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Abstract
Thousands of pharmacology experiments are performed each day, generating
hundreds of drug discovery programs, scientific publications, grant submissions,
and other efforts. Discussions of the low reproducibility and robustness of some
of this research have led to myriad efforts to increase data quality and thus
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reliability. Across the scientific ecosystem, regardless of the extent of concerns,
debate about solutions, and differences among goals and practices, scientists
strive to provide reliable data to advance frontiers of knowledge. Here we share
our experience of current practices in nonclinical neuroscience research across
biopharma and academia, examining context-related factors and behaviors that
influence ways of working and decision-making. Drawing parallels with the
principles of evidence-based medicine, we discuss ways of improving transpar-
ency and consider how to better implement best research practices. We anticipate
that a shared framework of scientific rigor, facilitated by training, enabling tools,
and enhanced data sharing, will draw the conversation away from data unreliabil-
ity or lack of reproducibility toward the more important discussion of how to
generate data that advances knowledge and propels innovation.

Keywords
Data reliability · Decision-making · Evidence-based medicine · Nonclinical
pharmacology · Research methodology

1 Introduction

Over the last 10 years, debate has raged about the quality of scientific evidence,
expanding from a conversation among experts, amplified by systematic reviews and
meta-analyses published in peer-reviewed journals, into a heated discussion splashed
across mainstream press and social media. What is widely perceived as a “reproduci-
bility crisis” is the subject of countless, and sometimes inaccurate, statements on the
poor “reproducibility,” “replicability,” insufficient “rigor,” “robustness,” or “validity”
of data and conclusions. In the context of nonclinical pharmacological data, these are
cited as foundational for later clinical trial failure. The decision to advance a com-
pound to human testing is based on a substantial body of evidence supporting the
efficacy and safety of a therapeutic concept. Nonclinical studies that support, for
example, an investigational new drug (IND) filing or a clinical trial application
(CTA), which gate studies in humans, are reviewed under quality control procedures;
most safety studies must comply with regulations laid out by health authorities,
whereas nonclinical efficacy studies are usually performed in a nonregulated environ-
ment (see chapter “Quality in Non-GxP Research Environment”). If clinical trial
results support both efficacy and safety of the intervention, health authorities review
all of the evidence, to determine whether or not to approve a new therapeutic.

Once a new therapeutic is made available to patients and their physicians, clinical
trial findings and real-world observations contribute to forming a larger body of
evidence that can be used for decision-making by a physician considering which
treatment option would best benefit a patient. In many countries, medical students
are taught to critically appraise all the accessible information in order to choose the
“best possible option,” based upon the “best possible evidence”; this process is part
of evidence-based medicine (EBM), also known as “medicine built on proof.” In
EBM, clinical evidence is ranked according to the risk of underlying bias, using the
available sources of evidence, from case studies through randomized, controlled
clinical trials (RCTs) to clinical trial meta-analyses. Well-designed randomized trial
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results are generally viewed to be of higher reliability, or at least less influenced by
internal bias, than observational studies or case reports. Since meta-analysis aims to
provide a more trustworthy estimate of the effect and its magnitude (effect size),
meta-analyses of RCTs are regarded as the most reliable source for recommending a
given treatment, although this can be confounded if the individual RCTs themselves
are of low quality.

A well-established framework for rating quality of evidence is the Grading of
Recommendations, Assessment, Development, and Evaluation (GRADE) system
(http://www.gradeworkinggroup.org). GRADE takes the EBM process a step fur-
ther, rating a body of evidence, and considering internal risk of bias, imprecision,
inconsistency, indirectness, and publication bias of individual studies as reasons for
rating the quality of evidence down, whereas a large effect, or a dose-response
relationship, can justify rating it up (Balshem et al. 2011). The Cochrane Collabora-
tion, which produces systematic reviews of health interventions, now requires
authors to use GRADE (https://training.cochrane.org/grade-approach). The British
Medical Journal has developed a suite of online tools (https://bestpractice.bmj.com/
info/us/toolkit) with a section on how to use GRADE, and various electronic
databases and journals that summarize evidence are also available to clinicians. In
a recent development, the GRADEWorking Group has begun to explore how to rate
evidence from nonclinical animal studies, and the first attempt to implement
GRADE in the nonclinical space has successfully been performed on a sample of
systematic reviews and examples, with further efforts planned (Hooijmans et al.
2018). In contrast, with the exception of those who also have medical training or
clinical research experience, most scientists are unaware of the guiding principles of
EBM and are unfamiliar with formal decision-enabling algorithms. At least in part
due to the diversity of nonclinical experiments, systematic reviews and meta-
analyses are far less common in nonclinical phases than in clinical ones, and there
are very few broadly accepted tools with which to assess nonclinical data quality
(Hooijmans et al. 2018; Sena et al. 2014). Pioneering work in this area came from the
stroke field, with nonclinical research guidelines and an assessment tool elaborated
by STAIR, the Stroke Therapy Academic Industry Roundtable (Hooijmans et al.
2014) (https://www.thestair.org). The CAMARADES collaboration (originally the
“Collaborative Approach to Meta-Analysis and Review of Animal Data from Exper-
imental Stroke”) has now extended its scope to support groups wishing to undertake
systematic reviews and meta-analyses of animal studies in research on neurological
diseases (http://www.dcn.ed.ac.uk/camarades). The Systematic Review Centre for
Laboratory Animal Experimentation (SYRCLE) has designed a comprehensive
method to systematically review evidence from animal studies (Hooijmans et al.
2014), based on the Cochrane risk of bias tool. SYRCLE’s tool covers different
forms of bias and several domains of study design, many of which are common to
both clinical and nonclinical research (Table 2 in Hooijmans et al. 2014). As a
consequence, measures known to reduce bias in clinical settings, such as randomi-
zation and blinding, are recommended for implementation in nonclinical research.
Although the tool was primarily developed to guide systematic reviewers, it can also
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be used to assess the quality of any in vivo experimental pharmacology study.
However, these structured approaches have had limited uptake in other fields.

