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Abstract

Hypercholesterolemia is a major risk factor in atherosclerosis development and
lipid-lowering drugs (i.e., statins) remain the treatment of choice. Despite effec-
tive reduction of LDL cholesterol in patients, a residual cardiovascular risk
persists in some individuals, highlighting the need for further therapeutic inter-
vention. Recently, the CANTOS trial paved the way toward the development of
specific therapies targeting inflammation, a key feature in atherosclerosis progres-
sion. The pre-existence of multiple drugs modulating both innate and adaptive
immune responses has significantly accelerated the number of translational stud-
ies applying these drugs to atherosclerosis. Additional preclinical research has led
to the discovery of new therapeutic targets, offering promising perspectives for
the treatment and prevention of atherosclerosis. Currently, both drugs with
selective targeting and broad unspecific anti-inflammatory effects have been
tested. In this chapter, we aim to give an overview of current advances in
immunomodulatory treatment approaches for atherosclerotic cardiovascular
diseases.

Keywords

Adaptive immunity · Anti-inflammatory therapy · Atherosclerosis ·
Cardiovascular diseases · Immunotherapy · Inflammation · Innate immunity

1 Introduction

Atherosclerosis is a lipid-driven disease that is characterized by the formation of
plaques in the subendothelial space of arteries. Therefore, lipid-lowering drugs such
as statins are considered the treatment of choice as their reduction of circulating
low-density lipoprotein (LDL) can prevent plaque formation and progression in
patients (Ference et al. 2017; Borén et al. 2020). A crucial step in disease initiation
involves the retention of LDL and other ApoB-carrying lipoproteins within the
vascular wall due to their ability to bind intimal proteoglycans. Subsequent enzy-
matic and non-enzymatic modifications of these lipoprotein particles result in the
formation of damage-associated molecular patterns (DAMPs) that trigger an inflam-
matory response. This includes the activation of endothelial cells by oxidized
phospholipids and other lipid species. In response, the endothelium secretes
chemoattractant cytokines like monocyte chemoattractant protein-1 (MCP-1),
growth factors (macrophage colony-stimulating factor (MCSF), granulocyte-
macrophage colony-stimulating factor (GMCSF)) and upregulates the expression
of genes coding for adhesion molecules (VCAM-1 and ICAM-1), allowing the
recruitment and differentiation of inflammatory monocytes. Monocytes recruited
into the intima become lesional macrophages, which take up oxidized LDL and
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aggregated LDL via scavenger receptors (CD36, SR-A), ultimately leading to foam
cell formation – a rate-limiting step that greatly contributes to the development and
progression of atherosclerotic plaques (Borén et al. 2020). Excess accumulation of
modified lipoproteins, formation of foam cells, subsequent macrophage cell death,
and impaired clearance of these apoptotic cells, all contribute to chronic inflamma-
tion in the vascular wall (Borén et al. 2020; Libby 2021). Studies over the past
20 years have focused on the chronic inflammatory nature of atherosclerosis and
have demonstrated the detrimental role of inflammation in its pathophysiology. This
work led to the consideration of markers of inflammation such as IL-6 and high-
sensitivity C-reactive protein (hsCRP) as biomarker for risk stratification of cardio-
vascular patients (Ridker et al. 2000a, b, 2009). According to this concept, patients
with signs of inflammation (i.e., elevated levels of hsCRP or IL-6) are considered at
higher risk of experiencing a cardiovascular event during their lifetime compared to
individuals without residual inflammation. Additionally, both innate and adaptive
immunity have been found to play a crucial role in the initiation, progression, and
rupture of atherosclerotic plaques (Gisterå and Hansson 2017; Wolf and Ley 2019;
Libby 2021). Since the importance of the immune system in atherosclerotic plaque
development is becoming increasingly clear, novel treatments that target both innate
and adaptive immunity have been developed with the aim to complement already
established lipid-lowering therapies (Bäck et al. 2019). This chapter aims to intro-
duce the reader to these novel anti-inflammatory and immunomodulatory treatments,
which range from small molecule drugs to antibodies and vaccination strategies.

To optimally target the inflammatory component of atherosclerosis, one needs to
understand the chronic inflammatory nature of this specific process. Chronic inflam-
mation is typically the consequence of a non-resolving inflammation due to an
impaired clearance and persistent presence of the inciting trigger combined with a
hampered removal of freshly recruited inflammatory cells (Tabas and Glass 2013).
In atherosclerosis the main triggers of inflammation are sterile DAMPs that result
from the pathological accumulation of lipids in the vascular wall. Therefore, optimal
strategies targeting chronic inflammation are either directed toward limiting the
generation and activity of disease-specific DAMPs or the inflammatory response
they incite. Other strategies aim at dampening inflammation or enhancing the
resolution processes. Clearly, the more targeted anti-inflammatory treatments are
to a specific pathophysiology, the lower the risk of adverse effects such as a
reduction of the host’s capacity to fight infections. Thus, careful assessment of the
risks and benefits of each anti-inflammatory strategy is needed during the develop-
ment of these treatments. Modulating both the innate and adaptive responses offers
promising possibilities to limit chronic inflammation in the vascular wall.

Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis 361



2 Targeting Innate Immune Responses

2.1 Targeting the NLRP3 Inflammasome

Accumulating evidence shows that the nucleotide-binding oligomerization domain,
leucine-rich repeat-containing receptor (NLR) family pyrin domain-containing
3 (NLRP3) inflammasome plays a central role in plaque formation, growth, and
stability. Its activation is typically necessary for the secretion of proinflammatory
cytokines, such as IL-1β and IL-18, which in turn activate the innate immune system.
Ligation of both pattern recognition receptors (PRRs) and tumor necrosis factor
receptor (TNFR) can activate the NF-κB pathway, which promotes the transcription
of proinflammatory cytokines like tumor necrosis factor-α (TNF-α) and interleukin
IL-6 while also initiating the priming of the NLRP3 inflammasome. The latter
involves the production of cytosolic NLRP3 protein as well as the inactive form of
IL-1 family cytokines: pro-IL-1β and pro-IL-18 (Kelley et al. 2019). Although
several PRRs can trigger the formation of inflammasomes, such as NACHT, LRR,
and PYD domains-containing protein 1 (NLRP1), NLR family CARD domain-
containing protein 4 (NLRC4), and absent in melanoma 2 (AIM2), the NLRP3
inflammasome displays unique activation properties. A large variety of pathogen-
associated molecular patterns (PAMPs) (microbial, viral, fungal molecules) and
DAMPs (urate crystals) can activate NLRP3. In the context of atherosclerosis,
cholesterol crystals (Duewell et al. 2010) have been suggested as key DAMPs
driving NLRP3 activation. Importantly, NLRP3 also senses perturbations of cellular
homeostasis such as lysosome rupture, ion channel disturbances (K+ efflux), and
mitochondrial stress resulting from various stimuli (Kelley et al. 2019). In its
activated form, NLRP3 can recruit the apoptosis-associated speck-like protein
which contains a caspase recruitment domain (ASC) and the inactivated form of
caspase-1 (pro-caspase-1). The proximity of pro-caspase 1 proteins within the
complex leads to caspase-1 activation, which proceeds to the proteolytic activation
of pro-IL-1β, pro-IL-18, and the propyroptotic factor gasdermin D (GSDMD)
involved in pyroptosis, a lytic cell death necessary for cytokine release.

With respect to atherogenesis, important insights came from studies by Duewell
and colleagues, who showed that lipid accumulation in the vessel wall leads to the
formation of cholesterol crystals which are taken up by macrophages where they
activate the NLRP3 inflammasome (Rajamaki et al. 2010; Duewell et al. 2010). In
parallel, many studies have investigated the role of NLRP3-derived cytokines (i.e.,
the IL-1 cytokine family: mainly IL-1β, IL-1α, IL-18, and IL-1R antagonist
(IL-1Ra)), as well as proteins involved in NLRP3 activation (ASC, caspase-1) in
murine atherosclerosis using transgenic mice. Targeting IL-1 signaling using recom-
binant IL-1Ra, which competes with IL-1α and IL-1β for binding of IL-1 receptors,
in Apoe�/� mice prone to atherosclerosis, resulted in reduced fatty streak formation.
This indicates an important role of IL-1Ra in the suppression of lesion development
during the early phase of the disease (Elhage et al. 1998; Isoda et al. 2004; Merhi-
Soussi et al. 2005). Similarly, overexpression of IL-1Ra in Ldlr�/� mice, fed a high-
cholesterol/high-fat diet (containing cholate) for 10 weeks led to a reduction of
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atherosclerotic lesion area (Devlin et al. 2002). Taken together, these studies suggest
that targeting the NLRP3 inflammasome using small molecule inhibitors or targeting
NLRP3 products represents promising therapeutic targets for cardiovascular
diseases (Fig. 1).

