Julve et al. 2016), a rare autosomal-recessive disorder
characterized by an intestinal defect in lipid transport due to a failure of chylomicron
formation in enterocytes (Julve et al. 2016).

Clinic: The failure to synthesize chylomicrons results in severe malabsorption
with steatorrhea, fat-soluble vitamin deficiency, low blood cholesterol levels, and
failure to thrive in infancy (Julve et al. 2016).

Treatment: Same as ABL.
Familial hypobetalipoproteinemia (FHBL) is an autosomal codominant disorder

characterized by apoB <5th percentile and LDL-cholesterol usually between 20 and
50 mg/dL (Welty 2014; Linton et al. 1993). Over 60 different mutations in apoB
producing truncated forms of apoB, ranging from apoB to apoB89, have been
reported (Welty 2014; Linton et al. 1993). These truncated forms of apoB are
named according to the percent length of the native apoB100 molecule. Truncated
forms of apoB shorter than apoB30 are seldom detectable in human plasma as
lipoproteins since these truncated proteins undergo intracellular degradation.
Although one allele if affected only in heterozygous FBHL, the plasma levels are
normally closer to one quarter to one third of normal, due to low hepatic secretion of
the truncated forms of apoB combined with decreased production and increased
clearance of VLDL and LDL produced by the normal allele (Welty et al. 1997; Elias
et al. 1999; Aguilar-Salinas et al. 1995; Parhofer et al. 1996).

Clinic: Heterozygous FHBL is often asymptomatic and not diagnosed unless a
lipid profile is obtained. In contrast, the clinical presentation of homozygous FHBL
is similar to ABL. Early diagnosis of homozygous FHBL is therefore important. As
the hepatic secretion of triglyceride-rich lipoproteins is impaired, FHBL has been
shown to associate with hepatic steatosis and mild elevation of liver enzymes (Welty
2014). In 32 FHBL subjects, the hepatic fat content was increased to 14.0 � 12.0%
compared to 5.2 � 5.9%, respectively, for 33 controls matched for age, sex, and
indices of adiposity (Tanoli et al. 2004).

Treatment: For homozygous FHBL treatment involves a low-fat diet, supplemen-
tation with essential fatty acids and high oral doses of fat-soluble vitamins, vitamins
A and E (Welty 2014; Linton et al. 1993).

6 Metabolism of Triglyceride-Rich Lipoproteins

After secretion of chylomicrons and VLDL, the lipoproteins are exposed to lipopro-
tein lipase (LPL) on the capillary endothelial cells within adipose tissue, skeletal
muscle, and the heart, leading to hydrolyzation of the triglycerides, allowing the
delivery of non-esterified free fatty acids (NEFA) to adipose tissue, skeletal muscle
and the heart.
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As the triglycerides are removed from the particles, they shrink and their density
increases (Goldberg 1996); chylomicrons become chylomicron remnants, and large
triglyceride-rich VLDL1 particles become smaller VLDL2 and subsequently inter-
mediate density lipoproteins (IDL). The IDL particles can be further hydrolyzed to
LDL particles by action of the hepatic lipase (HL). Since all human TRLs contain a
substantial amount of cholesterol esters, hydrolysis of triglycerides leads to enrich-
ment of cholesterol esters. Consequently, TRL remnants are enriched in cholesteryl
esters (Dallinga-Thie et al. 2010).

Although roughly 80% of the increase in postprandial plasma triglycerides
consists of chylomicrons and their remnants (Cohn et al. 1993), the majority of
particles (around 80%) comprise of liver-derived VLDL and their remnants (Karpe
et al. 1995; Schneeman et al. 1993). Also, the area under the curve for apoB100 is
10-fold higher than that of apoB48 (Vakkilainen et al. 2002), and the production rate
of apoB100 is 15–20 times higher than that of apoB48 (Lichtenstein et al. 1992;
Welty et al. 1999). We have earlier shown that chylomicrons and VLDL particles are
not cleared equally by the lipoprotein lipase pathway, and that chylomicrons seem to
be the preferred substrate (Adiels et al. 2012). Therefore, the major contribution to an
atherogenic lipoprotein profile from chylomicrons is likely its interference with
apoB100 catabolism.

