Skip to main content

Analytical Methods for the Quantification of Histamine and Histamine Metabolites

  • Chapter
  • First Online:
Histamine and Histamine Receptors in Health and Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 241))

Abstract

The endogenous metabolite histamine (HA) is synthesized in various mammalian cells but can also be ingested from exogenous sources. It is involved in a plethora of physiological and pathophysiological processes. So far, four different HA receptors (H1R–H4R) have been described and numerous HAR antagonists have been developed. Contemporary investigations regarding the various roles of HA and its main metabolites have been hampered by the lack of highly specific and sensitive analytic methods for all of these analytes. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is the method of choice for identification and sensitive quantification of many low-molecular weight endogenous metabolites. In this chapter, different methodological aspects of HA quantification as well as recommendations for LC-MS/MS methods suitable for analysis of HA and its main metabolites are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • An D, Chen Z, Zheng J, Chen S, Wang L, Su W (2016) Polyoxomatelate functionalized tris(2,2-bipyridyl)dichlororuthenium(II) as the probe for electrochemiluminescence sensing of histamine. Food Chem 194:966–971

    Article  CAS  PubMed  Google Scholar 

  • Cataldi M, Borriello F, Granata F, Annunziato L, Marone G (2014) Histamine receptors and antihistamines: from discovery to clinical application. In: Bergmann K-C, Ring J (eds) History of allergy. Chemical immunology and allergy, vol 100, Karger, Basel, pp 214–226

    Google Scholar 

  • Chimalakonda KC, Pang E, Weaver JL, Howard KE, Patel V, Boyne MT (2015) Development and validation of a liquid chromatography tandem mass spectrometry method to determine in vitro and in vivo histamine release. J Pharm Biomed Anal 102:494–499

    Article  CAS  PubMed  Google Scholar 

  • Colombo FM, Cattaneo P, Confalonieri E, Bernardi C (2016) Histamine food poisionng: a systematic review and meta-analysis. Crit Rev Food Sci Nutr (Epub ahead of print) PMID 27791395

    Google Scholar 

  • Croyal M, Dauvilliers Y, Labeeuw O, Capet M, Schwatz J-C, Robert P (2011) Histamine and tele-methylhistamine quantification in cerebrospinal fluid from narcoleptic subjects by liquid chromatography tandem mass spectrometry with precolumn derivatization. Anal Biochem 409:28–36

    Article  CAS  PubMed  Google Scholar 

  • Cunha SC, Faria MH, Fernandes JO (2011) Gas chromatography-mass spectrometry assessment of amines in port wine and grape juice after fast chloroformate extraction/derivatization. J Agric Food Chem 59:8742–8753

    Article  CAS  PubMed  Google Scholar 

  • Dale HH, Laidlaw PP (1910) The physiological action of ß-iminazolethylamine. J Physiol 41:318–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Villar N, Hernandez-Cassou S, Saurina J (2009) Determination of biogenic amines in wines by pre-column derivatization and high-performance liquid chromatography coupled to mass spectrometry. J Chromatogr A 1216:6387–6393

    Article  CAS  PubMed  Google Scholar 

  • Gill DS, Fonseca VA, Barradas MA, Balliod R, Moorhead JF, Dandona P (1991) Plasma histamine in patients with chronic renal failure and nephrotic syndrome. J Clin Pathol 44:243–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guesdon JL, Chevrier D, Mazie JC, David B, Avrameas S (1986) Monoclonal anti-histamine antibody. Preparation, characterization and application to enzyme immunoassay of histamine. J Immunol Methods 87:69–78

    Article  CAS  PubMed  Google Scholar 

  • He G, Hu J, Li T, Ma X, Meng J, Jia M, Lu J, Ohtsu H, Chen Z, Luo X (2012) Arrhythmogenic effect of sympathetic histamine in mouse hearts subjected to acute ischemia. Mol Med 18:1–9