Regarding NLRP3 products, the two IL-1 isoforms (IL-1α and IL-1β) share
molecular similarities but are produced by different cellular sources and seem to
display different release mechanisms. The release of IL-1α can be inflammasome-

Fig. 1 Therapies targeting innate immune responses in atherosclerosis. Proinflammatory cytokines
such as IL-6, TNF, IL-1, and IL-18 actively modulate atherosclerosis development. Therefore,
several strategies aim at reducing their levels in circulation. The NLRP3 inflammasome greatly
contributes to the secretion of such cytokines and several therapeutic approaches have been
developed to prevent its deleterious effects. Drugs targeting NLRP3 are of three types: monoclonal
antibodies targeting NLRP3 products (i.e., IL1-α-Xilonix, IL1-β-Canakinumab, IL-18-
GSK1070806), recombinant proteins (i.e., IL-1-receptor antagonist-Anakinra), and NLRP3 direct
inhibitors (i.e., MCC950). While some of these therapies were assessed in large clinical trials (i.e.,
Canakinumab), others remained inconclusive due to the low number of patients involved in the
study (i.e., Xilonix), or were not investigated in humans yet. The potential benefit of such therapies
still requires to be evaluated in robust clinical trials
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dependent or independent, according to the nature of the activating stimulus (Groß
et al. 2012). In contrast to IL-1β, the precursor form of IL-1α is active and acts as an
alarmin. IL-1α is constitutively expressed as a membrane-bound protein on the
surface of various cell types including non-immune cells like epithelial cells.
When cells expressing IL-1α undergo cell death, IL-1α is released and acts as an
alarmin, inducing IL-1β production and contributing to local inflammation. Addi-
tionally, IL-1α can be produced by macrophages, in an inflammasome-independent
manner (Freigang et al. 2013). IL-1β on the other hand is mainly produced by
hematopoietic cells like dendritic cells, monocytes, and macrophages with its acti-
vation requiring (in the majority of cases) the NLRP3 inflammasome. Importantly,
IL-1β has been detected in human atherosclerotic plaques and its circulating levels
correlate with the severity of coronary atherosclerosis (Galea et al. 1996; Dewberry
et al. 2000). Despite these discrepancies, the two IL-1 isoforms share similar
downstream effector functions as they both signal via the IL-1 receptor family
(IL-1R). Mechanistically, IL-1 signaling impacts various cell types within the
atherosclerotic lesion, affecting plaque size and stability. It also contributes to the
activation status of endothelial cells, which express adhesion molecules (VCAM-1
and ICAM-1) for the recruitment of leukocytes (Wang et al. 1995). Furthermore,
IL-1β induces MCP-1 secretion, which promotes monocyte recruitment and is
strongly associated with cardiovascular risk (Jun et al. 2009).

The importance of IL-1α has only recently been appreciated. A small study
carried out in coronary artery disease (CAD) patients and healthy control subjects
showed higher expression of IL-1α in peripheral blood mononuclear cells (PBMC)
of CAD patients (Wæhre et al. 2004). Additionally, IL-1α has been described as the
key driver of the senescence-associated secretory phenotype (SASP) of vascular
SMCs that can promote vascular inflammation (Clarke et al. 2010; Gardner et al.
2015). Another study carried out by S. Freigang and colleagues also suggests that
IL-1α greatly contributes to vascular inflammation in atherosclerosis. Reconstitution
of cholesterol fed Ldlr�/� mice with bone marrow from IL-1b−/−, IL-1a−/− and
wild-type mice resulted in dramatically reduced atherosclerosis in IL-1α-deficient
chimeras but not IL-1β-deficient or wild-type chimeras (Freigang et al. 2013).
Similarly, D. Gomez et al showed that antibody-mediated inhibition of IL-1β in
Apoe�/� mice with established atherosclerosis failed to decrease lesion size but
resulted in adverse plaque remodeling (Gomez et al. 2018). In contrast, other studies
suggest beneficial effects of IL-1β targeting in murine atherosclerosis (Kirii et al.
2003; Bhaskar et al. 2011).

Thus, IL-1α and IL-1β may affect plaque formation at different time points in
lesion development (Kirii et al. 2003; Duewell et al. 2010; Bhaskar et al. 2011;
Gomez et al. 2018; Vromman et al. 2019). While IL-1α appears to be important for
the early phase of atherosclerosis, IL-1β seems to be more involved in the progres-
sion of established plaques (Vromman et al. 2019). Additionally, Vromman et al.
showed that the anatomical location of plaques matters in the response to therapies
targeting IL-1 signaling. For example, neutralization of IL-1α or both isoforms using
either an anti-IL1α and/or an anti-IL-1βmonoclonal antibody reduces the lesion area
in aortic roots but not in the brachiocephalic arteries in Apoe �/� mice. Moreover,
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compensatory outward remodeling was more impaired in the brachiocephalic artery
compared to the aortic roots during early atherosclerosis.

In summary, the NLRP3 inflammasome and inflammasome-derived cytokines
represent attractive points for therapeutic intervention in cardiovascular diseases.
Careful design of preclinical studies will allow better dissection of the mechanistic
and physiological aspects of IL-1 inhibition and improvement of the development of
new therapies.

2.1.1 Targeting the IL-1 Signaling Pathway

Anti-IL-1 β (Canakinumab)
The recent CANTOS (Canakinumab. Anti-Inflammatory Thrombosis Outcome
Study) trial has made a profound impact on the field of atherosclerotic cardiovascular
disease. It showed for the first time in a large phase 3 clinical trial that therapeutic
targeting of inflammation provides a clinical benefit to patients with stable athero-
sclerosis. The goal of the study was to evaluate the effect of canakinumab, a
monoclonal antibody targeting IL-1β, on adverse cardiac events in patients with a
history of MI and elevated hsCRP (hsCRP �2 mg/L). 10,061 patients, most of
whom were on statin therapy, received either placebo or canakinumab at three
different doses: 50 mg, 150 mg, or 300 mg, every 3 months. The best results were
obtained with the intermediate dose (150 mg) which led to a 15% reduction in the
primary endpoint of nonfatal MI, nonfatal stroke, or cardiovascular death. However,
as IL-1β is also a crucial cytokine in the host immune response against bacterial
infection, its inhibition also significantly increased the number of fatal infections
(Ridker et al. 2017). Despite these non-negligible side effects, this study clearly
demonstrates a beneficial effect of inhibiting IL-1β signaling.

To better predict positive outcomes of canakinumab therapy in patients, an
additional analysis of the CANTOS trial was conducted (Ridker et al. 2018b).
Within the canakinumab treated group, patients with hsCRP levels <2 mg/L follow-
ing treatment had a 25% reduction in major adverse cardiovascular events while no
significant benefits were observed in patients with levels �2 mg/L. Importantly,
cardiovascular mortality and all-cause mortality were both reduced by 31% in
patients with hsCRP levels <2 mg/L. This was not the case in patients with levels
�2 mg/L where no benefits were shown. This analysis clearly documented the need
to assess the successful impact on inflammation to optimally appreciate the protec-
tive effect of this intervention.

Another analysis published by the CANTOS group indicates that targeting IL-1β
alone may not sufficiently alleviate CVD risk, as both IL-6 and IL-18 levels remain
predictors of future cardiovascular events in patients receiving anti-IL-1β treatment.
Briefly, in patients treated with canakinumab, the risk of major adverse cardiac
events (MACE) increased by 15% and 42% for each tertile increase in IL-18 and
IL-6 levels, respectively. This suggests a residual inflammatory component that
needs to be considered for further cardiovascular risk reduction. Drugs targeting
the IL-6 cytokine are currently tested in clinical trials and might benefit patients with

Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis 365



sustained elevated IL-6 levels by preventing recurrent CVD events (Biasucci et al.
2020; Ridker et al. 2020).

IL-1 Receptor Antagonist (Anakinra)
Anakinra is an antagonist of the IL-1 receptor, blocking the action of both IL-1α and
IL-1β isoforms. Since 2001, it has been used as a treatment in patients with
rheumatoid arthritis (RA), who are also known to be at high risk of cardiovascular
disease (Nurmohamed 2009; Avina-Zubieta et al. 2012; Primdahl et al. 2013).
Anakinra was assessed in small clinical trials in patients with myocardial infarction:
The “Virginia Commonwealth University-Anakinra Remodeling Trial 1-2-3” (VCU
ART1-2-3) and the “Markers of inflammation in non-ST elevation acute coronary
syndromes“(MRC ILA-HEART) study (Abbate et al. 2010, 2013, 2020; Morton
et al. 2015). In VCU ART, this type of interleukin-1 blockade significantly reduced
the systemic inflammatory response with a strong reduction of hsCRP levels in
patients with ST-Elevation Myocardial Infarction (STEMI) as well as decreasing the
incidence of heart failure. In the MRC ILA-Heart trial, a reduction of IL-6 and
hsCRP levels was also observed in non-STEMI (NSTEMI) patients who received
Anakinra daily for 2 weeks. However, by day 30, the hsCRP levels in patients treated
with Anakinra were significantly higher than in the placebo group, and an unex-
pected increase of late recurrent ischemic events was observed. Interestingly, a
recent study carried out by the Interleukin-1 Genetics Consortium supports the
hypothesis that long-term IL-1 inhibition may be associated with an increase in
cardiovascular events. In this study, individuals who carried four IL-1Ra raising
alleles were found to have an increased odds ratio for coronary heart disease (1.15)
compared to those carrying no IL-1Ra raising alleles. Additionally, the concentration
of proatherogenic lipids, including LDL cholesterol, increased with each extra allele
present (Freitag et al. 2015). However, the VCU-ART study showed no effect on
recurrent ischemic events, while there was an increase of MACE upon Anakinra
treatment after 1 year in the MRC ILA-Heart trial.

In summary, the relationship between IL-1 targeting and clinical outcomes seems
more complex than originally thought. Currently attempted therapeutic strategies
include targeting IL-1β (Canakinumab) or both IL-1α and IL-1β with the human
recombinant IL-1RA (Anakinra). Further understanding of the distinct roles of the
different IL-1 isoforms would enhance our understanding of clinical trial data
(CANTOS, VCU ART-1/2/3, MRC ILA-HEART) and improve future trial design.

2.1.2 NLRP3 Inhibitors
Despite the importance of the NLRP3 inflammasome in many inflammatory
diseases, there is currently no approved inflammasome inhibitor for the treatment
or prevention of atherosclerosis. Nevertheless, many small molecule compounds
targeting the NLRP3 inflammasome have been developed, with promising results.
Importantly, both canonical and non-canonical NLRP3 activation pathways can be
targeted.

366 J. Deroissart et al.



MCC950
MCC950 is a small molecule inhibitor of the NLRP3 pathway, with a mechanism
which is yet to be fully understood (Coll et al. 2015). Nevertheless, it was found to
reduce atherosclerotic lesion formation in Apoe�/� mice. This was associated with
decreased expression of the adhesion molecules ICAM-1 and VCAM-1, as well as
reduced macrophage infiltration within plaques and no change in necrotic core size
(Van Der Heijden et al. 2017). This early data suggests that MCC950 represents an
interesting candidate to target NLRP3 induced inflammation in atherosclerosis.