ApoB-containing particles with a diameter of about 70 nm or smaller can
penetrate the arterial endothelial layer, and subsequently become retained in the
artery wall. Thus, cholesterol-rich remnants (i.e., both chylomicron remnants and
VLDL remnants) can lead to cholesterol deposition in growing lesions, accelerated
atherosclerosis, and enhanced CVD risk in a similar manner as LDL.

Genetic deficiency of LPL leads to the rare autosomal-recessive disorder familial
LPL deficiency. These patients usually display milky plasma (accumulation of
chylomicrons) and very severe hypertriglyceridemia with episodes of abdominal
pain (pancreatitis), eruptive cutaneous xanthomata, and hepatosplenomegaly.

7 Deciphering the Pathogenesis of Hypertriglyceridemia

Insulin resistance and hypertriglyceridemia are associated with an atherogenic
dyslipidemia characterized by prolonged postprandial hyperlipidemia, accumulation
of small dense LDL (sdLDL) and low HDL cholesterol. The mechanism that leads to
the formation of sdLDL is well clarified; the cholesteryl ester transfer protein
(CETP) transfers triglycerides from VLDL1 to LDL. This results in formation of
triglyceride-rich LDL. These lipoprotein particles are the preferred substrate for
hepatic lipase (HL) that depletes triglycerides from the triglyceride-rich LDL. As
large triglyceride-rich VLDL1 particles are the substrate for CETP, accumulation of
TRLs is a prerequisite for sdLDL formation (Adiels et al. 2006b; Packard 2003;
Georgieva et al. 2004). The enzymes also act on HDL, resulting in the formation of
sdHDL that are efficiently removed from circulation. The combined action of CETP
and HL thus results in the formation of sdLDL and low HDL cholesterol (Verges
2005; Taskinen 2003). Several studies indicate that increased sdLDL is associated
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with increased CVD risk (Austin et al. 1990; Lamarche et al. 1997; Gardner et al.
1996; Vakkilainen et al. 2003). However, it is still unclear if sdLDL is a marker of an
atherogenic dyslipidemia or causatively linked to the increased CVD risk (Sacks and
Campos 2003).

To elucidate the pathophysiology of the hypertriglyceridemia in obese subjects
we have performed a series of kinetic studies with stable isotopes. These studies
have shown that the impaired lipid metabolism is caused by dual mechanisms:
increased secretion of triglyceride-rich VLDL1 from the liver and delayed clearance
of TRLs from the circulation (Borén et al. 2015; Taskinen et al. 2011). This is
illustrated in Fig. 2 by two pathways: a synthesis pathway and a clearance pathway.
Interestingly, the synthesis pathway explained only 20% of the variation of plasma
triglycerides (Borén et al. 2015). In contrast, the clearance pathway explained 50%
of the variation in the total plasma triglycerides. Thus, the impaired catabolism of
VLDL1-triglycerides is the most important determinant of the plasma triglyceride
concentration in subjects with abdominal obesity and dyslipidemia.

The synthesis pathway includes liver fat and total fat mass as these remained
independent predictors of VLDL1-triglyceride secretion rate in a stepwise multivari-
able regression analysis (Borén et al. 2015). Increased liver fat is linked to impaired
regulation of VLDL production and a continuous oversecretion of VLDL1 (Adiels

Fig. 2 Predictors of VLDL1-triglyceride secretion and catabolism. Liver fat content (P < 0.01)
and total fat mass (P < 0.05) are important independent predictors of VLDL1-TG secretion rate
(SR). The plasma concentration of apoC-III correlated strongly with plasma TG and the fractional
catabolism of VLDL1-TG. VLDL1-TG kinetics explained 76% of the variation in the total plasma
triglycerides. Of these, �20% was explained by the secretion pathway, whereas �50% was
explained by the clearance pathway. Thus, indices of catabolism were stronger predictors of plasma
triglycerides than parameters of secretion. The associations between liver fat and fat mass vs plasma
TG (dotted lines) are likely secondary and mediated via VLDL1 SR. Likewise, the direct effect of
apoC-III on plasma TG (dotted line) is likely explained by effect(s) of apoC-III beyond lipoprotein
lipase-independent pathways of triglyceride metabolism (Borén et al. 2015)
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et al. 2006b; Poulsen et al. 2016) (Fig. 2), and adipose tissue is the major source of
fatty acids in the NEFA pool that determines the hepatic uptake of fatty acids. In the
clearance pathway, the plasma concentration of apoC-III is shown to correlate
strongly with plasma triglycerides and clearance of VLDL1-triglycerides.