The attention to sources of bias that can influence study conduct, outcomes, and
interpretation is an essential element of EBM. A catalog of bias is being collabora-
tively constructed, to map all the biases that affect health evidence (https://
catalogofbias.org). In the nonclinical space, despite a number of publications and
material from training courses and webinars (e.g., http://neuronline.sfn.org/
Collections/Promoting-Awareness-and-Knowledge-to-Enhance-Scientific-Rigor-in-
Neuroscience), an equivalent, generalizable framework, or a common standard for
rating evidence quality is lacking, as is a unified concept of what constitutes the best
possible material for decision-making. Discussions are also limited by confusing and
varied terminology, although attempts have been made to clarify and harmonize
terms and definitions (Goodman et al. 2016). Here we will use the word “reliability,”
in its generally accepted sense of accuracy and dependability, of something one
expects to be able to rely on to make a decision. As a consequence, reliability also
reflects the extent to which something can consistently be repeated. Both meanings
apply to experimental pharmacology studies in all parts of the biomedical
ecosystem.

The EBM framework is used to find reliable answers to medical questions. Here
we will describe the purposes, current practices, and factors that contribute to bias in
addressing scientific questions. We will consider which EBM principles can apply to
nonclinical pharmacology work and how to strengthen our ability to implement best
research practices, without limiting innovation that is urgently needed.

2 Current Context of Nonclinical, Nonregulated
Experimental Pharmacology Study Conduct: Purposes
and Processes Across Sectors

2.1 Outcomes and Deliverables of Nonclinical Pharmacology
Studies in Industry and Academia

Experimental pharmacology studies in biopharma companies and nonclinical con-
tract research organizations (CROs) can have various purposes, such as furthering
the understanding of a disease mechanism, developing a model or assay, or
characterizing the effects of a novel compound. Such studies can also document a
patent application and/or generate data on the efficacy or safety of a compound that
is to enter clinical development, in which case the study report may ultimately be
part of a regulatory submission to a health authority. In academia, the primary goal is
to provide experimental evidence to answer scientific questions and disseminate new
knowledge by publishing the findings; academic scientists also occasionally file
patents and, in collaboration with biopharma companies, perform studies that may in
turn become part of regulatory submission dossiers. Academic drug discovery
platforms, which have sprouted in recent years, mainly aim to provide nonclinical
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data that will be further leveraged in biopharma drug discovery programs, although it
is increasingly common that these data are used to advance clinical studies as well.

Different business models and end goals across academia and industry, and
different outcomes of nonclinical research, imply different processes and
deliverables, which can be associated with a step or feature in EBM, as described
in Table 1.

Investigating a scientific hypothesis is often done in a stepwise manner; from an
initial idea, several questions can be asked in parallel, and answers are generated in
both an incremental and iterative manner, by performing additional experiments and
repeating cycles. Choices and decisions are made at each step, based on data; if these
data are under- or overestimated, their interpretation will be biased, affecting
subsequent steps. For example, in a drug discovery project, inaccurate estimates of
in vitro potency or in vivo efficacy can skew the doses tested in nonclinical safety
experiments, and bias the estimate of the dosage range in which only the desired
response is observed in nonclinical species, and, most importantly, affect the
subsequent determination of the corresponding dosage range to be tested in humans.
As sponsors of clinical trials, among other responsibilities, biopharma companies
have an ethical duty to conduct human trials only if there is a solid foundation for a
potential clinical benefit with limited safety risks. In academic research, individuals
and institutions are accountable to funders and to the community for contributing to
the body of scientific knowledge. In all fields and sectors, biased interpretations of
experimental data can result in wasted experiments; scientists are therefore respon-
sible for the quality of the evidence generated.

2.2 Scientific Integrity: Responsible Conduct of Research
and Awareness of Cognitive Bias

Over the last two decades, many governments and agencies involved in funding and
conducting research have taken a strong stance on scientific integrity, issuing
policies and charters at international, national, and institutional levels. Compliance
with these policies is mandatory for employees and scientists applying for funding
(examples: MRC, https://mrc.ukri.org/publications/browse/good-research-practice-
principles-and-guidelines; NIH, https://grants.nih.gov/policy/research_integrity/
what-is.htm; CNRS, http://www.cnrs.fr/comets/IMG/pdf/guide_2017-en.pdf). Sci-
entific integrity means absolute honesty, transparency, and accountability in the
conduct and reporting of research. Responsible research practices encompass the
adherence to these principles and the systematic use of measures aiming to reduce
cognitive and experimental bias.