Tranilast
Tranilast, which was originally used to treat allergy, was shown to inhibit NLRP3 by
facilitating its ubiquitination and impairing ASC oligomerization (Huang et al. 2018;
Chen et al. 2020). The effect of Tranilast on atherosclerosis was assessed in
Watanabe heritable hyperlipidemic rabbits and resulted in decreased atherosclerosis
upon treatment (Matsumura et al. 1999). Recently, another study carried out in mice
showed that Tranilast decreased the initiation and progression of atherosclerosis in
both Ldlr�/� and Apoe�/� prone atherosclerotic mice (Chen et al. 2020). Thus,
pharmacologic manipulation of NLRP3 ubiquitination offers a new strategy for
protection against atherosclerosis.

Despite encouraging results from animal models, many questions remain to be
answered concerning the safety of NLRP3 inhibitors. It will be critical to further
examine how these compounds affect the activity of other inflammasomes and how
the host immune response is affected in the long run. The initiation of new clinical
trials evaluating the benefit of NLRP3 inhibitors in the context of cardiovascular
diseases will also depend on these factors.

2.2 Targeting TNF and Interleukins

2.2.1 Tumor Necrosis Factor (TNF)
Tumor necrosis factor (TNF) is a proinflammatory cytokine with a broad spectrum of
functions and targets. It controls inflammatory responses by regulating leukocyte
activation, maturation, and cytokine/chemokine release. TNF secretion can be trig-
gered by the recognition of PAMPs and DAMPs, but also by cytokines and inter-
feron such as IL-1, GM-CSF, TGF-β, TNF-α itself (autocrine loop), and IFN-γ
(Zelová and Hošek 2013). It is mainly produced by macrophages and T cells, but
many other cell types, including non-immune cells such as endothelial cells and
smooth muscle cells (SMCs), can also secrete TNF. Importantly, TNF seems to be
highly expressed in human atherosclerotic plaques (Rus et al. 1991; Canault et al.
2006). Ohta et al showed that TNF enhances the expression of ICAM-1, VCAM-1,
and MCP-1 in endothelial cells, favoring monocyte recruitment into the vascular
wall. Additionally, an increase of scavenger receptor A dependent uptake of
oxidized LDL by macrophages has been described, as well as decreased IL-1β and
INF-γ mRNA expression, which together strongly support a deleterious role of TNF
in murine atherosclerosis (Ohta et al. 2005; Xiao et al. 2009). Interestingly, recent
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studies suggest that TNF might also be involved in the regulation of the NLRP3
inflammasome (Sode et al. 2014; Bauernfeind et al. 2016; McGeough et al. 2017).

TNF is a central mediator of the inflammatory response and its signaling mecha-
nism is well described. Many biological agents interfering with TNF signaling have
been developed and tested in clinical trials in the context of inflammatory diseases
associated with high cardiovascular risk, such as rheumatoid arthritis (RA), psoriatic
arthritis, and Crohn’s disease. For example, treatment with TNF blockers (infliximab
or etanercept) in RA is associated with a lower incidence of cardiovascular events
(Jacobsson et al. 2005). Two meta-analyses also confirmed that RA patients treated
with anti-TNF therapy have a lower risk of cardiovascular events in comparison with
patients treated with disease-modifying antirheumatic drugs (DMARDs) (Barnabe
et al. 2011; Roubille et al. 2015). Currently, five different anti-TNF drugs are
approved for clinical use, which include soluble TNF-receptor (etanercept) and
TNF monoclonal antibodies (adalimumab, infliximab, golimumab, and certolizumab
pegol). The evidence for their use in atherosclerotic cardiovascular disease will be
discussed below.

Adalimumab
While adalimumab has been used as a safe therapy in a myriad of inflammatory
diseases (Burmester et al. 2020), no large-scale trial regarding its effect on athero-
sclerotic cardiovascular disease exists. A small study in RA patients showed that
treatment with adalimumab improves endothelial-dependent vasodilatation
(Gonzalez-Juanatey et al. 2006), findings which were confirmed in a second study
by the same authors. In this latter study, a comparison of baseline and post-treatment
(12 months) carotid artery wall thickness (intima-media) measurement in RA
patients showed no statistical difference (Gonzalez-Juanatey et al. 2012). Neverthe-
less, these observations suggest that adalimumab may improve the state of subclini-
cal atherosclerosis in RA patients. Improvement of endothelial cell function was also
observed in a study involving 14 psoriatic patients (Avgerinou et al. 2011). After
12 weeks of adalimumab treatment, no significant change on hsCRP level compared
to baseline was observed, but ICAM-1 expression was decreased and the flow-
mediated dilation (FMD), used as a marker of endothelial dysfunction, was
improved. A larger study (NCT01722214) included 107 psoriatic patients
randomized to receive either adalimumab for 52 weeks or placebo for 16 weeks
followed by adalimumab for 36 weeks (per-protocol setting). At 16 weeks, the
adalimumab treatment group had no difference in vascular inflammation compared
to the placebo control group. At the 52-week time point, there was no difference
observed in the ascending aorta with adalimumab, but a modest increase in vascular
inflammation in carotids was described (Bissonnette et al. 2017). Thus, in lieu of a
large clinical trial, the effect of adalimumab in ASCVD remains unclear.

Golimumab
Golimumab is a fully-humanized monoclonal anti-TNF antibody approved for the
treatment of RA, ankylosing spondylitis (AS), psoriatic arthritis, and ulcerative
colitis. Golimumab has a greater affinity for the soluble (sTNF) vs. the
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transmembrane form (mTNF). While no data exist regarding the therapeutic benefit
of golimumab in atherosclerosis, a pilot study in patients with ASCVD provided
encouraging results (Tam et al. 2014). This randomized, double-blind, placebo-
controlled trial aimed to assess the efficacy of Golimumab in preventing atheroscle-
rosis progression and arterial stiffness in AS patients. A total of 20 patients received
50 mg of Golimumab monthly, with 21 receiving placebo treatment, for 1 year. After
6 months, no significant change in vascular parameters (i.e. aortic stiffness, carotid
intima/media thickness) was observed between the two groups. However, a signifi-
cant progression of the mean intima-media thickness (IMT) was only seen in the
placebo group and not in the golimumab group. Maximum IMT, pulse wave velocity
(PWV), and augmentation index (Aix) remained unchanged (paired t-test analysis).
Nevertheless, no significant difference concerning vascular parameters was
demonstrated between the two groups after 1 year of treatment. Further large-scale
studies are needed to fully validate the potential effects seen in this study.

In addition to these findings in AS patients, TNF inhibitors were found to improve
the overall pathologic profile of RA and psoriasis patients at high cardiovascular
risk. Therapeutic targeting of TNF has shown benefit in the prevention of athero-
sclerosis in RA (Del Porto et al. 2007), which might also be the case in psoriasis
(Sattar et al. 2007). Interestingly, a recent meta-analysis that includes 7,697 coronary
artery disease (CAD) patients and 9,655 control patients has investigated the associ-
ation of TNF gene polymorphisms and CAD susceptibility (Huang et al. 2020). The
authors concluded that there was no association of TNF 308G/A, 857C/T, 863C/A,
and 1031 T polymorphisms with CAD susceptibility. However, the TNF 238G/A
genotype showed a significant association with higher CAD susceptibility in the
subgroup of Europeans and North Asians, which suggests a direct role of TNF in
CAD. Additionally, several studies described an adverse effect of TNF inhibitors on
lipid profiles and described an increase of total cholesterol and triglycerides levels
(Curtis et al. 2012; Hassan et al. 2016). In summary, further large-scale studies are
required to evaluate the potential benefits of anti-TNF agents.

2.2.2 IL-6
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in different arms of the
immune system. It can result in both pro- and anti-inflammatory outcomes which
can be explained by the different signaling pathways engaged: the classical pathway,
the trans-signaling pathway, and the blockade pathway. The classical pathway
occurs in a few cell types such as T cells, hepatocytes, and monocytes. It involves
the IL-6 receptor (IL-6R) and glycoprotein 130 (gp130), a signal transducer sub-unit
of the IL-6 receptor. In the trans-signaling pathway, the mechanism involves the
signal transducer gp130 as well as soluble IL-6 receptor (sIL-6R). In contrast to the
classical pathway, trans-signaling can occur in any cell type expressing a membrane-
bound gp130 protein. In this scenario, sIL-6 binds to sIL-6R and forms a complex
that can activate signaling through gp130 resulting in a greater magnitude of
proinflammatory state. IL-6 signaling can also be blocked via the soluble form of
gp130 which acts as a natural inhibitor of trans-signaling by binding sIL-6/IL-6R
complex (Jostock et al. 2001).
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Despite inconclusive data from experimental models (Elhage et al. 2001; Song
and Schindler 2004; Schieffer et al. 2004; Schuett et al. 2012), shreds of evidence
from translational studies identify IL-6 as a key regulator of atherogenesis. Expres-
sion of IL-6 was detected in human atherosclerotic plaques (Seino et al. 1994; Rus
et al. 1996; Schieffer et al. 2000). Several studies found that high levels of IL-6 are
associated with increased cardiovascular risk in human (Mendall et al. 1997; Ridker
et al. 2000b; Fisman et al. 2006; Zakai et al. 2007; Danesh et al. 2008; Lefkou et al.
2010). Among them, a study from J. Danesh and colleagues, who compared serial
measurements of serum IL-6 between patients with a history of coronary heart
disease and controls. Results showed that long-term exposure to circulating IL-6
was associated with an increased risk of coronary artery disease (Danesh et al. 2008).
However, follow-up studies of the CANTOS trial showed that patients with elevated
IL-6 levels after canakinumab treatment have no significant benefit as opposed to
patients with lower IL-6 levels (Ridker et al. 2018a, 2020).