8 Regulation of Hydrolysis of TRLs and the LPL Pathway

The clearance of triglycerides is directly linked to the lipolysis of TRLs by LPL
(Ginsberg et al. 1986). Full activity of LPL requires the interaction with the transport
protein glycosylphosphatidylinositol anchored high density lipoprotein binding
protein 1 (GPI-HBP1) and the lipase maturation factor 1 (LMF 1) present at the
surface of capillaries (Sandesara et al. 2019). The LPL activity is modulated by
several regulators including apoC-I, apoC-II, apoC-III, angiopoietin-like
3 (ANGPTL3), ANGPTL4 and ANGPTL8 (Kersten 2014). Insulin and apoC-III
are the key regulators of LPL activity. Insulin stimulates the expression of LPL in
endothelial cells whereas apoC-III inhibits LPL activity and thereby reduces the
clearance of TRLs (Ginsberg and Brown 2011; Zheng et al. 2010; Yao 2012). The
seminal role of LPL for the catabolic rate of TRLs and the conversion of large VLDL
particles into smaller particles is demonstrated in studies in subjects with LPL gene
mutations (Ooi et al. 2012). In addition, strong evidence supports the critical roles of
apoC-III and apoE for suppressing or stimulating, respectively, clearance of apoB-
containing lipoproteins from the circulation (Mendivil et al. 2010; Sacks 2015;
Zheng et al. 2007).

ApoC-III is displacing apo-CII, an activator of LPL, from lipoprotein surfaces and
thus impairing the actual lipolytic process (Sacks 2015; Gordts et al. 2016; Larsson
et al. 2013). In addition, apoC-III has a wide range of actions action on triglyceride
metabolism beyond its LPL-dependent effects (Taskinen and Boren 2015; Norata
et al. 2015). For example, apoC-III interferes with the binding of apoB and apoE to
hepatic lipoprotein receptors including heparin sulfate proteoglycan receptor
(HSPG), low-density lipoprotein receptors (LDLR), and LDLR related protein
1 receptor (LRPl). This raises the option that high apoC-III would also inhibit the
receptor mediated hepatic uptake of TRL remnants (Huff and Hegele 2013). The fact
that an apoC-III ASO (antisense oligonucleotides) that inhibits apoC-III synthesis
greatly reduced serum triglycerides in subjects with familial LPL deficiency
demonstrates that apoC-III inhibits also hepatic clearance of remnants by
LPL-independent pathways (Gaudet et al. 2014). However, recent results indicate
that apoC-III inhibits turnover of TRLs primarily through a hepatic clearance
mechanism mediated by the LDLR/LRPl axis, since apoC-III ASO treatment in
LDLR/LRP1 deficient mice did not lower plasma TG levels (Gordts et al. 2016).
Interestingly, we have recently reported that apoC-III metabolism is significantly
perturbed in subjects with type 2 diabetes and that the apoC-III secretion rate was
markedly higher in subjects with diabetes compared with BMI-matched non-diabetic
subjects (Adiels et al. 2019). Improved glycemic control with liraglutide therapy
reduced significantly apoC-III secretion rate and, thereby, apoC-III levels in type
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2 diabetic subjects (Matikainen et al. 2019). These findings suggest that glucose
homeostasis is a regulator of apoC-III metabolism and that the secretion rate of
apoC-III seems to be an important driver for the elevation of TRLs in type 2 diabetes.