Training on responsible scientific conduct is nowmandatory at masters or PhD level
inmany universities; at any stage of their career, scientists can access training resources
on scientific integrity and responsible research practices (see list made by EMBO,
http://www.embo.org/science-policy/research-integrity/resources-on-research-integ
rity; NIH, Responsible Conduct of Research Training, https://oir.nih.gov/sourcebook/
ethical-conduct/responsible-conduct-research-training; Mooc, https://www.fun-mooc.
fr/courses/course-v1:Ubordeaux+28007EN+session01/about#). The US Department
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Table 1 Parallel between EBM and nonclinical research purposes and processes across
organizations

In private sector nonclinical
research

In academic nonclinical
research In EBM

Outcomes and
deliverables

Patents (intellectual
property)
Decision to move a
compound to clinical
development
Nonregulated study reports
CRO study reports, data for
customers
Additions to catalog

Publications
Patents (intellectual
property)
Study reports and data
provided to public or
private funders

Recommendations
Guidelines
Treatment decisions

Process Purpose in biopharma
companies and CROs

Purpose in academia Relevant EBM
feature

Initiating a research
project

Driven by company strategy
Triggered by prior data,
exploratory studies,
literature
CROs: mainly triggered by
requests from customers and
market opportunities

Driven by science and
funding opportunities
Triggered by prior data,
exploratory studies,
literature, serendipity

Framing a question,
collecting all
available data, and
ranking quality of
evidence

Existence and use
of guidelines

Company nonclinical quality
and compliance rules, best
research practice guidelines,
patent department rules

Variable; rules of
institutions, funding
agencies, grant
applications, journals, built
into collaborations

Guidelines on use of
EBM and EBM
guidelines

Use of
experimental bias
reduction measures
in study design and
execution

Variable; field-dependent
Detailed study plans usually
mandatory for compounds
selected to enter clinical
development (less so for
early test compounds) and
systematically used by
CROs

Variable; field-dependent;
funding or grant-
dependent; increasing due
to pressure from funders,
journals, peers; awareness
that credibility is suffering

Core feature of
EBM: studies with
lowest risk of bias
assumed to be most
reliable

Biostatistics:
access and use

Company biostatisticians
and software (mostly
proprietary); mandatory
review of statistical analyses
for compounds entering
clinical development
CROs: variable

Variable, somewhat “do-it-
yourself”: depending on
statistical literacy or access
to relevant expertise,
widespread use of
commercially available
suites, free online tools

Adequate study
power
Meta-analyses

Data: integrity,
access, and sharing

Electronic lab notebooks,
electronic data storage,
dedicated budgets
Mandatory archive of all
data and metadata for
clinical stage compounds
Restricted company-only
access

Variable, depending on
institution and resources, in
particular to fund long-term
safekeeping of data
Ability to access data
highly variable

Access to all data in
real time
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of Health and Human Services Office of Research Integrity has developed responsible
conduct of research training courses that incorporate case studies from an academic
research context (https://ori.hhs.gov/rcr-casebook-stories-about-researchers-worth-
discussing). Several companies have adopted a similar case-based approach from a
biopharma context.

Inaccuracy and biased interpretations are not necessarily due to purposeful
scientific misconduct; in fact, most of the time, they are inadvertent, as the conse-
quence of poor decision-making, training, or other circumstances. Mistakes can be
made and can remain undetected when there is no formal process to critically review
study design in advance of execution, an essential step when study outcomes gate
decisions with long-term consequences, in particular for human subjects and
patients. One aspect of review is to examine the multiple forms of bias that
compromise data reliability, confounding evidence, and its analysis and interpreta-
tion. Experimental protocols can be biased, as can be experimenters, based on
individual perceptions and behaviors: this is known as cognitive bias, i.e., the
human tendency to make systematic errors, sometimes without even realizing
it. Particularly problematic is confirmation bias, the tendency to seek and find
confirmatory evidence for one’s beliefs, and to ignore contradictory findings.
Scientists can work to develop evidence to support a hypothesis, rather than evi-
dence to contradict one. Beyond designing and performing experiments to support a
hypothesis, confirmation bias can extend to reporting only those experiments that
support a particular expectation or conclusion. While confirmation bias is generally
subconscious, competition – for resources, publications, and other recognitions –

can obscure good scientific practice. Confirmation bias can be both a cause and a
consequence of publication or reporting bias, i.e., omissions and errors in the way
results are described in the literature or in reports; it includes “positive” results bias,
selective outcome reporting bias, “Hot stuff” bias, “All is well literature” bias, and
one-sided reference bias (see definitions in https://catalogofbias.org).

In industry and academia, there are both common and specific risk factors
conducive to cognitive bias, and awareness of this bias can be raised with various
countermeasures, including those listed in Table 2.

2.3 Initiating a Research Project and Documenting Prior Evidence

Scientists running nonclinical pharmacology studies may have different goals,
depending on where they work, but initiating a research project or study is driven
by questions arising from prior findings in all parts of the biomedical ecosystem.
When deciding to test a new hypothesis from emergent science, or when setting up a
novel experimental model or assay, scientists generally read a handful of articles or
reviews, focusing on the most recent findings. Many scientists methodically formu-
late an answerable question, weighing the strength of the available evidence and
feasibility as primary drivers. Published findings can be weighed heavily as “truth,”
or disregarded, based on individual scientific judgment and many other factors.
When subjective factors, such as journal impact factor, author prominence, or
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other subjective reasons, are weighed more heavily than the strength of the evidence,
a form of bias is embedded from the conception of a research project. Similarly to the
flowchart approach used in EBM, where the first step is to frame the clinical question
and retrieve all the related evidence, explicitly defining a question and systematically
reviewing the literature should be a common practice in nonclinical pharmacology.
When deciding to work on a target, biopharma scientists also have to consider
whether modulating it could potentially result in adverse effects, so the background
evidence to be weighed may have other aspects than for an academic research
project. An obstacle to a comprehensive assessment of prior data is that data can
be published, unpublished, undisclosed, or inaccessible behind a paywall or
another company’s firewall or simply out of reach due to past archival practices
(see Sect. 2.7). Publication and selective outcome reporting biases will therefore be
present in most attempts to review and weigh prior evidence. Thus, in practice, the
data a scientist will evaluate at the start of a research project is often incomplete,
raising the possibility of flawed experimental design, execution and interpretation, as
well as the risk of confirmation and related biases.