Collectively, these studies and the studies based on the CANTOS trial suggest an
important role of IL-6 in cardiovascular diseases. Targeting the IL-6 axis may be
crucial to reduce the residual inflammation responsible for the increased risk of
cardiovascular events.

Several clinical trials tested the therapeutic benefit of targeting the IL-6 axis using
Tocilizumab (Table 1). However, higher-powered studies are required to better
evaluate the safety and efficiency of current IL-6 targeting agents, and appreciate
their benefit in preventing atherosclerosis.

2.3 Targeting Chronic Inflammation Using Broad
Anti-inflammatory Drugs

Given the importance of inflammation in atherosclerosis, the usage of broad anti-
inflammatory drugs could potentially reduce the risk of atherosclerotic events. Well
known for their anti-inflammatory properties, methotrexate and colchicine are
widely used as main treatments in inflammatory diseases with a high risk of CVD,
notably RA, psoriasis, and other rheumatologic disorders (Saag et al. 2008; Singh
et al. 2012). The repurposing of these two drugs as a therapeutic approach against
atherosclerosis was evaluated in several clinical trials discussed below.

2.3.1 Methotrexate
Treatment with low-dose methotrexate (LD-MTX) reduces the levels of circulating
CRP, IL-6, TNF-alpha and cardiovascular events in RA patients (Choi et al. 2002;
Wessels et al. 2008; Westlake et al. 2010; Roubille et al. 2015). An important feature
of LD-MTX is its ability to increase adenosine production and stimulate the adeno-
sine A2A receptor, which has been shown to promote the expression of several
proteins involved in reverse cholesterol transport, thus potentially reducing foam
cell formation (Reiss et al. 2008). The potential benefit of LD-MTX in the treatment
of atherosclerosis was recently assessed in the cardiovascular inflammation reduc-
tion trial (CIRT) which is discussed below.
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Cardiovascular Inflammation Reduction Trial (CIRT)
The CIRT trial was performed in parallel with the CANTOS trial and aimed to
determine if LD-MTX could reduce cardiovascular events in patients with stable
atherosclerosis and high cardiovascular risk (Everett et al. 2013). The double-blind
trial included 4,786 patients with a history of myocardial infarction or multivessel
coronary disease, as well as either type 2 diabetes or metabolic syndrome. Patients
were randomized and treated with either LD-MTX (2,391) or placebo (2,395). The
final primary endpoint was a composite of nonfatal myocardial infarction, nonfatal
stroke, cardiovascular death, and hospitalization for unstable angina that led to
urgent revascularization. After a median follow-up of 2.3 years, the primary end-
point occurred in 201 patients in the methotrexate group and 207 patients in the
placebo group (HR 0.96, 95% CI 0.79–1.16). Also, treatment with LD-MTX did not
reduce plasma levels of CRP, IL-1β, IL-6, TNF-α. No significant difference between
the two groups for any component of the primary endpoint was found.

Considering the success of the CANTOS trial and the beneficial effect seen with
LD-MTX in RA patients, the CIRT trial results are disappointing. While CANTOS
targeted a specific and well-defined pathway, the CIRT trial used a drug with a large
spectrum of anti-inflammatory effects with molecular consequences which are not
yet understood. Besides the different mechanisms of action, an additional explana-
tion for the discrepant results between CIRT and CANTOS may be differences in the
study design of the two studies. Patients recruited to the CIRT trial had a lower
residual inflammatory profile (median baseline CRP: 1.6mg/L) compared to patients
from the CANTOS trial, where patient recruitment was based on hsCRP levels
�2 mg/L as a marker of high residual inflammation (median baseline CRP:
4.2mg/L). In support of this explanation, treatment of RA patients with LD-MTX
led to a reduction of hsCRP (Westlake et al. 2010) and decreased cardiovascular risk.

These data demonstrate that the design of future clinical trials needs to consider
inclusion criteria that target individuals with a high inflammatory profile.

2.3.2 Low-Dose Colchicine
Colchicine is an inexpensive anti-inflammatory drug used in patients with gout,
familial Mediterranean fever, and pericarditis. By preventing microtubule assembly,
colchicine can disrupt inflammasome activation, microtubule-based inflammatory
cell chemotaxis, phagocytosis, and other host immune mechanisms. The first benefit
of colchicine in ischemic heart disease (IHD) has been observed in familial Medi-
terranean fever patients (Langevitz et al. 2001). Patients diagnosed with FMF show a
sustained inflammatory response which puts them at a higher risk of suffering a heart
attack in comparison with the general population. Langevitz and colleagues showed
that treatment with colchicine lowered the risk of IHD in FMF patients compared to
untreated patients with other inflammatory conditions and similar rates of risk
factors. Also, patients taking colchicine achieved a frequency of IHD comparable
to the general population. To assess the potential benefit of colchicine in atheroscle-
rosis, several clinical trials such as the low-dose colchicine trial (LoDoCO), or more
recently the colchicine cardiovascular outcomes trial (COLCOT), have been carried
out and will be discussed below.
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LoDoCo-MI and LoDoCo-1/2 Trials
In 2007, a small pilot study had demonstrated the potential of low-dose colchicine to
reduce hsCRP levels, independently of lowering cholesterol (Atorvastatin), in
patients with stable coronary artery disease (Nidorf and Thompson 2007). However,
in the randomized and placebo-controlled LoDoCo (Low-Dose Colchicine)-MI
study (237 patients), colchicine at 0.5 mg/day for 30 days failed to reduce hsCRP
levels (� 2 mg/L) in patients with recent MI (Hennessy et al. 2019).

Subsequently, the LoDoCo (Low-Dose Colchicine) trial was designed as a
prospective study to assess the efficiency and safety of long-term low-dose colchi-
cine usage in patients with stable coronary disease. 532 patients on lipid-lowering
medication and antithrombotic therapy were randomized and treated with a daily
dose of colchicine (0.5 mg/mL) or no colchicine. After a median follow-up of
3 years, the primary outcome (acute coronary syndrome, out-of-hospital cardiac
arrest, or non-cardioembolic ischemic stroke) had occurred in 5.3% of patients in the
low-dose colchicine group, as opposed to 16% in the non-treated group (Nidorf et al.
2013). To validate the observations from the LoDoCo study, a large-scale study
(LoDoCo 2) involving 5,522 patients was conducted. LoDoCo 2 confirmed the
significant treatment benefit of low-dose colchicine in reducing CVD risk in patients
with stable coronary disease. The primary endpoint was a composite of cardiovas-
cular death, spontaneous (non-procedural) myocardial infarction, ischemic stroke, or
ischemia-driven coronary revascularization. The secondary endpoint was a compos-
ite of cardiovascular death, spontaneous MI, or ischemic stroke. Primary endpoints
occurred in 6.8% of patients in the low-dose colchicine group as opposed to 9.6% in
the placebo-treated group, and secondary endpoints occurred in 4.2% in the colchi-
cine group and 5.7% in the placebo group. However, an increase in death from
non-cardiovascular diseases was observed in the colchicine treated group, which
further justifies the need for more targeted therapies that limit undesirable side
effects (Nidorf et al. 2019, 2020; Pradhan 2021).

COLCOT Trial
Another recent double-blind randomized placebo-controlled colchicine intervention
study, named COLCOT (colchicine cardiovascular outcomes trial), aimed to assess
the benefit of colchicine in patients with a recent acute MI (Tardif et al. 2019). In
total, 4,745 patients were divided into two groups that were given oral colchicine at
0.5 mg/day or a placebo. The primary efficacy endpoint was a composite of death
from cardiovascular causes, myocardial infarction, stroke, urgent hospitalization for
angina leading to coronary revascularization, or resuscitated cardiac arrest. At a
median of 23 months, the primary composite endpoint had occurred in 5.5% of the
treatment group and 7.1% in the placebo group (hazard ratio, 0.77). Remarkably, the
hazard ratio for stroke (HR ¼ 0.26) and hospitalization for angina (HR ¼ 0.50)
indicate an important benefit in the colchicine treated group for these two particular
primary endpoints. Overall, colchicine showed a good safety and tolerability profile
despite a slight but significant increase in pneumonia occurrence (0.9%) in the
colchicine group compared to the placebo group (0.4%). There were no differences
in peripheral blood counts and CRP levels among the treated group compared to the
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placebo. Recent follow-up analysis suggests that the main benefit of colchicine
therapy occurs when treatment is initiated in the first 3 days post-MI (Bouabdallaoui
et al. 2020).

Additionally, the repurposed usage of low-dose colchicine has shown multiple
benefits for the treatment of stable coronary artery diseases. A recent pilot study
carried out in 80 patients with recent acute coronary syndrome suggests that
low-dose colchicine uptake on a regular basis can efficiently stabilize plaques on
top of optimal medical therapy (Vaidya et al. 2018). Further upcoming data from
large-scale trials such as CLEAR-Synergy (4,000 patients with ST-elevation
myocardial infarction undergoing percutaneous coronary intervention
(NCT03048825)) will help to validate its efficiency and tolerability in coronary
diseases.

2.4 Targeting Chemokine Signaling

Considerable work has been carried out on the identification of inflammatory
mediators that actively participate in the progression of atherosclerosis which has
increased the number of potential new therapeutic targets. Among them, chemokines
were identified as key players in leukocyte recruitment/adhesion and activation as
well as promotion of local inflammation in arteries. The contribution of chemokines
to plaque formation/destabilization and thrombus formation has been extensively
reviewed elsewhere (Zernecke and Weber 2014).

Despite the proven relevance of specific chemokines in atherogenesis, the clinical
evaluation of drugs targeting specific chemokines or chemokine pairings has not
progressed much. This is mainly due to the complexity of the “working network”
within which chemokines operate and their critical role in fundamental host defense.