Angiopoietin-like protein (ANGPTL) family includes three members
(ANGPTL3, ANGPTL4, and ANGPTL8) that are important modulators of lipopro-
tein metabolism (Kersten 2017; Christopoulou et al. 2019; Romeo et al. 2009; Li
et al. 2020). Both ANGPTL3 and ANGPTL4 are endogenous inhibitors of LPL, and
loss-of-function (LOF) mutations in ANGPTL3 and 4 associate with low triglyceride
levels (Romeo et al. 2009; Minicocci et al. 2013; Zhang 2012) and reduced CVD risk
(Dewey et al. 2017; Myocardial Infarction Genetics Investigators CAEC et al. 2016;
Dewey et al. 2016). ANGPTL3 deficiency has been reported to reduce hepatic
VLDL secretion and lower LDL-cholesterol (Wang et al. 2015a). Interestingly,
ANGPTL3 gene silencing has been shown to associate not only with reduced hepatic
secretion of apoB-containing lipoproteins, but also with enhanced uptake of particles
via the LDL receptor. This likely explains the reduction of IDL cholesterol levels in
subjects with familial hypobetalipoproteinemia (Xu et al. 2018). Consequently,
targeting ANGPTL3 and ANGPTL4 genes has emerged as a promising goal for
triglyceride lowering therapies (Tsimikas 2018; Gaudet et al. 2017a; Keech and
Jenkins 2017; Bauer et al. 2016).

The inhibitory action of ANGPTL8 on LPL function requests the presence of
ANGPTL3 (Kersten 2017; Haller et al. 2017; Luo and Peng 2018), as ANGPTL8
seems to enhance the inhibitory action of ANGPTL3 on LPL (Chi et al. 2017).
Interestingly, these two proteins seem to work together to orchestrate responses of
both glucose and lipid metabolism in fasting and in feeding (Wang et al. 2015b).
Interestingly, ANGPTL3 is exclusively expressed in the liver being as a true
hepatokine while ANGPTL8 is expressed both in adipose tissue and in the liver.
The co-operative action of these two proteins seems to regulate the uptake of
triglyceride-derived fatty acids either in the adipose tissue for storage or in
cardiomyocytes and skeletal muscle for oxidation (Li et al. 2020; Vatner et al.
2018; Davies 2018).

ApoE plays a pivotal role in both triglyceride and cholesterol metabolism (Marais
2019). It predominantly associates with triglyceride-rich lipoproteins to mediate the
clearance of their remnants after enzymatic lipolysis in the circulation (Marais 2019;
Mahley and Huang 2007; Nakajima et al. 2019). Plasma levels of apoE and other
lipids and lipoproteins are under strong genetic influence by APOE polymorphism –

a combination of two genetic variants (rs429358 and rs7412) giving rise to six
common APOE genotypes, ɛ22, ɛ32, ɛ33, ɛ42, ɛ43, and ɛ44 (Marais 2019; Mahley
and Huang 2007). Both ɛ2 and ɛ4 alleles are associated with unfavorable lipid
profiles, and the ɛ4 allele is a strong genetic risk factor for Alzheimer disease and
by far the strongest hit in genome-wide association studies of longevity. The apoE
variants relate to different amino acids at positions 112 and 158: cysteine in both for
apoE2, arginine at both sites for apoE4, and respectively cysteine and arginine for
apoE3 that is viewed as the wild type. High levels of plasma apoE have been shown
to associate with increased risk of ischemic heart disease (Rasmussen et al. 2019).
Hence both a quantitative importance of plasma apoE levels and a qualitative
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genetically determined effect appear to be important for cardiovascular disease
(Rasmussen et al. 2019).

9 Role of Triglyceride-Rich Lipoproteins in Atherogenesis

It is well established that hypercholesterolemia is causatively linked to atheroscle-
rotic cardiovascular disease and that lowering of cholesterol-rich LDL levels reduces
cardiovascular events (Boren et al. 2020). However, cholesterol-lowering medica-
tion only prevents up to half of these events. Recent advances in human genetics
indicate that the remaining “residual risk” of ASCVD is linked to elevated plasma
triglyceride levels. Since triglyceride itself is not thought to contribute to atherogen-
esis, a consensus view has emerged that the remaining risk is linked to increased
formation of “remnant” particles. These are derived from TRLs in the blood when
the triglycerides are removed by the enzyme LPL (Boren et al. 2020). The remnant
particles are not efficiently lowered by the available cholesterol-lowering
medications.

To enter the artery wall, lipoproteins must cross the endothelium by transcytosis,
a vesicular transport process. While chylomicrons and large VLDLs cannot undergo
transcytosis because of their size, smaller chylomicron and VLDL remnants can and
do penetrate the arterial wall. Thus, TRL remnants, in addition to LDL, may be
retained in the arterial wall (Chapman et al. 2011). Even though remnant particles
remain richer in triglycerides than cholesterol, their large size means that they
contain up to twofold more cholesterol content per particle than LDL. However,
the relative atherogenicity of remnants relative to LDL remains unclear.