    CAS  PubMed  Google Scholar 

  • Hogan A-M, Crean C, Barrett UM, Guihen E, Glennon JD (2012) Histamine determination in human urine using sub-2 μm C18 column with fluorescence and mass spectrometric detection. J Sep Sci 35:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Husek P, Svagera Z, Hanzlikova D, Rimnavova L, Zahradnickova H, Opekarova I, Simek P (2016) Profiling of urinary amino-carboxylic metabolites by in-situ heptafluorobutyl chloroformate mediated sample preparation and gas chromatography-mass spectrometry. J Chromatogr A 1443:211–232

    Article  CAS  PubMed  Google Scholar 

  • Jensen TB, Marley TB (1995) Development of an assay for histamine using automated high-performance liquid chromatography with electrochemical detection. J Chromatogr B 670:199–207

    Article  CAS  Google Scholar 

  • Jones BR, Schultz GA, Eckstein JA, Ackermann BL (2012) Surrogate matrix and surrogate analyte approaches for definite quantitation of endogenous biomolecules. Bioanalysis 4:2343–2356

    Article  CAS  PubMed  Google Scholar 

  • Koyama J, Takeuchi A, Tode C, Shimizu M, Morita I, Nobukawa M, Nobukawa M, Nobukawa M, Kobayashi N (2009) Development of an LC-ESI-MS/MS method for the determination of histamine: application to the quantitative measurement of histamine degranulation by KU812 cells. J Chromatogr B 877:207–212

    Article  CAS  Google Scholar 

  • Laurichesse M, Gicquel T, Moreau C, Tribut O, Tarte K, Morel I, Bendavid C, Ame-Thomas P (2016) Histamine quantification in human plasma using high resolution accurate mass LC-MS technology. Clin Biochem 49:111–116

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wang L, Hu W, Chen X, Zhong D (2014) Development of an UHPLC-MS/MS method for the determination of plasma histamine in various mammalian species. J Chromatogr B 971:35–42

    Article  CAS  Google Scholar 

  • Liu L, Cui Z, Deng Y, Dean B, Hop CECA (2016) Liang X (2016) surrogate analyte approach for quantitation of endogenous NAD+ in human acidified blood samples using liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Chromatogr B 1011:69–76

    Article  CAS  Google Scholar 

  • Maintz L, Novak N (2007) Histamine and histamine intolerance. Am J Clin Nutr 85:1185–1196

    CAS  PubMed  Google Scholar 

  • Maldonado M, Maeyama K (2012) Simultaneous electrochemical measurement method of histamine and N(τ)-methylhistamine by high-performance liquid chromatography-amperometry with o-phthalaldehyde-sodium sulfite derivatization. Anal Biochem 432:1–7

    Article  PubMed  Google Scholar 

  • Martens-Lobenhoffer J, Neumann H-J (1999) Determination of 1-methylhistamine and 1-methylimidazoleacetic acid in human urine as a tool for the diagnosis of mastocytosis. J Chromatogr B 721:135–140

    Article  CAS  Google Scholar 

  • Maslinski C, Fogel WA (1991) Catabolism of histamine. In: Uvnäs B (ed) Handbook of experimental pharmacology. Histamine and histamine antagonists, vol 97, Springer, Heidelberg, pp 165–189

    Google Scholar 

  • McBride P, Bradley D, Kaliner M (1988) Evaluation of a radioimmunoassay for histamine measurement in biologic fluids. J Allergy Clin Immunol 82:638–646

    Article  CAS  PubMed  Google Scholar 

  • van de Merbel NC (2008) Quantitative determination of endogenous compounds in biological samples using chromatographic techniques. Trends Anal Chem 27:924–933

    Article  Google Scholar 

  • Miyamoto Y, Yoshimoto R, Yumoto M, Ishihara A, Takahashi K, Kotani H, Kanatani A, Tokita S (2004) Simultaneous fluorometric measurement of histamine and tele-methylhistamine levels in rodent brain by high-performance liquid chromatography. Anal Biochem 334:89–96