Several chemokines and their receptors such as CCL5/CCR5 (including
heterodimeric interactions), CCL2/CCR2, CX3CL1/CX3CR1 are an active part of
disease progression (Combadière et al. 2008). Drugs targeting those axes were
developed in the context of other diseases like human immunodeficiency virus
infections and facilitate the establishment of new clinical studies involving patients
with cardiovascular diseases. Currently, drugs used to disrupt chemokine–receptor
interactions rely on four main strategies: the modification of the chemokine
N-terminal domain, the synthesis of small molecules used as a receptor antagonist,
the usage of specific antibodies targeting chemokines, and other drugs interfering
with chemokines’ heterodimeric interactions. Here, we will focus on promising
chemokine targeting therapies with available clinical data in the context of
atherosclerosis.

2.4.1 Targeting the CCR5 Axis
Expression of CCL5 and CCR5 has been identified in atherosclerotic plaques more
than 15 years ago (Wilcox et al. 1994; Pattison et al. 1996; Veillard et al. 2004).
Atheroprotective effects resulting from the perturbation of CCR5/RANTES
(Regulated on Activation, Normal T cell Expressed and Secreted) interactions

374 J. Deroissart et al.



were described in several mouse studies. The genetic inactivation of CCR5 in chow
or high-fat diet-fed Apoe�/� mice was shown to be protective in advanced athero-
sclerosis, but not in the early phase of the disease. The atheroprotective effect was
associated with a decrease of macrophage numbers in plaques and reduced levels of
circulating IL-6. The plaque quality was also affected by an increased content of
SMCs, promoting plaque stabilization (Kuziel et al. 2003; Braunersreuther et al.
2007; Quinones et al. 2007). Moreover, a natural variant of CCR5 (CCR5Δ32
polymorphism) which reduces the cell surface expression of CCR5, is associated
with a reduced risk of coronary artery diseases and MI (Szalai et al. 2001; González
et al. 2001). Thus, the CCR5 pathway appears to be an interesting potential target for
antiatherosclerotic therapy.

Maraviroc
The CCR5 inhibitor maraviroc is one of the few small molecules targeting a
chemokine/receptor interaction approved by the US Food and Drug Administration
and the European Medicines Agency as a preventive treatment for HIV (2007).
HIV-associated inflammation increases HIV patients’ risk of cardiovascular disease
(Shah et al. 2018), which suggests a potential role of maraviroc in modulating the
atherogenic risk of these patients. This was confirmed preclinically as the treatment
of atherosclerosis-prone Apoe�/� mice with maraviroc has been found to reduce
atherosclerotic lesion development (Cipriani et al. 2013).

A recent pilot study in HIV patients showed that maraviroc treatment decreases
carotid intima-media thickness, reflecting potential anti-atherogenic effects
(Francisci et al. 2019). Additionally, an anti-human CCR5 monoclonal antibody
(HGS004-Human Genome Sciences), tested in a clinical trial in HIV patients,
showed a good safety profile and could be an interesting candidate for atherosclero-
sis therapy (Lalezari et al. 2008). Finally, a phase 4 clinical trial evaluating the
efficacy of maraviroc in modulating atherosclerosis in HIV patients has been
completed (NCT03402815) and results are forthcoming. This data will provide
crucial information regarding the future of CCR5 axis targeting therapy in
atherosclerosis.

2.4.2 Targeting the CCR2 Axis
Many pieces of evidence from experimental models demonstrate the proatherogenic
role of CCR2 and its ligand CCL2/MCP-1 (Monocyte chemoattractant protein 1)
(França et al. 2017). Notably, CCR2 signaling can promote monocyte recruitment to
atherosclerotic lesions and foam cell formation (Boring et al. 1998; Bobryshev
2006). A recent discovery by Winter et al showed that the recruitment of myeloid
cells within atherosclerotic lesions is subject to circadian regulation (Winter et al.
2018). This establishes a new concept of chrono-pharmacology-based therapy for
the treatment of atherosclerosis, which is particularly relevant for the usage of CCR2
antagonists given their role in the promotion of monocyte recruitment (Winter et al.
2018).
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MNL1202
In an effort to develop a specific antagonist of CCR2, a humanized antibody
MNL1202 has been generated and tested in a phase 2 clinical trial in patients at
risk for CVD (with at least 2 risk factors for atherosclerotic CVD, hsCRP level
>3 mg/L, and receiving or not receiving lipid-lowering drugs). The direct blocking
of CCR2 with MLN1202 was well tolerated and significantly reduced hsCRP levels
in the antibody-treated group compared to the placebo-treated group (Gilbert et al.
2011). Thus MLN1202 appears to be a promising candidate to target atherosclerosis-
associated inflammation.

Despite encouraging preclinical results, few molecules targeting chemokines and
their receptors have been approved for clinical use yet. The fundamental role of
chemokine signaling during both innate and adaptive immune response suggests that
its targeting likely critically impairs the host immune response. For example,
treatment with the CCL5 variant Met-RANTES or deficiency in CCL5 delays viral
clearance by macrophages and impairs T-cell function (Makino et al. 2002). In this
regard, the specific targeting of chemokine heteromerization represents a good
alternative as it poses fewer risks of immunological side effects than chemokine
antagonists. Up to now, 11 heteromeric chemokine pairs have been reported
(Koenen and Weber 2010), expanding the therapeutic possibilities. Importantly,
preclinical studies are carried out in a pathogen-free context, which is not represen-
tative of human pathogen exposure. Thus, future studies must assess the risk of long-
term exposure to such chemokine targeting therapies. The complexity of the chemo-
kine network, the lack of data concerning the toxicity of their targeting agents, and
the availability of other, safer therapeutic approaches have drastically slowed down
the translation of chemokine targeted therapies to human cardiovascular disease.
Future studies should include a parallel assessment of risks and benefits provided by
molecules targeting chemokine interactions to better appreciate the net effect on
patients with cardiovascular diseases.

3 Modulation of the Adaptive Immune Response

Adaptive immunity plays a key role in driving and modulating the pathogenesis of
atherosclerosis (Sage et al. 2018; ; Wolf and Ley 2019; Libby 2021). The adaptive
branch of immunity consists primarily of T and B cells, both of which have the
capacity to induce immune responses that are specifically targeted to disease-
associated antigens. Adaptive immunity therefore represents an attractive therapeu-
tic target as its modulation could allow for a more specific response, potentially
reducing the risks of weakened host defenses associated with broad anti-
inflammatory therapies (Fig. 2).
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3.1 Strategies Targeting the Homeostatic Balance Between
Regulatory and Effector T Cells

Although no therapies targeting T cells are currently in clinical use for the treatment
and prevention of cardiovascular disease, some therapeutic approaches have shown
promise in preclinical models and are being evaluated in clinical trials. In atheroscle-
rosis-prone mice, regulatory T cells (Tregs) have been shown to be beneficial both in
the progression and regression of atherosclerosis (Ait-Oufella et al. 2006; Mor et al.

Fig. 2 Targeting adaptive immune responses in atherosclerosis. Regulatory T cells (Tregs) play a
protective role in atherosclerosis via their immunosuppressive capacities such as the secretion of
IL10 and TGFβ. They can suppress the activity of proatherogenic effector T cells such as TH1 cells.
Treg numbers can be increased in a non-specific manner via the use of low-dose IL2 or in an antigen-
specific manner by immunization with ApoB100-derived peptides. Furthermore, blocking effector
T cell activation by inhibiting the interaction between co-stimulatory CD80/CD86 on antigen-
presenting cells such as B cells and CD28 on T cells has been shown to reduce atherosclerosis in
mice. B2 cells and many of their effector functions including some proatherogenic antibody
isotypes such as IgE have been shown to promote atherogenesis. Thus, B cell depleting antibodies
such as anti-CD20 or anti-BAFF antibodies have been shown to protect mice from atherosclerosis.
Additionally, the depletion of proatherogenic antibodies such as IgE may have beneficial effects.
On the other hand, immunization with modified LDL has been shown to induce protective antibody
responses (both IgG and IgM) against oxidation-specific epitopes (OSE) that ameliorate atheroscle-
rosis in preclinical studies
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2007; Klingenberg et al. 2013; Sharma et al. 2020). In contrast, many effector T cells
are thought to be proatherogenic, particularly IFNγ-secreting T helper 1 (Th1)
(Saigusa et al. 2020; Buono et al. 2005). In humans, cardiovascular disease is
associated with an imbalance in Treg and effector T cells, where Tregs are decreased
in patients with acute coronary syndrome and low numbers are associated with
increased rates of acute coronary events (Mor et al. 2006; Han et al. 2007; Cheng
et al. 2008; Ammirati et al. 2010; Wigren et al. 2012).

Therefore, the aim of T cell-targeted therapeutic approaches in atherosclerosis is
to change the homeostatic balance of different T cell subsets by expanding
atheroprotective, immunosuppressive Tregs while suppressing putatively
proatherogenic effector T cell populations (Foks et al. 2015). This could be achieved
on the one hand by the stimulation of non-specific Tregs by targeting pathways such
as interleukin-2 (IL-2). On the other hand, specific Tregs can be expanded with the
use of tolerogenic vaccines against atherosclerosis-relevant antigens.

3.1.1 Low-Dose IL-2 Therapy
Interleukin-2 is a cytokine that plays a key role in the regulation of T cell activity and
survival. Although IL-2 has the ability to regulate all T cells, it appears to be
particularly important in the development and survival of Tregs (Boyman and Sprent
2012). The activation threshold for Tregs is lower than for other effector T cells
(Yu et al. 2009), which may explain the somewhat paradoxical effect of IL-2
therapy. While high-dose IL-2 therapy is thought to promote effector immunity,
low-dose IL-2 stimulates immunosuppressive Tregs (Klatzmann and Abbas 2015). A
potential added benefit of this therapy could be the IL-2 mediated expansion of
innate lymphoid cells 2 (ILC2) (Van Gool et al. 2014). ILC2 cells represent a rare
subset of immune cells that likely exert atheroprotective functions via the secretion
of type-2 cytokines such as IL-5 and IL-13 (Binder et al. 2004; Cardilo-Reis et al.
2012; Newland et al. 2017). Preclinical studies have shown that administration of
recombinant IL-2 complexed with monoclonal antibodies against IL-2 increases the
levels of Tregs and reduces atherosclerotic plaque burden in mice (Foks et al. 2011;
Dinh et al. 2012; Proto et al. 2018).