10 Therapies to Reduce Triglyceride-Rich Lipoproteins

Lifestyle changes to lower plasma triglycerides – The first approach to lower
moderately increased plasma triglycerides is to alter lifestyle (Laufs et al. 2020).
Focus on a healthier diet and physical activity are cornerstones of lifestyle
recommendations. Patients should reduce net caloric intake and lessen intake of
sucrose, fructose, and alcohol. Diets rich in saturated fatty acids should be replaced
with food enriched in monounsaturated and polyunsaturated fat (Laufs et al. 2020). It
should be remembered though that scientific evidence for dietary recommendations
is sparse. In addition, it is genuinely hard to persuade patients to change lifestyle and
to make lifestyle changes that last. Thus, pharmaceutical approaches are often
required.

Pharmacological therapies to lower plasma triglycerides – All commonly used
cholesterol-lowering drugs as statins, ezetimibe, PCSK9 inhibitors only discreetly
reduce triglyceride levels (around 5–15%), even though statins are somewhat more
efficiently in reducing triglycerides and TRL remnants than PCSK9 inhibitors.
Fibrates, omega-3-fatty acids, and niacin are somewhat more efficiently in reducing
triglyceride levels (25–45%).
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Fibrates are agonists of peroxisome proliferator-activated receptor-α (PPAR-α),
acting via transcription factors regulating on lipid and lipoprotein metabolism. The
drug has good efficacy in lowering fasting TG levels, as well as postprandial
triglycerides and TRL remnants, albeit with marked interindividual variation. In
addition, a small LDL-C increase may be observed in subjects with high triglyceride
levels. The cardiovascular benefits have been shown to be heterogeneous and less
robust than that of statins; when used as monotherapy, fibrates have been
demonstrated to reduce CVD risk. However, when used in combination with statins
no further reduction in CVD risk was demonstrated, although subgroup analysis
indicates that hypertriglyceridemic patients with low HDL-C may benefit from such
combination therapy. Results from ongoing trials using pemafibrate, a selective
peroxisome proliferator-activated receptor alpha (PPARα) receptor agonist, will
show if this approach will be successful (Pradhan et al. 2018).

For decades, omega-3-fatty acids have been used to lower plasma triglycerides
and to prevent CVD (Bays et al. 2008). The results from two recent clinical trials
using different omega-3 fatty acids have been mixed and somewhat confusing. The
REDUCE-IT trial used icosapent ethyl omega-3 fatty acid (4 g daily). The results
were positive and resulted in a 25% reduction in CVD and a 20% reduction in
plasma triglyceride levels. Interestingly, the treatment also reduced plasma
C-reactive protein by 40% (Bhatt et al. 2019). These results strengthen the link
between plasma triglycerides and CVD (Myocardial Infarction Genetics
Investigators CAEC et al. 2016; Do et al. 2013, 2015). However, the reduction of
cardiovascular event was independent of plasma triglyceride levels both at baseline
and on treatment, indicating that the reduction of cardiovascular events was only
modest due to changes in TRL levels. One potential explanation for the clinical
benefits could be the marked attenuation of the postprandial response by
eicosapentaenoic acid, the hydrolytic product of icosapent ethyl, as 58% of the
study participants had type 2 diabetes that commonly have prolonged postprandial
hypertriglyceridemia (Taskinen and Boren 2015). In contrast to the positive outcome
from the REDUCE-IT trial, the STRENGTH trial using another omega-3 fatty acid
formulation (a combination of eicosapentaenoic acid and docosahexaenoic acid)
failed to demonstrate any clinical benefit. The explanation(s) for the different
outcomes is still unclear. Possible reasons include that the two trials studied different
type of omega-3 fatty acids, and that the REDUCE-IT trial used mineral oil as
placebo which may have adverse effects, whereas STRENGTH used a corn oil
placebo. A recent Cochrane review of 86 randomized controlled trials with
162,796 participants concluded “evidence suggests that increasing long-chain
omega-3 slightly reduces risk of coronary heart disease mortality and events, and
reduces serum triglycerides” (Abdelhamid et al. 2020).