Table 2 Factors that contribute to manifestations of bias and potential countermeasures

Contributing factors
In biopharma companies and
CROs In academia

Awareness and
knowledge of risks
of bias or
misconduct

Multiple levels of review and
quality control can highlight
unconscious biases
In-house training programs on
responsible conduct of research
increasingly common

Growing number of online
material and training programs
(see examples in Sect. 2.2)

Risk factors
conducive to bias or
misconduct

“Pace of business”: compensation
linked to performance/timelines,
competitive landscape, career
aspirations, customer deadlines

“Publish or perish”: priority given
to novel findings due to academic
competition, career aspirations,
funding mechanisms, and
durations

Measures and
incentives to
increase responsible
conduct

Occasional individual performance
metrics
CROs: responsible conduct linked
to credibility, a key factor of
company success

Recognition, publication, citation
in leading journals with strict
reporting guidelines, awards for
reproducibility attempts (e.g.,
https://www.ecnp.eu/research-
innovation/ECNP-Preclinical-
Network-Data-Prize.aspx)
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2.4 Existence and Use of Guidelines

Recommendations on how to design and conduct nonclinical, nonregulated research
studies can be found in scientific publications, in scientific society or institution
guidelines, and in grant application guidelines. Although recommended “best
research practices” have been around for at least a decade, there are no consensus,
universal nonclinical pharmacology quality guidelines, but instead a collection of
constantly evolving, context, and type-of-experiment-specific suggestions.

Biopharma companies and nonclinical CROs generally have internal guidelines.
Scientists are expected to record results in real time in laboratory notebooks, should
an organization or individual need to document data and timelines to establish
inventorship. Guidelines produced by research quality departments therefore focus
on how scientists should record the results of their research, and deviations from
standard operating procedures, in order to fulfill legal and regulatory requirements,
more than on study design or the use of measures to reduce experimental bias. In the
private sector, research quality guidelines and best practice recommendations are
generally confidential documents. In publications, research quality guidelines and
implementation are rarely mentioned. While indirect, study reporting guidelines (see
Sect. 2.7) are slightly more cited, but determining to what extent these were followed
is far from trivial.

2.5 Use of Experimental Bias Reduction Measures in Study
Design and Execution

The core principle of EBM is that the most reliable evidence comes from clinical
studies with the lowest risk of bias and typically those that are designed with
adequate power, randomization, blinding, and a pre-specified endpoint, in a clini-
cally relevant patient population. There are many resources to help investigators plan
human studies, such as the SPIRIT statement (http://www.spirit-statement.org), an
evidence-based guideline for designing clinical trial protocols, which is being
developed into a web-based protocol building tool. There are fewer resources to
assist scientists in designing nonclinical studies; an example is the NC3Rs’ Experi-
mental Design Assistant (EDA, https://www.nc3rs.org.uk/experimental-design-assis
tant-eda) for in vivo animal studies. Experimental protocols can be found in
publications or online, but they are primarily written to provide details on technical
aspects, and do not always explicitly address the different sources of
experimental bias.

In biopharma research, study plans which describe the study design and experi-
mental methods in full detail, including the planned statistical methods and analyses,
and any deviations to these plans as the study progresses, are usually mandatory for
studies that are critical for decision-making. Study plans are more rarely written for
exploratory, pilot studies. Nonclinical CROs use study plan templates that include
statistical analysis methodologies, which are generally shared with customers. In our
experience, CROs and academic drug discovery centers are very willing to discuss
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and adapt study designs to suit customer needs. Collaboratively building a study plan
is a good opportunity to share knowledge, ensure that a study is conducted and
reported according to expectations, and work to identify and reduce conscious and
unconscious biases. Across all sectors, planning ahead for in vivo pharmacology
studies is more elaborate than for in vitro experiments, due to animal ethics
requirements and the logistics of animal care and welfare. However, nonclinical
study plans are not normally published, whereas clinical trial protocols are available
in online databases such as the EU (https://www.clinicaltrialsregister.eu) and US
(https://clinicaltrials.gov/) registers. A few initiatives, such as OSF’s “preregistration
challenge” (Open Science Foundation, Preregistration Challenge, Plan, Test, Dis-
cover, https://osf.io/x5w7h), have begun to promote formal preregistration of non-
clinical study protocols, as a means to improve research quality (Nosek et al. 2018).
However, preregistering every single nonclinical pharmacological study protocol in
a public register would be difficult in practice, for confidentiality considerations, but
also due to a perceived incompatibility with the pace of research in all sectors.

Overall, our experience in the field of neuroscience is that the implementation of
experimental bias reduction measures is highly variable, within and across sectors,
and meta-analyses of scientific publications have shown that there is clearly room for
improvement, at least in the reporting of these measures (van der Worp et al. 2010;
Egan et al. 2016).