The IL-2 analogue aldesleukin is currently approved for the treatment of
advanced renal cell carcinoma and metastatic melanoma. In cardiovascular disease,
low-dose IL-2 therapy is being evaluated in clinical trials with the aim to increase
Treg numbers, thereby limiting post-ischemic inflammatory responses and promoting
myocardial healing in the setting of ischemic heart disease and acute coronary
syndrome. The low-dose Interleukin-2 in patients with stable ischemic heart disease
and acute coronary syndromes (LILACS) study is a randomized, placebo-controlled,
double-blind phase I/IIa clinical trial that aims to assess the safety and tolerability of
escalating doses of recombinant IL2, as well as its ability to alter Treg, effector T cell
and other immune cell populations (NCT03113773; expected completion date
06/2021; Zhao et al. 2018). Preliminary results indicate the treatment is well
tolerated and induces robust increases in Tregs without affecting effector T cells.
Interestingly, a dose-dependent reduction in B cells was also seen, which may have
further beneficial effects on atherosclerosis (Zhao et al. 2020a). The subsequent
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low-dose IL-2 for the Reduction of Vascular Inflammation In Acute Coronary
Syndromes (IVORY) phase II trial will assess changes in vascular inflammation in
patients with acute coronary syndromes (NCT04241601; expected completion date
01/2024; Zhao et al. 2020b).

One limitation of low-dose IL-2 therapy are potential off-target effects, which
include mild increases in NK cells and eosinophils (Zhao et al. 2020a). Furthermore,
initially protective Tregs may undergo a phenotypic switch toward a proinflammatory
TH1-like phenotype with progressing disease in mice (Li et al. 2016; Butcher et al.
2016; Wolf et al. 2020). It remains to be addressed whether this switch can occur in
humans.

3.1.2 Alternative Means to Expand Regulatory T Cells
Alternative options to harness the immunosuppressive capacity of Tregs is by ex vivo
expansion of Tregs, where autologous naïve Tregs are isolated from the blood and
expanded in vivo using a cytokine cocktail or antigenic stimuli. The adoptive
transfer of Tregs has been tested in humans in the setting of transplantation
(Trzonkowski et al. 2009; Brunstein et al. 2011; Di Ianni et al. 2011; Mathew
et al. 2018) and type 1 diabetes (Marek-Trzonkowska et al. 2014), but not cardio-
vascular disease. Another way to expand Tregs is using tolerogenic non-FcR binding
anti-CD3 antibodies such as teplizumab, which have shown promise in clinical trials
for the treatment and prevention of type 1 diabetes (Herold et al. 2013, 2019).
However, the effect of anti-CD3 on atherosclerosis has so far only been addressed
in preclinical murine studies alone (Steffens et al. 2006; Kita et al. 2014) or in
combination with IL-2 complex (Kasahara et al. 2014), where it was associated with
reduced atherosclerosis progression or increased Treg-dependent plaque regression.

3.2 Strategies Targeting B Cells and Humoral Immunity

B cells play a well-established role in the pathogenesis of atherosclerosis, with
different B cell subsets having distinct effects on the pathogenesis of atherosclerosis
(Sage et al.). B cells exert their function primarily via the generation of humoral
immunity in the form of highly specific antibodies, but they also have the capacity to
act as antigen-presenting cells to T cells and to secrete cytokines. The most abundant
B cell type, follicular B2 cells, as well as B cell-derived germinal center B cells that
arise upon interaction with follicular T helper cells, are generally considered
proatherogenic (Clement et al. 2015; Tay et al. 2018; Centa et al. 2019; Bagchi-
Chakraborty et al. 2019). In contrast, marginal zone B2 cells may protect from
atherosclerosis by suppressing T follicular helper cells (Nus et al. 2017) and poten-
tially via the secretion of atheroprotective IgM (Grasset et al. 2015). B1 cells, which
can be further subdivided into B1a and B1b cells, represent an innate-like B cell type
that can secrete germline-encoded natural antibodies that are typically of the IgM
class in a T cell-independent manner. Their atheroprotective function, which is
dependent on their ability to secrete IgM, is well-established in mice (Lewis et al.
2009; Kyaw et al. 2012; Rosenfeld et al. 2015; Gruber et al. 2016; Tsiantoulas et al.
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2017). Other minor B cell subsets include B1 cell derived innate response activator
(IRA) B cells that can promote atherosclerosis via the secretion of GM-CSF and the
subsequent induction of Th1-differentiation (Hilgendorf et al. 2014) and IL-10-
secreting B regulatory cells (Bregs), whose role in atherosclerosis remains contro-
versial (Strom et al. 2015; Sage et al. 2015; Douna et al. 2019).

Although most evidence on the role of B cells in atherosclerosis stems from
preclinical studies, B cells also appear to be key players in human cardiovascular
disease. Patients suffering from autoimmune diseases such as systemic lupus
erythematosus (SLE) and rheumatoid arthritis have an increased risk of cardiovas-
cular disease independently of other risk factors (Hollan et al. 2013). A genome wide
association study (GWAS) and transcriptome analysis of the Framingham Heart
Study cohort recently revealed genes associated with B cell activation and differen-
tiation to be the most deregulated genes between patients with and without coronary
heart disease, suggesting a key function for B cells in modulating atherosclerosis
(Huan et al. 2013). B cells are present in the vascular wall of human atherosclerotic
plaques (Hamze et al. 2013; Kortelainen and Porvari 2014), where they may undergo
antigen-driven clonal expansion ((Burioni et al. 2009). However, it is currently not
clear how findings from murine B cell subsets and their functions in cardiovascular
disease translate to human B cells. For example, although B1 cells are a well-
described atheroprotective subset in mice, the nature and existence of the human
equivalent of murine B1 cells remain controversial (Griffin et al. 2011; Upadhye
et al. 2020). McNamara and colleagues have recently found a subset of CXCR4-
expressing B1 cells that correlated with the levels of IgM directed against
MDA-LDL and that inversely correlated with plaque volume and stenosis (Upadhye
et al. 2019). Furthermore, increased levels of CD86-expressing CD19+ B cells were
found to associate with an increased risk of stroke, while CD40-expressing CD19+ B
cells showed a negative association (Mantani et al. 2014).

Overall, the aim of B cell-targeted therapy is to reduce the proatherogenic effects
of follicular B2 cells, ideally while preserving atheroprotective IgM-secreting B1
cells (Porsch and Binder 2019). Currently, B cell depletion therapy is primarily used
in the treatment of B cell malignancies and in the treatment of autoimmune diseases.
An alternative therapeutic target is humoral immunity. On the one hand, putatively
proatherogenic antibody classes such as IgE may be neutralized. On the other hand,
passive and active immunization strategies may be harnessed to specifically target
atherosclerosis-associated antigens such as oxidation-specific epitopes.

3.2.1 Anti-CD20 Mediated B Cell Depletion (Rituximab)
Given the strong evidence for a proatherogenic role of follicular B2 cells, the major
B cell type in the body, some high-risk patients may benefit from their depletion.
Indeed, preclinical studies suggest that anti-CD20 mediated B cell depletion could
ameliorate the development of several cardiovascular pathologies including athero-
sclerosis (Ait-Oufella et al. 2010; Kyaw et al. 2010), myocardial infarction
(Zouggari et al. 2013), myocardial infarction-accelerated atherosclerosis (Kyaw
et al. 2021), abdominal aortic aneurysm (Schaheen et al. 2016), and hypertension
(Chan et al. 2015).
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In mice, anti-CD20 treatment preferentially depletes B2 cells, while preserving
atheroprotective B1 cells (Hamaguchi et al. 2005). In line with that, anti-CD20
treatment of Ldlr�/� and Apoe�/� mice potently decreases B2 cell numbers and
IgG levels and induces significant reductions in atherosclerosis (Ait-Oufella et al.
2010; Kyaw et al. 2010). In the context of acute myocardial infarction, Zouggari
et al. could show that anti-CD20 mediated B2 cell depletion was associated with
reduced inflammation and CCL7-mediated monocyte mobilization while improving
cardiac function, reducing infarct size and fibrosis (Zouggari et al. 2013). Further-
more, anti-CD20 mediated B2 cell depletion significantly reduced myocardial
infarction-accelerated atherosclerosis (Kyaw et al. 2021).

Rituximab is a CD20-targeted monoclonal antibody that has been approved for
the treatment of some B cell malignancies (NHL, CLL) and autoimmune diseases
(rheumatoid arthritis, granulomatosis with polyangiitis, pemphigus vulgaris) for
more than two decades. Given its long clinical use, there is increasing evidence on
its effect on cardiovascular parameters. Although a recent meta-analysis could not
show an effect on short-term cardiovascular adverse events in randomized placebo-
controlled trials involving rituximab, long-term follow-up data is lacking (Morris-
Rosenfeld et al. 2014). Similarly, a study assessing the effects of biologic and
conventional disease-modifying antirheumatic drugs on incident cardiovascular
disease in rheumatoid arthritis patients with a mean follow-up of 4 years could
find no beneficial effects of rituximab on cardiovascular risk, although the number of
patients on rituximab in this study was relatively low (Ozen et al. 2020). However,
several small human studies could show reductions in carotid intima-media thick-
ness (Kerekes et al. 2009; Benucci et al. 2013; Novikova et al. 2016), improved
flow-mediated dilation (Kerekes et al. 2009; Benucci et al. 2013; Hsue et al. 2014)
and decreased arterial thickness (Provan et al. 2015) in patients receiving rituximab.