The 2019 ESC/EAS guidelines for the management of dyslipidemias recommend
that statin treatment remains the first choice for managing high triglycerides
(triglycerides >200 mg/dL or 2.3 mmol/L) (Mach et al. 2020). However, the
guidelines have taken account of evidence from REDUCE-IT and recommend n-3
PUFAs (particularly icosapent ethyl 2 � 2 g daily) in high-risk patients with
persistently elevated plasma triglycerides (between 135 and 499 mg/dL or 1.5 and
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5.6 mmol/L) despite statin treatment. In high-risk patients at LDL-C goal with TG
>200 mg/dL or >2.3 mmol/L, fenofibrate or bezafibrate may be considered in
combination with statins (Mach et al. 2020).

11 Development of Novel Interventions

Efficient interventions to reduce plasma levels of TRLs and TRL remnants are still
missing, and development of the development of strategies to treat the large numbers
of hypertriglyceridemic individuals who currently remain at high risk of ASCVD
despite optimal treatment according to current guidelines is urgently needed. Genetic
studies have demonstrated that apoC-III and angiopoietin-like protein 3 (Angptl3)
are critical regulators of triglyceride metabolism, and both have been developed as
drug targets.

Statins and omega-3 fatty acids modestly reduce plasma apoC-III levels by less
than 20% (Ooi et al. 2008; Maki et al. 2011; Morton et al. 2016; Dunbar et al. 2015).
However, development of antisense oligos and siRNA has made it possible to
develop high efficiency therapies. For example, antisense therapeutic
oligonucleotides conjugated with N-acetyl galactosamine-conjugated (GalNAc)
adducts (i.e., the ligand of the hepatic asialoglycoprotein receptor) have been
developed. These are very efficient in reducing APOC3 expression (Graham et al.
2013). For example, results from the APPROACH trial, a 52-week randomized,
double-blind, phase 3 in 66 patients with familial chylomicronemia syndrome,
demonstrated that the drug resulted in an impressive 77% decrease in plasma
triglyceride levels (Witztum et al. 2019). The antisense therapeutic oligonucleotides
have also been shown to markedly lower plasma apoC-III and triglycerides levels in
subjects with severe or uncontrolled hypertriglyceridemia (Gaudet et al. 2015;
Gouni-Berthold 2017) and in subjects with diabetic dyslipidemia (Digenio et al.
2016). Intriguingly, the intervention not only improved the diabetic dyslipidemia,
but also improved whole-body insulin sensitivity (by 57%).

To target Angptl3, both a monoclonal antibody and therapeutic oligonucleotides
have been developed. Recent results have demonstrated that anti-ANGPTL3
therapies reduce both marked hypertriglyceridemia (around 75% reduction) and
severely elevated LDL-cholesterol in subjects with familial hypercholesterolemia
(around 23% reduction) (Gaudet et al. 2017b). The finding that anti-Angptl3 lowers
LDL-C in subjects lacking functional LDL receptors indicates that the underlying
mechanism is independent of the LDL receptor pathway. In line, a GalNac-modified
antisense-oligonucleotide has recently been shown to reduce both plasma
triglycerides and LDL-cholesterol (by 63.1% and 32.9%, respectively) (Graham
et al. 2017). Interestingly, results from murine models indicate that the antisense-
oligonucleotide seems to reduce hepatic steatosis. These results have prompted
ongoing human studies.

Other ongoing projects involve lipoprotein lipase gene therapy, oral inhibitors of
intestinal DGAT1 to reduce dietary fat absorption and triglyceride synthesis, and
treatments targeting apoC-III and Angptl4 (Laufs et al. 2020).
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12 Conclusion

Whether plasma triglycerides constitute an independent risk factor for CVD has been
debated for decades, but there is now strong support for a causative role of TRLs in
CVD. These studies equally indicate that cholesterol-enriched TRL remnant play a
key role in the pathophysiology of atherosclerotic vascular disease. We are now
beginning to understand the complex regulation of triglyceride metabolism. Hope-
fully, this molecular understanding will be translated into targeted treatment for the
atherogenic dyslipidemia associated with hypertriglyceridemia.
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