Different field- and sector-related practices and weights on bias reduction
measures, such as blinding and randomization (see chapter “Blinding and Randomi-
zation”), can be expected. In the clinical setting, blinding is a means to reduce
observer bias, which, along with randomization to reduce selection bias, underlies
the higher ranking of RCTs over, for example, open-label trials. Both blinding and
randomization are relevant to nonclinical studies because the awareness of treatment
or condition allocation can produce observer bias in study conduct and data analysis.
Neurobehavioral measures are among the most incriminated for their susceptibility
to observer bias. But even automated data capture can be biased if there are no
standards for threshold and cutoff values. Observer bias is also a risk, for example,
when visually counting immunolabeled cells, selecting areas for analysis in brain
imaging data, and choosing recording sites or cells in manual electrophysiology
experiments. Blinding has its limitations; blinding integrity may lost, such as when
using transgenic mice (which are often noticeably different in appearance or behav-
ior compared to wild-type littermates) or in pathological settings that induce visible
body changes, and the experimenter’s unawareness of group allocation will not be
sufficient to limit the effect observing animals can have on their behavior (analogous
to the Hawthorne effect in social sciences, see https://catalogofbias.org/biases/
hawthorne-effect/).

Differences in resource availability will influence practices, since training
experimenters, standardizing animal handling and husbandry, and earmarking suit-
able lab space and equipment, among other considerations, are contingent upon
funding. Nonclinical CROs are most likely to have strong guidelines, or at least
evidence-based standard operating procedures, and to follow them, since credibility,
transparency, and customer satisfaction are business-critical. The systematic use of
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inclusion/exclusion criteria and blinding should be implemented as standard practice
in all sectors of the biomedical ecosystem. However, while in the industry there is a
tendency to optimize workflows through standardization, and similarly in academia,
strong lab “traditions,” one size does not necessarily fit all. Specific technical
constraints may apply, in particular for randomization. For instance, in some
in vitro experiments, features such as “edge effect” or “plate effect” need to be
factored into the randomization procedure (https://paasp.net/simple-randomisation);
liquid chromatography-coupled mass spectrometry experiments require additional
caution, since randomizing the order in which samples from different groups or
conditions are tested may be counterproductive if the risk of potential cross-
contamination is not addressed. Randomizing the order of procedures, while often
a sound measure to prevent procedural bias, may actually increase the risk of bias, if
animals behave differently depending on prior procedures or paradigms. While
randomization and blinding will generally be effective in reducing risks of selection
and observer bias, they have no effect on non-contemporaneous bias, when control
groups or samples are tested or analyzed at a separate time from treated ones.

Thus, both in EBM and in nonclinical research, high-quality designs aim to take
into account all of the known sources of bias and employ the best available
countermeasures. Among these, there are two universally critical items, a
pre-specified endpoint with an estimate of the predicted effect size and the
corresponding adequate statistical power to detect the predicted effect, given the
sample size, all of which require a prior statistical plan.

2.6 Biostatistics: Access and Use to Enable Appropriate Design
of Nonclinical Pharmacology Studies

Establishing an a priori statistical plan, as part of the study design, remains far from
customary in nonclinical pharmacology, mainly because scientists can lack the
adequate awareness and knowledge to do so. The latest Research Integrity report
by the Science and Technology Committee in the UK (https://publications.parlia
ment.uk/pa/cm201719/cmselect/cmsctech/350/350.pdf) emphasized that scientists
need to learn and understand the principles of statistics, rather than simply being
told of a list of statistical tests and software that does the analyses. In our experience,
biologists’ statistical proficiency appears to mostly be based on local custom and
varies widely even in the same field of biology. This is illustrated by misleading
phrases in methods sections of publications, such as “the number of animals used
was the minimum required for statistical analysis,” or “post hoc comparisons were
carried out between means as appropriate,” or “animals were randomly assigned to
4 groups,” or “the experiments were appropriately randomized” (sic). A side effect
of this phenomenon is that it hampers critical assessments of published papers;
biologists confronted with unfamiliar terms may struggle to capture which study
designs and analyses were actually conducted.

In practice, more attention is paid to statistics once the data have been generated.
In nonclinical CROs the statistical analyses are provided to the customer in the full
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study reports. In biopharma companies, for clinical development candidate
compounds, it is generally mandatory that the proposed statistical analyses are
developed and/or validated by a statistician. Many companies have developed robust
proprietary statistics software, with specific wording and a selection of internally
approved tests and analysis tools. Although in-house applications are validated and
updated, they are not ideal for sharing results and analyses with external partners.
Overall, and despite a call for cultural change in the interactions between scientists
and nonclinical statisticians (Peers et al. 2012), it seems that the nonclinical pharma-
cology community remains under-resourced in this area. Insight gained through
discussions on data quality among partners of several European initiatives suggests
that there are too few research biostatisticians in all biomedical arenas.

When a thorough process is established beforehand, choosing a pre-specified
endpoint to test a hypothesis and estimating an effect size for this endpoint are
essential. While both are required in EBM, these are less common in nonclinical
research. Clinical studies aim to detect a predetermined effect size, or a clinically
relevant direction and effect magnitude, based on prior knowledge. In contrast,
scientists generally have a rough idea of values that would be negligible, due to
biological variation or to inaccuracy or imprecision, but considering which values
are biologically meaningful tends to be done after, rather than before, running an
experiment. When generating a hypothesis, i.e., in exploratory or pilot studies, it
may be possible to choose an endpoint of interest, without necessarily defining its
direction and amplitude. In contrast, prior estimates of effect size are essential when
the aim is to demonstrate a pharmacological effect in confirmatory studies upon
which decisions about next steps are based. This distinction between exploratory and
confirmatory studies (Kimmelman et al. 2014 and chapter “Resolving the Tension
Between Exploration and Confirmation in Preclinical Biomedical Research”) is a
determining factor in study design, but remains an underused concept in
nonclinical work.