The Rituximab in patients with acute ST-elevation myocardial infarction (RITA-
MI) trial was a prospective, open-label, single-arm phase I/IIa trial testing a single
intravenous injection of rituximab in patients with STEMI within 48 h of symptom
onset with a 6-month follow-up. Preliminary data suggests the treatment is well
tolerated at all doses tested and resulted in a rapid, robust reduction of circulating B
cells by a mean 96.3% that persisted throughout the follow-up period in a dose-
dependent manner. Interestingly, immunoglobulin levels were not affected at that
point. Additionally, clinical cardiac parameters including ejection fraction and
(cardiac) biomarkers such as C-reactive protein (CRP) and B-type natriuretic peptide
(BNP) were improved at follow-up (NCT03072199; Zhao et al. 2021). A subsequent
phase IIb trial, RITA-MI 2, will be carried out in the form of a placebo-controlled
randomized trial, which will allow further assessment of whether anti-CD20-
mediated B cell depletion provides clinical benefits compared to placebo treatment
(Zhao et al. 2021). The ICFEr-RITU2 trial is another phase II clinical trial assessing
the safety of rituximab and the effect of rituximab on cardiac fibrotic remodeling in
patients with chronic heart failure with reduced ejection fraction (HFrEF;
NCT03332888; Sánchez-Trujillo et al. 2019). Furthermore, the risk of atheroscle-
rotic cardiovascular disease was reduced in patients receiving rituximab following
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kidney transplantation (Kim et al. 2019), further supporting the potential of anti-
CD20 mediated B cell depletion in the treatment of cardiovascular disease.

3.2.2 Other B Cell Depleting Antibodies
In addition to rituximab, there are emerging targets on B cells such as CD19
(inebilizumab, blinatumomab) and CD22 (inotuzumab ozogamicin) that are being
targeted to deplete B cells in cancer and autoimmune disease (Hofmann et al. 2018).
However, these receptors are also expressed on B1 cells, and may thus interfere with
atheroprotective B cell effects. Additionally, there are therapies targeting receptors
expressed on antibody-secreting plasma cells such as CD38 (daratumumab) and
SLAMF7 (elotuzumab), which are used in the treatment of multiple myeloma
(Radocha et al. 2021). However, the effect of such B cell depleting agents on
cardiovascular disease has not been assessed directly.

3.2.3 B Cell Depletion via Targeting of the BAFF/APRIL System
An alternative means to deplete B cells is via the targeting of the B cell activating
factor (BAFF)/A Proliferation-Inducing Ligand (APRIL) system, which is made up
of soluble mediators that are required for B cell survival. BAFF appears to be
particularly important in the survival of B2 cells (Rauch et al. 2009). In preclinical
studies, BAFFR deficiency and anti-BAFFR mAb administration have been shown
to robustly and selectively deplete B2 cells, thus decreasing atherosclerotic lesion
formation (Kyaw et al. 2012; Sage et al. 2012) and improving recovery from
myocardial infarction (Zouggari et al. 2013). However, there is also evidence that
BAFF may promote Breg differentiation (Yang et al. 2010) and that BAFF
overexpression might protect from atherosclerosis (Jackson et al. 2016). BAFF
may also exert atheroprotective functions via inhibition of TLR9-IRF7-dependent
proinflammatory signaling in macrophages. Indeed, BAFF neutralization promoted
lesion formation in atherosclerosis-prone mice and increased lesional CXCL10
content, suggesting potential adverse effects of BAFF-targeted therapies
(Tsiantoulas et al. 2018). Belimumab is a BAFF-targeting antibody that is approved
for the treatment of SLE, which robustly depletes B cells, plasma cells, and
immunoglobulins. So far, the effect of belimumab on cardiovascular disease has
not been assessed in human patients.

3.2.4 IgE Neutralization (Omalizumab)
The primary effector function of B cells is the generation of humoral immunity in the
form of antigen-specific antibodies. There is ample epidemiological and preclinical
experimental evidence suggesting an important role for humoral immunity and
different antibody classes in atherosclerosis (Khamis et al. 2016; Sage et al. 2017;
Tay et al. 2018; Centa et al. 2019; van den Berg et al. 2019). IgE is a class-switched,
typically follicular B cell-derived antibody class that is associated with allergic
responses. It can trigger proinflammatory responses via interaction with FcεRI
receptors on mast cells, basophils, macrophages, and vascular cells (Wu and Zarrin
2014). Plasma IgE levels correlate with coronary heart disease in humans (Kounis
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and Hahalis 2016). Interestingly, patients suffering from asthma are also at increased
risk for cardiovascular disease (Tattersall et al. 2015). Preclinical studies suggest a
proatherogenic role for IgE in Apoe�/� and Ldlr�/� mice (Wang et al. 2011; Wezel
et al. 2015; Tsiantoulas et al. 2017; Zhang et al. 2020). Antibody-mediated IgE
neutralization was found to reduce atherosclerotic lesion formation in Ldlr�/� mice
in the context of secreted IgM deficiency (Tsiantoulas et al. 2017).

Omalizumab is an IgE-neutralizing antibody that interferes with the interaction of
IgE and its receptors, resulting in the reduction of IgE levels. It is approved for the
treatment of severe asthma and chronic idiopathic urticaria. Although a clinical trial
suggested potential cardiovascular side effects of omalizumab treatment, this clinical
trial was biased by the dramatically increased cardiovascular disease burden at
baseline in the patients receiving omalizumab (Iribarren et al. 2017a). A subsequent
pooled analysis of randomized, double-blind placebo-controlled trials involving
omalizumab did not show an increased cardiovascular risk (Iribarren et al. 2017b)
Therefore, the effect of IgE neutralization on cardiovascular disease remains to be
evaluated in a clinical trial setting.

3.3 Strategies Targeting the Interaction Between T Cells
and Antigen-Presenting Cells

Efficient T cell activation is crucially dependent on the engagement of
co-stimulatory pathways. It has been hypothesized that T cells require two signals
in order to become fully activated, one being antigen-presentation via
MHC-molecules, the other being co-stimulation by receptors expressed on the
surface of antigen-presenting cells such as dendritic cells, macrophages, and B
cells. Inhibition of such co-stimulatory pathways may therefore interfere with the
activation, proliferation, and differentiation of T cells, which may have beneficial
effects on atherosclerosis. In contrast, targeting co-inhibitory pathways with the use
of immune checkpoint inhibitors in cancer therapy may enhance T cell activity,
which could have detrimental effects on cardiovascular disease.

3.3.1 Targeting Co-stimulatory Pathways

Abatacept
CD80 (B7-1) and CD86 (B7-2) are expressed on activated antigen-presenting cells,
where they can interact with both the co-stimulatory CD28 receptor and the inhibi-
tory CTLA4 receptor on T cells (Sharpe and Freeman 2002).

Abatacept is a recombinant biologic consisting of the Ig-domain of CTLA4 and a
human IgG1 Fc region. It binds CD80/CD86 with high affinity, thus blocking the
interaction of CD80/CD86 with the co-stimulatory CD28 receptor and activation of
T cells. Preclinical studies suggest a primarily proatherogenic role for CD80/CD86.
However, CD80/CD86 may also be required for the efficient induction of Tregs

(Ait-Oufella et al. 2006). However, abatacept was shown to reduce atherosclerosis
in different murine models of atherosclerosis (Ma et al. 2013; Ewing et al. 2013).

Anti-inflammatory and Immunomodulatory Therapies in Atherosclerosis 383



Abatacept is currently clinically approved for the treatment of rheumatoid, juvenile
idiopathic, and psoriatic arthritis, while the highly similar belatacept is used in
patients receiving kidney transplants. Some clinical trials suggest slightly reduced
cardiovascular disease risk in patients receiving abatacept compared to TNF
inhibitors (Zhang et al. 2016; Kang et al. 2018; Jin et al. 2018; Hsieh et al. 2020).

CD40-CD40L
Another important co-stimulatory signal is provided by the CD40-CD40L interac-
tion, a member of the tumor necrosis factor receptor (TNFR) family. Targeting this
pathway reduced atherosclerosis in mice (Lutgens et al. 2000, 2010; Schönbeck et al.
2000), but not in others (Zirlik et al. 2007). Additionally, CD40-signaling
intermediates, the so-called TNF-receptor associated factors (TRAFs), have been
targeted successfully by a small molecule inhibitor in mouse models (Lutgens et al.
2010; Chatzigeorgiou et al. 2014). Importantly, no immunosuppressive side effects
were observed with this inhibitor (Seijkens et al. 2018) and a newly developed
delivery system, linking a TRAF6 inhibitor to a HDL particle, was found to be safe
in non-human primates (Lameijer et al. 2018). Based on these initial findings, further
assessment of CD40-TRAF inhibition needs to be carried out to verify its role in
human atherosclerosis. While CD40-CD40L targeting therapeutics have not been
approved for clinical use yet, several antagonistic antibodies are currently being
evaluated in clinical trials for the treatment of inflammatory conditions (Karnell et al.
2019).

Co-inhibitory Pathways
Recent years have seen the emergence of cancer immunotherapy and the widespread
use of immune checkpoint inhibitors. Immune checkpoint inhibitors are used clini-
cally with the aim to enhance anti-tumor immunity by T cells. Many of these drugs
target pathways that have been described to play a proatherogenic role. Given the
prominent role of effector T cells and these immunomodulatory pathways in cardio-
vascular disease, such T cell-simulating therapy is expected to have detrimental
effects on atherosclerosis (Simons et al. 2019). Importantly, a recent study by Drobni
et al. could demonstrate a threefold increased risk for cardiovascular events and more
than threefold increased aortic plaque volumes in patients receiving immune check-
point inhibitor therapy (Drobni et al. 2020). Additionally, atherosclerotic mice which
underwent short-term check point inhibition therapy developed a more vulnerable,
proinflammatory atherosclerotic phenotype due to an access of effector T cells,
endothelial activation, and increased CD8+ T cell recruitment (Poels et al. 2020).
This study highlights the importance of cardiovascular risk awareness in cancer
patients receiving checkpoint inhibitor immunotherapy.