    Article  CAS  PubMed  Google Scholar 

  • Nishiwaki F, Kuroda K, Inoue Y, Endo G (2000) Determination of histamine, 1-methylhistamine and N-methylhistamine by capillary electrophoresis with micelles. Biomed Chromatogr 14:184–187

    Article  CAS  PubMed  Google Scholar 

  • Oguri S, Yonega Y (2002) Assay and biological relevance of endogenous histamine and its metabolites: application of microseparation techniques. J Chromatogr B 781:165–179

    Article  CAS  Google Scholar 

  • Pittertschatscher K, Hochreiter R, Thalhamer J, Hammerl P (2002) Quantification of histamine in blood plasma and cell culture supernatants: a validated one-step gas chromatography-mass spectrometry method. Anal Biochem 308:300–306

    Article  CAS  PubMed  Google Scholar 

  • Poli C, Laurichesse M, Rostan O, Rossille D, Jeannin P, Drouet M, Renier G, Chevailler A, Tarte K, Bendavid C, Beauvillain C, Ame-Thomas P (2016) Comparison of two enzymatic immunoassays, high resolution mass spectrometry method and radioimmunoassay for the quantitation of human plasma histamine. J Pharm Biomed Anal 118:307–314

    Article  CAS  PubMed  Google Scholar 

  • Self RL, Wu WH, Marks HS (2011) Simultaneous quantification of eight biogenic amine compounds in tuna by matrix solid-phase dispersion followed by HPLC-orbitrap mass spectrometry. J Agric Food Chem 59:5906–5913

    Article  CAS  PubMed  Google Scholar 

  • Simo C, Moreno-Arribas MV, Cifuentes A (2008) Ion-trap versus time-of-flight mass spectrometry coupled to capillary electrophoresis to analyze biogenic amines in wine. J Chromatogr A 1195:150–156

    Article  CAS  PubMed  Google Scholar 

  • Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38:328–334

    Article  CAS  PubMed  Google Scholar 

  • Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev 7:41–53

    CAS  Google Scholar 

  • Toyo’oka T (2008) Separation assay of histamine and its metabolites in biological specimens. Biomed Chromatogr 22:919–930

    Article  PubMed  Google Scholar 

  • Tschirner SK, Gutzki F, Kaever V, Seifert R, Schneider EH (2015) Altered histamine neurotransmission in HPRT-deficient mice. Neurosci Lett 609:74–80

    Article  CAS  PubMed  Google Scholar 

  • Tschirner SK, Gutzki F, Schneider EH, Seifert R, Kaever V (2016) Neurotransmitter and their metabolite concentrations in different areas of the HPRT knockout mouse brain. J Neurol Sci 365:169–174

    Article  CAS  PubMed  Google Scholar 

  • Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem 403:1523–1548

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wu J, Wu S, Bao A (2013) High performance liquid chromatographic determination of histamine in biological samples: the cerebrospinal fluid challenge – a review. Anal Chim Acta 774:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Tingley FD 3rd, Tseng E, Tella M, Yang X, Groeber E, Liu J, Li W, Schmidt CJ, Steenwyk R (2011) Development and validation of a sample stabilization strategy and a UPLC-MS/MS method for the simultaneous quantitation of acfetylcholine (Ach), histamine (HA), and its metabolites in rat cerebrospinal fluid (CSF). J Chromatogr B 879:2023–2033

    Article  CAS  Google Scholar 

  • Zimmermann AS, Burhenne H, Kaever V, Seifert R, Neumann D (2011) Systematic analysis of histamine and N-methylhistamine concentrations in organs from two common laboratory mouse strains: C57Bl/6 and Balb/c. Inflamm Res 60:1153–1159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkhard Kaever .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bähre, H., Kaever, V. (2017). Analytical Methods for the Quantification of Histamine and Histamine Metabolites. In: Hattori, Y., Seifert, R. (eds) Histamine and Histamine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 241. Springer, Cham. https://doi.org/10.1007/164_2017_22

Download citation

Publish with us

Policies and ethics