Arguably the most serious consequence of insufficient planning is that nonclini-
cal studies are too often underpowered (Table 2 in Button et al. 2013) or are of
unknown power, when publications fail to reveal how sample sizes were chosen
(Carter et al. 2017). Despite its central role in the null hypothesis significance testing
framework, which remains the most used in nonclinical pharmacology, for many
scientists, statistical power is one of the least well-understood aspects of statistics.
This may be because it is generally explained using abstract mathematical terms, and
its role more extensively discussed in clinical research, or in psychology, than in
biology. However, recognizing that inadequately powered studies can lead to unre-
liable conclusions on the direction and magnitude of an effect in a sample of the
whole population is just as important in nonclinical pharmacology as it is in EBM.
Assay development is by definition exploratory in initial attempts; but when the
assay is going to be used routinely, sample sizes to achieve a desired statistical power
need to be determined. Unfortunately, this is not yet the norm in nonclinical
pharmacology, where decisions are often made on so-called converging evidence
from several underpowered studies with different endpoints or on a single published
study of unknown power, offering little confidence that the same effect(s) would be
seen in the whole population from which the sample was taken.
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As discussed above (see Sect. 2.5), randomization is essential to prevent selection
bias across all sectors of research. Randomization can be achieved even with limited
resources and applied in many nonclinical pharmacology studies regardless of their
purpose and type, without necessarily involving statistical expertise. The randomi-
zation procedure must however be part of the study design, and statistical evaluation
before a study is conducted can help determine which procedure is best suited.

2.7 Data Integrity, Reporting, and Sharing

Notwithstanding the existence of vast amounts of electronic storage space and
sophisticated software to ensure file integrity, retaining, and potentially sharing,
original datasets and protocols is not yet straightforward. Barriers to widespread data
sharing are slowly being overcome, but there remains a need for long-term funding,
and the ability to browse data long after the software used to generate or store them
has become obsolete.

In biopharma companies and CROs, it is customary to retain all original individ-
ual and transformed data, with information on how a study was performed, in
laboratory notebooks and annexes. Scientists working in industry are all aware
that the company owns the data; one does not lose or inadvertently misplace or
destroy the company’s property, and in audits, quality control procedures, prepara-
tion for regulatory filings, or patent litigation cases, to name a few, original data must
often be produced. This also applies to studies conducted by external collaborators.
For compounds that are tested in human trials (including compounds that reach the
market), all data and metadata must be safely stored and retrievable for 30 years after
the last administration in humans. It is thus common practice to keep the records
decades after they were generated (see item GRS023 in https://india-pharma.gsk.
com/media/733695/records-retention-policy-and-schedule.pdf). Such durations
exceed by far the life of the software used to generate or store the data and require
machine-readable formats. Paper laboratory notebooks are also stored for the dura-
tion; their contents are notoriously difficult to retrieve as time passes, and teams or
companies disperse. Electronic source data in FDA-regulated clinical investigations
are expected to be attributable, legible, contemporaneous, original, and accurate
(ALCOA). This expectation is also applied to nonregulated nonclinical data in many
biopharma companies and in nonclinical CROs. The recent FAIR (findable, accessi-
ble, interoperable, reusable) guiding principles for scientific data management and
stewardship (Wilkinson et al. 2016) are intended to facilitate data access and sharing
while maintaining confidentiality if needed. To this date, broadly sharing raw data
and protocols from biopharma research remains rare (but see Sect. 3.1).

Generally speaking, data generated in academia destined for publication are not
as strictly managed. Institutional policies (see examples of data retention policies:
Harvard, https://vpr.harvard.edu/files/ovpr-test/files/research_records_and_data_
retention_and_maintenance_guidance_rev_2017.pdf; MRC, https://mrc.ukri.org/
documents/pdf/retention-framework-for-research-data-and-records/) may state
that data should be retained for a minimum of 3 years after the end of a research
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project, a period of 7–10 years or more, or as long as specified by research funder,
patent law, legislative, and other regulatory requirements. Effective record-keeping
and retention is limited by funding and by the rapid turnover of the scientists
performing most of the experiments; a classic problem is the struggle to find the
data generated by the now long-gone postdoctoral associate. Access to original,
individual data can be requested by other scientists or required by journals and
funding agencies or, on rare occasions, for investigations of scientific misconduct.
Although academic data and metadata sharing is improving (Wallach et al. 2018),
with extended supplementary materials and checklists, preprint servers, data
repositories (Figshare, https://figshare.com; OSF, https://osf.io; PRIDE, https://
www.ebi.ac.uk/pride/archive), and protocol sharing platforms (https://experiments.
springernature.com; https://www.protocols.io), universal open access to data is yet
to be achieved.

In biopharma companies, there is an enormous amount of early discovery studies,
including but not limited to assay development and screening campaigns, with both
“positive” and “negative” data, that are not intended per se for publication, even
though many could be considered precompetitive. A relatively small proportion of
conducted studies is eventually published. However, for each compound entering
clinical development, all the results that are considered relevant are documented in
the nonclinical pharmacology study reports that support IND and CTA filings. A
summary of the data is included in the nonclinical overview of the application
dossiers and in the Investigator’s Brochure. From these documents it is often difficult
to assess the quality of the evidence, since they contain relatively little experimental
or study information (Wieschowski et al. 2018); study design features are more
likely to be found in the study reports, although there are no explicit guidelines for
these (Langhof et al. 2018). The study reports themselves are confidential documents
that are usually only disclosed to health authorities; they are intended to be factual
and include study plans and results, statistical plans and analyses, and
individual data.