Vaccination Strategies
Vaccines represent an attractive future therapeutic avenue, as they may provide a
durable, antigen-specific approach, thus limiting adverse effects on the host immune
response. However, vaccination approaches remain challenging, as they require the
targeting of specific self-antigens that may trigger unwanted autoimmune responses.
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Unlike traditional vaccines that aim at enhancing the activity of the adaptive immune
system against pathogens, the idea behind immunization strategies against athero-
sclerosis is either to induce immunological tolerance or to neutralize atherosclerosis-
specific antigens without inducing a considerable inflammatory response. Addition-
ally, passive immunization strategies offer the opportunity to directly administer
antibodies that may modulate inflammatory and metabolic pathogenic mechanisms
in atherosclerosis, although their effect is transient.

3.3.2 Immunization Against LDL-Related Antigens
LDL and particularly its modified forms represent well-established immunogenic
epitopes that have previously been shown to play a role in atherosclerosis and to be
recognized by various components of the immune system. LDL can undergo oxida-
tive modifications that result in the formation of a variety of lipid peroxidation-
derived oxidation-specific epitopes (OSE), including phosphorylcholine (PC)-
containing oxidized phospholipids and malondialdehyde (MDA), which are highly
immunogenic and trigger inflammation in the vascular wall. Notably, OSE are
targeted by specific circulating antibodies that have been shown to neutralize their
proinflammatory activities. Thus, several experimental studies have addressed the
effect of immunization with modified LDL or parts of its main lipoprotein compo-
nent, Apolipoprotein B (ApoB).

Palinski and colleagues were able to show that immunization with
malondialdehyde (MDA)-modified LDL reduced atherogenesis in LDLR-deficient
rabbits (Palinski et al. 1995), which was further confirmed by several groups using
modified LDL in rabbits (Ameli et al. 1996; Nilsson et al. 1997; Asgary et al. 2007)
and mice (George et al. 1998; Freigang et al. 1998; Zhou et al. 2001; Binder et al.
2004; Van Puijvelde et al. 2006). Specific advanced MDA adducts have been shown
to be particularly immunogenic, which may further impact the effect of vaccination
on atherogenesis (Gonen et al. 2014).

Although the mechanisms responsible for the atheroprotective effects observed in
these studies have not been fully elucidated, several pathways play a role, including
the induction of neutralizing antibodies that interfere with the proinflammatory
effects of these OSE. However, even though several preclinical studies have
shown a prominent induction of humoral immunity upon immunization (George
et al. 1998; Freigang et al. 1998; Zhou et al. 2001; Binder et al. 2004) and the inverse
association between plaque size and antibody levels against OSEs (Zhou et al. 2001),
it is currently not clear how these findings translate to the clinic.

Passive immunization via administration of antibodies against OSE has shown
promise in preclinical models (Schiopu et al. 2004, 2007; Poulsen et al. 2016). The
phase II GLACIER trial failed to show reduced vascular inflammation following
administration of a recombinant IgG1 antibody against MDA-modified ApoB100
(Lehrer-Graiwer et al. 2015). However, the relatively short follow-up period, the use
of FDG-PET instead of coronary artery assessments, and the patient selection criteria
may have been a limitation of this study. Given the proposed atheroprotective role of
IgM against oxidation-specific epitopes, it will be interesting to assess the effect of
passive administration of IgM antibodies (or single chain and other class switch
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variants thereof) on human atherosclerosis in the future. One attractive candidate is
the IgM antibody E06, which binds the phosphocholine (PC) headgroup of oxidized
phospholipids (oxPLs), thus blocking the proinflammatory properties of oxPL and
the uptake of oxLDL by macrophages (Shaw et al. 2000; Que et al. 2018).

3.3.3 Tolerogenic Vaccination
Another proposed atheroprotective mechanism is tolerization, which is associated
with the induction of immunosuppressive Tregs that may limit inflammation via IL10,
TGFβ and the suppression of T effector functions. Several preclinical studies found
the reduction in atherosclerotic lesion formation upon administration of modified
LDL or ApoB100-derived peptides to be associated with significant increases in Treg

numbers (Fredrikson et al. 2008; Wigren et al. 2011; Herbin et al. 2012).
In addition to lipid-derived antigens, peptide-based vaccination strategies based

on ApoB100-derived peptides, many of which are recognized by autoantibodies
from sera of patients with coronary heart disease, have also shown promise in
preclinical studies (Fredrikson et al. 2003). Administration of several ApoB100
peptides, including P210, P45, P74, (Fredrikson et al. 2003, 2005, 2008; Dunér
et al. 2021), P2 (Chyu et al. 2005), P3 (Tse et al. 2013), P18 (Kimura et al. 2018),
P265 and P295 (Gisterå et al. 2017), has been shown to reduce lesion formation in
murine atherosclerosis

However, several challenges remain before the clinical implementation of
inflammation-restraining tolerogenic T cell vaccine is possible. Given that the
interaction of TCRs with their cognate peptide is dependent on the efficient presen-
tation on MHC type II molecules, HLA types need to be matched. The necessity for
HLA matching has resulted in tetramer-based approaches to allow the identification
of antigen-specific T cell populations (Kimura et al. 2017, 2018). The considerable
heterogeneity of the human HLA locus and the need to adapt peptides to individual
HLA types present a major challenge in the design of T-cell based peptide vaccines.
Furthermore, the efficient induction of tolerance critically depends on dose, choice
of adjuvant, and the route of administration (Van Puijvelde et al. 2006, 2007;
Klingenberg et al. 2010; Czerkinsky and Holmgren 2012).

3.3.4 Immunization Against Pathogen-Derived Antigens
Some studies suggest that vaccination against common diseases such as influenza
and pneumonia can reduce cardiovascular risk (Ren et al. 2015; Barnes et al. 2015).
A double-blind randomized placebo-controlled clinical trial (Influenza Vaccination
After Myocardial Infarction, IAMI; NCT02831608) is currently underway to assess
the effect of influenza vaccination on cardiovascular outcomes in patients with
preexisting cardiovascular disease (Fröbert et al. 2017). While it cannot be excluded
that inflammation associated with infections may affect the plaque, the potential
beneficial effect of pneumococcal vaccination may be due to its ability to induce
antibodies that react with the oxidation-specific epitope, PC (Binder et al. 2003;
Caligiuri et al. 2007). Initial studies have evaluated the consequences of the molec-
ular mimicry between oxidized LDL and the CPS of pneumococci and demonstrated
that immunization of Ldlr�/� mice with pneumococcal extracts induced PC-specific
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IgM and reduced lesion formation (Binder et al. 2003). A similar effect has been
observed when Apoe�/� mice were immunized with PC-conjugated KLH (Caligiuri
et al. 2007).

These studies suggested the possibility that existing pneumococcal vaccines
could be repurposed to trigger anti-atherogenic immunity in humans. However,
PC is not a major antigenic component of pneumococcal vaccines due to poor
immunogenicity, and several studies indicated that unlike natural infections vacci-
nation with existing vaccines does not trigger robust anti-OxLDL antibody titers.
Small-scale clinical trials of the 13-valent conjugated pneumococcal vaccine
Prevnar-13 did not find an induction of antibodies against oxLDL or
phosphorylcholine in a small cohort of patients with metabolic diseases (Grievink
et al. 2020; Shiri-Sverdlov et al. 2021), which may be due to the fact that PC is only a
minimal constituent of Prevnar-13. The AUSPICE trial to assess the effect of the
pneumococcal polysaccharide vaccine Pneumovax 23 on antibody levels against
oxidation-specific epitopes and several cardiovascular disease markers in 4725
patients is currently underway (ACTRN12615000536561; Ren et al. 2016).

Heat shock proteins (HSPs) represent a group of highly conserved stress-
associated proteins that can act as autoantigens either due to cross-reactivity against
microbial-derived HSPs or following their expression during endothelial injury
(Wick et al. 2014). Preclinical studies show that administration of microbial HSPs
or HSP-related peptides protects mice from atherosclerosis (Maron et al. 2002; Van
Puijvelde et al. 2007; Jing et al. 2011; Klingenberg et al. 2012; Grundtman et al.
2015). The atheroprotective mechanism may involve induction of cross-reactive
antibodies against MDA-LDL (Kyrklund et al. 2020) or tolerogenic activation of
Tregs (Van Puijvelde et al. 2007).

4 Conclusion

The immune system represents a versatile and essential part of human homeostasis
which harbors great potential for the treatment and prevention of atherosclerosis.
While the identification of relevant therapeutic targets remains challenging, it has
greatly improved over the last decade as various anti-inflammatory and immuno-
modulatory approaches have been studied. These range from modulation of the
innate immune system by interfering with cytokines and their production,
chemokines and general inflammation, to the adaptive immune system where B
cells, T cells, their interaction and their potential in immunization are utilized. While
these approaches have proven promising in multiple preclinical studies, with some
translation into human trials, a wider application and breakthrough into the clinic is
yet to occur. One factor which slows the translation of preclinical findings into the
clinic is the immune system’s essential role in fighting infections. Unspecific
modulation or downregulation of the immune system can lead to unwanted side
effects such as increased infections. It is thus important to conduct further research in
order to harvest the positive potential while minimizing side effects. Research into
potential biomarkers such as hsCRP and IL-6 – but with even greater specificity for
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the atherogenic disease process – represents an important step toward solving this
issue, as they allow the identification of patients who are most likely benefiting from
immunomodulatory treatment. Moreover, highly specific biomarkers would also be
needed to monitor a successful response to anti-inflammatory or immunomodulatory
treatments. Additionally, further research into the immune system’s role in human
atherosclerosis, combined with large-scale clinical trials will pave the way for
immunomodulatory treatments to become a realistic addition to standard atheroscle-
rosis therapies.
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