In academia, publishing is the primary goal; publication standards and content are
set by guidelines from funders, institutions, partners, peer reviewers, and most
importantly by journals and editorial policies. In recent years, journal guidelines to
authors have increasingly focused on good reporting practices, implementing
recommendations from landmark publications and work shepherded by institutions
such as the NC3Rs with the ARRIVE guidelines (Kilkenny et al. 2010), and the NIH
(Landis et al. 2012), mirroring coordinated initiatives to improve clinical trial
reporting guidelines, such as the EQUATOR network (https://www.equator-net
work.org). Yet despite the impressive list of journals and institutions that have
officially endorsed the ARRIVE guidelines, meta-research shows that there is
much to be improved in terms of compliance (Jin et al. 2018; Hair et al. 2019).
Moreover, there is no obligation to publish every single study performed or to report
all experiments of a study in peer-reviewed journals; an important amount, possibly
as much as 50%, remain unpublished (ter Riet et al. 2012).
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3 Overcoming Obstacles and Further Learning from
Principles of Evidence-Based Medicine

3.1 Working Together to Improve Nonclinical Data Reliability

Many conversations among researchers, basic and clinical, resemble the one
between Professor Benchie and Doctor Athena (Macleod 2015), in which Athena
concludes that they should be able to improve reliability and translatability, at least a
little, by learning from the strengths and weaknesses of their respective backgrounds.

Strictly following the EBM and GRADE rules would require that scientists
appraise all the available nonclinical evidence with relevance to the question being
asked. This should be the case when deciding whether to take a compound to the
clinic, but is unlikely to happen for other purposes. Scientists would nevertheless
benefit from a basic understanding of the methodology, strengths and weaknesses of
systematic review and meta-analysis. Meta-analyses are often performed in
collaborations, and a recent feasibility study using crowd-sourcing for clinical
study quality assessment suggests that this could be a way forward, since experts
and novices obtained the same results (Pianta et al. 2018). Combined with recently
developed and highly promising machine learning algorithms (Bannach-Brown et al.
2019), collaborative efforts could increase the pace and reduce human error in
systematic reviews and meta-analysis.

In recent years, private sector organizations, academic institutions, disease
foundations, patient associations, and government bodies have formed consortia to
tackle a wide variety of complex questions, in a precompetitive manner. Many of
these partnerships bring together basic and clinical researchers and also aim to share
experimental procedures and unpublished findings. Collective efforts have produced
consensus recommendations, based on the critical appraisal of published and unpub-
lished data, in fields such as stroke (Macleod et al. 2009) and pain (Knopp et al.
2015; Andrews et al. 2016). In IMI Europain (home page: www.imieuropain.org),
the group of scientists and clinicians working on improving and refining animal
models of chronic pain, addressing the clinical relevance of endpoints used in animal
models and methodologies to reduce experimental bias, held teleconference
meetings roughly 10 times a year over 5 years, which represents a substantial amount
of shared data and expertise. Leveraging this combined expertise and aiming to
develop a novel, non-evoked outcome measure of pain-related behavior in rodents,
IMI Europain partners from both academia and industry accomplished a multicenter
nonclinical study (Wodarski et al. 2016), in the spirit of a phase 3 multicenter clinical
trial. One of the important lessons learned during this study was that absolute
standardization should not be the goal, since circumstantial differences such as site
location cannot be erased, leading to pragmatic accommodations for local variations
in laboratory practice and procedures. An effort to uncover evidence-based drivers of
reliability in other subfields of neuroscience is ongoing in IMI EQIPD (home page:
https://quality-preclinical-data.eu), with the overarching goal of building broadly
applicable tools for managing nonclinical data quality. Discussions on emerging
pathways of neurodegenerative disease within the IMI neurodegeneration strategic
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governance group led to a single, collectively written article describing independent
attempts that failed to reproduce or extend the findings of a prominent publication
(Latta-Mahieu et al. 2018). A culture of collaboration is thus growing, and not only
in large consortia. Co-designing nonclinical studies is now the preferred practice in
bilateral partnerships or when studies are outsourced by biopharma companies to
nonclinical CROS or academic drug discovery centers.

3.2 Enhancing Capabilities, from Training to Open Access to Data

Research quality training should aim to provide the ability to recognize the different
forms of bias and how to minimize risks, covering the full scope of data reliability,
rather than solely focusing on compliance or on scientific integrity. In the private
sector, laboratory notebook compliance audits are routinely performed; checklists
are used to assess whether scientists have correctly entered information in laboratory
notebooks. When releasing individual audit results to scientists, these compliance
checklists or, in all sectors, the Nature Reporting Summary (https://www.nature.
com/documents/nr-reporting-summary.pdf) checklist can also be used as tools for
continuing training.

Initial and continuing training in statistics should be an absolute priority for all
biologists. Those who are privileged to work closely with biostatisticians should aim
to establish a common language, and a meaningful engagement of both parties from
the start, to be able to translate the scientific question to a statistical one and co-build
study designs, with the most stringent criteria for confirmatory studies.

Learning to read a paper and to critically appraise evidence and keeping in mind
that low-quality reporting can confound the appraisal and that even high-profile
publications may have shortcomings should also be part of training, continued in
journal clubs, and carried over to post-publication peer review (e.g., PubPeer, https://
pubpeer.com). Paying particular attention to the methods section and any supple-
mentary methods information, searching for sample size considerations, randomiza-
tion, and blinding, before interpreting data presented in figures, is an effective way to
remember that independent evaluation of the data, with its strengths and limitations,
is the core responsibility of scientists in all research endeavors.

The fact that many clinical trial findings remain unpublished is still a major
roadblock for EBM, which various organizations have been tackling in recent
years (see links in https://www.eupati.eu/clinical-development-and-trials/clinical-
study-results-publication-and-application). In biopharma companies, proprietary
nonclinical data include a considerable amount of study replicates, sometimes spread
over several years. Many attempts are also made to reproduce data reported in the
literature (Begley and Ellis 2012; Prinz et al. 2011; Djulbegovic and Guyatt 2017),
but most of these remain undisclosed. In recent years, several independent groups
have been instrumental in coordinating and publishing reproducibility studies, such
as the Reproducibility Initiative collaboration between Science Exchange, PLOS,
figshare, and Mendeley (http://validation.scienceexchange.com/#/reproducibility-ini
tiative), the Center for Open Science (The Reproducibility Project, a collaborative
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effort by the Center for Open Science: https://cos.io), and a unique nonprofit-driven
initiative in amyotrophic lateral sclerosis (Scott et al. 2008). In sectors of the
biomedical ecosystem where the focus is more on exploring new ideas, generating
and testing hypotheses, or confirming and extending a team’s own work rather than
replicating that of others, a substantial amount of work, possibly as much as 50% (ter
Riet et al. 2012), remains unpublished. Thus, in the nonclinical space, the obstacles
to widespread open access to data have yet to be overcome.

4 Conclusion and Perspectives

Although the term evidence-based medicine was first introduced almost 30 years
ago, building upon efforts over several decades to strengthen a data-driven practice
of medicine, there are still misconceptions and resistance to the approach, as well as
challenges to its practical implementation, despite a number of striking illustrations
of its impact (Djulbegovic and Guyatt 2017). Adapting the conceptual toolbox of
EBM and using it to optimize nonclinical research practices and decision-making
will likely also require time, and most importantly, strong commitment and well-
targeted, well-focused advocacy from all stakeholders. Several lessons from EBM
particularly deserve the attention of nonclinical scientists, such as the importance of
framing a question, critically appraising prior evidence, carefully designing a study
that addresses that question, and assessing the quality of the data before moving to
the next step (Fig. 1).

In medicine, reviewing the evidence aims to inform the decision about how to
treat a patient; in science, the decision can be about whether or not to pursue a
project, about which experiment to do next, which assay to develop, whether the
work is sufficient for publication, or whether the aggregated evidence supports
testing a compound in humans. In all sectors, a universal framework, with custom-
izable tools, such as those available in the clinical setting, higher standards in data,
and metadata management practices and sharing would help scientists assess and
generate more reliable data.

Adapting EBM principles to nonclinical research need not undermine the free-
dom to explore. Assessing the quality of prior work should not paralyze scientists or
prevent them from thinking out of the box, and the effective implementation of
measures, such as blinding and randomization, to reduce bias should not produce a
bias against novelty. Exploratory studies aiming to generate new hypotheses may
follow less strict designs and statistical approaches, but when they are followed by
confirmatory studies, a novel body of evidence and knowledge is formed, which can
propel innovation through significance and impact. Indeed, “Innovative research
projects are expected to generate data that is reproducible and provides a foundation
for future studies” (http://grants.nih.gov/reproducibility/faqs.htm#4831). In other
words, to be truly innovative, novel findings should endure beyond the initial
excitement they create. If publications were collaboratively appraised using an
adaptation of GRADE ratings, journals could develop novel impact metrics to reflect
these ratings and the endurance of the findings.
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In drug discovery and development, the significance and reliability, or lack
thereof, of experimental data have immediate consequences. Biopharma companies
need to be able to rely on the data to determine a course of action in a research
project, to shape the future of a drug discovery program, and to extrapolate doses that
will be administered to humans. There is thus both a financial interest and an ethical
imperative, and from the patient’s perspective, an absolute requirement, to base a
decision to test a compound in humans on reliable data. When the overarching goal
of nonclinical pharmacology research is to bring a compound to the clinic,
transitioning to an evidence-based model, using and generating evidence rated in
the upper levels of the pyramid to inform decisions, would benefit discovery, and at
the very least, reduce the amount of wasted experiments.

Even with high quality of evidence and better informed decision-making, it
remains to be seen whether the approaches discussed here will effectively decrease
the attrition rate of drug candidates and lead to more success in translating findings
from nonclinical to clinical studies. There are many reasons for “failure,” and only
some are related to scientific rigor, reproducibility, and robustness. However, prog-
ress in understanding disease mechanisms and target tractability (https://docs.
targetvalidation.org/faq/what-is-target-tractability) is linked to the ability to design
experiments and clinical trials that provide reliable information. In the near future, as
solutions for enhancing data access emerge and stringent reporting standards become
mandatory, scientists of all sectors should be encouraged to adapt and adopt EBM
principles, to better enable reliable data-driven decisions.

Evidence-
based 

medicine

Evaluate

Ask

CollectAssess/rank

Implement 

Evaluate global outcome and process to 
learn from experience
Share lessons learned

Store, catalog and secure all information  

Ask a research question 
and list which nonclinical 
study types and designs 

could help provide answers

Collect relevant 
literature and aggregate 
data from pilot studies; 

consider all available 
evidence

Assess and rank quality of 
prior evidence as reported; 

determine overall 
reliability for decision-

making

Decide on next steps, 
based on assessment; 

e.g., design study, 
including statistical plan 

Implement decisions; e.g., 
generate new data, 

reproduce prior study,  move 
to next question or next stage

Fig. 1 Adapting the five evidence-based medicine steps to nonclinical pharmacology research
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